

$\ddot{x} = x + 2\dot{y} - \frac{(1-\mu)(\mu+x)}{[(\mu-x)^2 + y^2 + y^2]}$	$\frac{x}{z^2} = \frac{\mu(\mu + x - 1)}{\left[(1 - \mu - x)^2 + y^2 + z^2\right]^{\frac{3}{2}}}$
$\ddot{y} = y - 2\dot{x} - \frac{(1-\mu)y}{[(\mu-x)^2 + y^2 + y^2]}$	$\frac{\mu y}{z^2]^{\frac{3}{2}}} - \frac{\mu y}{\left[(1 - \mu - x)^2 + y^2 + z^2\right]^{\frac{3}{2}}}$
$\ddot{z} = -\frac{(1-\mu)z}{[(\mu-x)^2+y^2+z^2]^{\frac{3}{2}}} -$	$\frac{\mu z}{[(1\!-\!\mu\!-\!x)^2\!+\!y^2\!+\!z^2]^{\frac{3}{2}}}$

Starshade Orbital Maneuver Study for WFIRST Gabriel Soto, Amlan Sinha, Dmitry Savransky, Daniel Garrett, Christian Delacroix Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States

Minimum Transfer Time Optimization

	Minimum Δt Results	Fixed Δt Results
Mean Δt	11.38 days	11.38 days
Mean Δv	104.33 m/s	$101.01 { m m/s}$
# of Observations (6 yrs, No Fuel Budget)	372.00	163.00
Minimum Mission Duration (with Fuel Budget)	0.17 yr	0.74 yr

Minimum Δv Optimization

	90		•	N/
-	80			tr
	70			a ta
-	60	_	•	1
-	50	, (m/s		d
-	40	Ą		Δ^{\prime}
-	30		•	
-	20			0
-	10			p
	0			

Target Star i				
	Min. Δv Results		Fixed Δt Results	
Δt Upper Bound	20.0 days	42.0 days	-	-
Mean Δt	$19.5 \mathrm{~days}$	38.4 days	20 days	$30 \mathrm{~days}$
Mean Δv	$62.1 \mathrm{m/s}$	$38.5 \mathrm{m/s}$	$62.3 \mathrm{m/s}$	$45.7 \mathrm{m/s}$
f of Observations (No Time Limit, w/ Fuel Budget)	122.00	143.00	124.00	136.00
# of Observations (6 yrs, w/ Fuel Budget)	105.00	63.00	107.00	71.00
Minimum Fraction of Total Fuel Used	0.86	0.35	0.84	0.45

Conclusions

- A 30-35 day fixed transfer time per starshade randomly selected realignment achieves 50 observations, achievable within 6 year WFIRST mission lifetime
- Choosing minimum Δt transfers results in reduced starshade mission lifetime
- Minimum Δv results in over 100 observations in a 6 year period

Acknowledgements and References

- This work is supported by NASA Grant No. NNG16PJ24C (SIT).
- Koon, W. S., Lo, M. W., Marsden, J. E., & Ross, S. D. (2008). Dynamical systems, the three-body problem and space mission design.
- Kolemen, E., & Kasdin, N. J. (2007). Optimal Trajectory Control of an Occulter-Based Planet-Finding Telescope. American Astronautical Society, 1–14.
- Vanderbei, R. J., Cady, E., & Kasdin, N. J. (2007). Optimal Occulter Design for Finding Extrasolar Planets. The Astrophysical Journal, 665(1), 794–798
- Savransky, D., & Garrett, D. (2015). WFIRST-AFTA coronagraph science yield modeling with EXOSIMS. Journal of Astronomical Telescopes, Instruments, and Systems, 2(1), 11006.

Transfer time minimized in optimization problem subject to fuel constraint

Minimum Δt results for transfers between star I and star *j* for a 55 star target list

transfers are computed relative to the same point on the WFIRST halo orbit

Transfers cannot use more than 5% of the total fuel on board

Ainimum Δv results for ransfers between star i and star *j* for a 55 star arget list

ower triangle shows 20 lay fixed transfer time results for comparison

Jpper transfer time limit f 1/4 of the halo orbit period

¹⁰⁰ simulations run for each fixed transfer time