ASTROPHYSICS • DARK ENERGY • EXOPLANETS

Exoplanet Target Selection and Scheduling with Greedy Optimization Dean Keithly ${ }^{1}$, Daniel Garrett ${ }^{1}$, Christian Delacroix ${ }^{2}$, Dmitry Savransky ${ }^{1}$

${ }^{1}$ 1Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca NY, United States ${ }^{2}$ Princeton University, Princeton NJ, United States

Objectives

Exoplanet detection yield can be (conditionally) maximized by optimizing 3 parameters: which targets to observe, integration time per target, and when to observe them. Our goal is to inform future imaging missions by

1. Creating fast selection and scheduling algorithms
2. Quantify assumption sensitivity (Zodiacal Light, Overhead Time)
3. Maximizing simulated exoplanet detection yield

Increasing Optimization Speed

Using Kepler data derived analytical joint probability distribution of completeness $f_{s, \Delta \operatorname{mag}}(s, \Delta \mathrm{mag})$, we marginalize over s to find $f_{\Delta m a g}(\Delta m a g)$ [3] Approximating $f_{\Delta \operatorname{mag}}(\Delta \operatorname{mag})$ using $A e^{B(\Delta \operatorname{mag}-C)^{2}} \approx A \sum_{k=0}^{100} \frac{B^{k}(\Delta \operatorname{mag}-C)^{2 k}}{k!}$ produces a good fit below

$\stackrel{2}{\text { Separation }}$ (AU)
 Integrating $f_{\Delta m a g}(\Delta m a g)$

Stellar distance \& working angles define $\max \left(C_{i}\right)$ ranging from 0.19 to $\underline{0.29}$ Coronagraph has a limiting $\Delta \boldsymbol{m a g}$ of 23.2, limiting $\max \left(C_{i}\right)$ to range from 0 to 0.12 Few targets will see $>50 \%(\mu)$ of $\max \left(C_{i}\right)$

Using SNK trom Nemati 2014 [4], we analytically solve for $\tau(\Delta \mathrm{mag})$ With our approximations we numerically solve $\frac{d C}{d \tau}\left(\tau_{0}\right)=$ const Gaussian fit approximates $C(\tau)$ knee points but overestimates $\max \left(C_{i}\right)$
Few top performing stars and large temporal variation in knee points

AYO now fast enough to run in dynamic schedule Monte Carlo (calculates τ_{0} in < $\mathbf{3 0} \mathbf{~ s e c}$ compared to $\mathbf{1 5 0} \mathbf{~ s e c}$ in previous versions) New method is capable of returning sacrificed stars to observation list without restarting optimization

Altruistic Yield Optimization (AYO)

Calculate $\tau_{i, 0} \quad$| $M=$ list of stars to observe |
| :--- |
| $N=\#$ stars in M |

While
$\left.\begin{array}{c}N \times\left(T_{\text {settling }}+T_{\text {overhead }}\right)+\sum_{i}^{M} \tau_{i}>T_{\text {mission length }} \\ O R \\ \sum_{i}^{M} C_{i}\left(\tau_{i}\right)<\text { last iteration } \sum_{i}^{M} C_{i}\left(\tau_{i}\right)\end{array}\right]$

Sacrifice star i where $\min \left(\frac{c_{i}}{\tau_{i}}\right)$
$\tau_{\text {sacrificed }}=\tau_{i}+T_{\text {settling }}+T_{\text {overhead }}$
Assign $\tau_{\text {sacrificiced }}$ in increments of $d \tau$ to $\max \left(\frac{d C_{i}\left(\tau_{i}\right)}{d \tau_{i}}\right)$

AYO $\frac{d C}{d \tau}$ reward mechanism produces a horizontal line in the $\frac{d C}{d \tau}$ vs τ Many targets have $\max \left(\frac{d C}{d \tau}\right)<\frac{d C}{d \tau}$ (observed)
Sacrifice of $\min \left(\frac{C}{\tau}\right)$ seen in constant $\frac{C}{\tau}$ slope of observed targets Higher $\frac{C}{\tau}$ performance of a star \propto Lower apparent star magnitude \square

Overhead \& Settling Time

- $T_{\text {overhead }}+T_{\text {settling }}$ variation of $\pm \mathbf{0} .5$ days $\propto \sum \boldsymbol{C}$ variation of $\mp \mathbf{0 . 4}$ Overhead variation of $\pm \mathbf{0}$. $\mathbf{5 d a y s}$ varies static schedule observation times by $\mathbf{\pm} \mathbf{m o}$, demonstrating he importance of flexible scheduling 12 mo mission schedules have 186 targets, increasing mission length increases optimal number of observations in schedule

Zodiacal Light

Observing stars at solely $\operatorname{mag} f Z_{\text {min }}$ or $\quad \sum C\left(\operatorname{mag} f Z_{\text {min }}\right)=\mathbf{3 . 9 6}$
magf $Z_{\text {max }}$ varies $\sum \boldsymbol{C}$ by $\mathbf{1 0 \%}$ magf $Z_{\text {max }}$ varies $\sum C$ by $\mathbf{1 0 \%}$
$\sum C\left(\operatorname{mag} f Z_{\max }\right)=3.64$

Monte Carlo Results

WFIRST Coronagraphic Instrument should detect 9.5 exoplanets with sequential least squares quadratic programming (SLSQP static), dependent on a contiguous year long mission with Kepler plane populations (will be different for SAG13)
SLSQP static out performs dynamic scheduling methods by $\sim 10 \%$ without considering Zodiacal Light [2]
SLSQP and StarkAYO (similar methods) produce similar total yields Any optimization is better than no optimization since all schedulers perform better than $\max (C)$ selection at $\Delta m a g=22.5$

Acknowledgements \& References
Research funded under the NASA Space Grant Graduate Fellowship from the New York Space Grant Consortium
[1] C. Stark, A. Roberge, A. Mandell, T. Robinson, Maximizing the ExoEarth Candidate Yield from a Future Direct Imaging Mission, ApJ, 2014
[2] D. Savransky, C. Delacrois, D. Garrett, Multi-Mission Modeling for Space-Based Exoplanet Imagers, SPIE, 2017
Density Functio Savransky, An 2014

