

Starshade Observation Scheduling for WFIRST

Gabriel Soto^a, Daniel Garrett^a, Christian Delacroix^b, Dmitry Savransky^a

^aSibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States ^bSchool of Engineering and Applied Science, Princeton University, Princeton, NJ, United States

Introduction

An exoplanet direct imaging mission can employ an external starshade for starlight suppression to achieve higher contrasts and potentially higher throughput than with an internal coronagraph. This study adds a starshade class to the survey simulation module of Exoplanet Open-Source Imaging Simulator (EXOSIMS)¹ which interpolates fuel costs generated from integrating the full three-body problem equations of motion. Time constraints are imposed based on when stars are observable. The star with the highest completeness² that meets the constraints of time and fuel cost is selected. This is repeated until the starshade runs out of fuel and an observation schedule is created.

Starshade Configuration

Planar view of the Telescope-Starshade-Target configuration in Sun-Earth rotating frame (not to scale). Starshade aligns with target line of sight (LOS) and suppresses starlight.

BVP via Collocation

- Starshade motion found through integrating Circular Restricted Three-Body Problem³ equations of motion
- Starshade station-keeps with telescope while star A is observed
- Starshade then retargets to star B while telescope slews / conducts other operations
- Position at t_A and t_B are known
- Solve boundary value problem to find $\mathbf{v}_{slew}(t_A)$
- Collocation algorithm used:
 Fits cubic polynomial
 - Fits cubic polynomial between endpoints
 - Minimizes residual error at mesh points in between
- Velocities known at endpoints of slew trajectory
- Solve two more BVP to find stationkeeping velocities⁵

$$\Delta v(t_A) = |\mathbf{v}_{slew}(t_A) - \mathbf{v}_{sk}(t_A)|$$
$$\Delta v(t_B) = |\mathbf{v}_{slew}(t_B) - \mathbf{v}_{sk}(t_B)|$$

 Total fuel used for one transfer, assuming two-impulse maneuver

$$\Delta v_{total} = \Delta v(t_A) + \Delta v(t_B)$$

Diameter	26 m
IWA	72 mas
Separation Distance	37,242.26 km
Dry Mass	1250 kg
Total Mass	3500 kg
I_{sp}	$308 \mathrm{\ s}$
Total Δv	2094.33 m/s

Starshade parameters⁴ used for simulations in this study. The starshade is assumed to have a bi-prop propulsion system given the impulsive maneuver assumptions inherent in the BVP solutions.

Estimating Fuel Cost – Any Star, Any Time

- Need fast way of calculating cost of getting from one star to all others in a target list
- Solving every BVP takes approximately 12 minutes with a dual core 2.50 GHz CPU
- Arranging target stars by angular separation ϕ from previous observed star reveals structure in a Δv vs. ϕ plot (asymmetric about the 0° line)
- Can add second dependency for slew time $\,\Delta t = t_{
 m B} t_{
 m A} \,$
- Interpolant generated to calculate $\Delta {
 m v}=f(\phi,\Delta {
 m t})$ within a fraction of a second

Moving Keepout Zones as Time Constraints

- Keepout Zone: stars are unobservable due to sun or planet light directly entering (or being reflected by starshade) into telescope
- Need to point telescope away from bright sources, imposes angular constraints⁶

- Stars enter and exit keepout zones as the telescope orbits the L2 point
- Plot above shows times since the start of the mission during which a particular target star is in a keepout zone (colors indicate which bright source is the culprit)
- Times when star exits and re-enters keepout zone used as bounds for slew times

Choosing the Next Best Star to Observe

Starshade Observation Schedule

- Results for a 6 year mission (with 1 year of direct imaging time) shown above
- Color scaling on each point indicates completeness value of that particular target star
- Color scaling for each line indicates Δ_V value for each transfer (thickness indicates order of observation with first star highlighted in bold)
- 51 observations were made with 10 detections overall in 149s
- Future work on this scheduler will include comparisons with other schedulers and more aggressive slew times early in the mission before instrument deterioration

Acknowledgements and References

This work is supported by NASA Grant No. NNG16PJ24C (SIT).

- 1. Savransky, D., & Garrett, D. (2015). WFIRST-AFTA coronagraph science yield modeling with EXOSIMS. *Journal of Astronomical Telescopes, Instruments, and Systems*, 2(1), 11006.
- 2. Garrett, D., & Savransky, D. (2016). Analytical Formulation of the Single-visit
- Completeness Joint Probability Density Function. *ApJ*3. Koon, W. S., Lo, M. W., Marsden, J. E., & Ross, S. D. (2008). Dynamical systems,
- the three-body problem and space mission design.

 Shaklan, S., Marchen, L, & Cady, E. (2017). Shape accuracy requirements on starshades for large and small apertures. *Proc. SPIE 10400, Techniques and*
- Instrumentation for Detection of Exoplanets VIII
 5. Soto, G., Sinha, A., et al (2017). Starshade Orbital Maneuver Study for WFIRST
- Proc. SPIE 10400, Techniques and Instrumentation for Detection of Exoplanets
 Kolemen, E., & Kasdin, N. J. (2007). Optimal Trajectory Control of an Occulter-Based Planet-Finding Telescope. American Astronautical Society, 1–14.

Send correspondence to: Gabriel Soto

