

Science Yield Modeling with EXOSIMS

Daniel Garrett¹, Dmitry Savransky¹, Rhonda Morgan², and Patrick Lowrance² ¹Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY ²NASA Jet Propulsion Laboratory, Pasadena, CA

EXOSIMS

- Exoplanet Open-Source Imaging Mission Simulator
- Performs ensembles of mission simulations to determine distributions of science yield
- Developed as part of WFIRST Preparatory Science investigation

• Initial code released

- Alpha release: February 2016
- Continued updates through 2017
- Community driven project
- Visit: https://github.com/dsavransky/EXOSIMS
- Interface Control Document and other documentation included

Simulating Direct Imaging Missions

Completeness Module

NASA

• Probability of planet detection based on planet's apparent separation from star and difference in brightness (magnitude) [2] • Computed by integrating joint probability density function

- generated from probability density functions in Planet Population
- Updates completeness values for systems previously observed

major axis and Rayleigh distribution for eccentricity

1.4

0.8

Star Catalog Module

• Lists of stellar properties (e.g., position, proper motion, mass) • Wrapper for existing star catalogs

Optical System Module

- Models optics and starlight suppression systems (e.g., inner and outer working angle, contrast, and throughput)
- Describes science instruments (e.g., detector details)
- Computes integration time for target system under observation

Zodiacal Light Module

• Computes local and exozodiacal light levels for each target system

Target List Module

• Generates list of target stars (based on input modules) • Or list of pre-determined targets (e.g., stars with planets determined via radial velocity measurement)

Simulated Universe Module

• Creates synthetic universe of systems in target list • Propagates planet position and velocity vectors in time

Survey Simulation Module

- Performs specific simulation
- Returns mission timeline list of observations and outcomes
- Encodes final state of simulated universe and observatory

Survey Ensemble Module

• Runs multiple survey simulations

EXOSIMS Framework

• Integrates independent modules written in Python performing well-defined tasks into unified mission simulation

yielding distributions of science yields

- Allows user to investigate multiple mission or system designs by only modifying modules with design changes
- Interface control document defines input/output specification for each module

Background Sources Module

- Provides density of background for target stars
- Used in post processing to determine false alarms

Planet Physical Model Module

• Models light emitted or reflected in wavelengths of interest • Generates synthetic spectra or band photometry

Observatory Module Computes orbital position

vector • Computes look vectors to bright objects to determine observable stars at given epoch • Can be adapted to track fuel consumption or cryogen depletion

Contact

Daniel Garrett dg622@cornell.edu Acknowledgements

Post-Processing Module

Simulation

Time Keeping Module

Effects of post-processing on simulated or

• Encodes mission start time and duration

• Updates current mission time within simulation

• Determines detection state

– True positive (real detection)

- False positive (false alarm)
- True negative (no detection when

no planet present)

– False negative (missed detection)

observation			
	Reality		
	Planet	No Planet	
Planet	Real Detection	False Alarm	
No Planet	Missed Detection	No Detection	

This work is supported by NASA Grant No. NNX14AD99G issued through the Goddard Space Flight Center and by NASA Grant No.

NNX15AJ67G.

[1] Spergel, D., et al., (2015). Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report. arXiv: 1503.03757.

[2] Brown, R. A., (2005). Single-Visit Photometric and Obscurational Completeness. *ApJ*, 624:1010-1024. [3] Savransky, D. and Garrett, D., (2016). WFIRST-AFTA Coronagraph Science Yield Modeling with EXOSIMS. J. Astron. Telesc. Instrum. Syst, 2(1):011006.