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The Gemini Planet Imager Exoplanet Survey

484 targets observed to date

Figures courtesy of R. De Rosa
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GPIES Campaign Data System

dedicated to our front-end interfaces. Our main user-facing front
end is the “Web Thingie,” which hosts views into our database
as well as observing tools (Sec. 2.4). We also describe how
collaborative tools such as Slack and our internal wiki are
integrated into our automated data infrastructure (Sec. 2.5).

2.1 Data Acquisition and Storage

A substantial amount of data is being generated by GPIES.
About 3 years into the survey, we have accumulated ∼23;000
raw science files and ∼26;000 raw calibration files. Including
reprocessed data, we have generated ∼27;000 quicklook
datacubes, ∼5600 reduced calibration files, ∼80;000 science-
grade datacubes, ∼68;000 stellar-PSF-subtracted images, and
∼61million contrast curve data points. In addition to the science
data, we also have ∼73;000 raw telemetry files produced by the
AO system to monitor its performance, the observing status of
all 600 targets in the survey, and also information on the target
stars themselves. To handle all of the data while also making it
available to the entire collaboration, we use a combination of
Dropbox and a MySQL database to store the data.

2.1.1 Summit quicklooks and data download

After new IFS data are taken on the summit, an instance of the
GPI DRP running on the summit uses the GPI DRP autoreducer
module to automatically perform quicklook reductions of the
data. These quicklook reductions allow observers to assess
data quality and, for science data, provide a contrast curve to
demonstrate the sensitivity achieved in a single frame of data
for understanding observing conditions. If the data are rendered
unusable due to issues such as AO control loops opening or
wind-shake moving the star off of the coronagraph mask, the
observer can log that particular file as bad through the GPItv
interface in the GPI DRP. The summit quicklook reductions pro-
vide observers the basic tools to assess data quality so that

observing can continue in the unlikely case the observatory net-
work connection fails and renders the rest of the data infrastruc-
ture ineffective. During an observing sequence, the observer
also periodically takes AO telemetry data every 5 to 10 min to
allow for further analysis of AO system performance.

To move the data off the summit, automated scripts down-
load the raw and quicklook science data as well as the AO telem-
etry data to a server located at Cornell University that hosts the
MySQL database. While AO telemetry data are downloaded
during daytime hours to avoid saturating the network bandwidth
during the night, IFS frames are written at a rate of fewer than
one per minute, so it is downloaded in real time along with the
bad-files log without using significant network resources. The
server at Cornell University then uploads the data and metadata
to Dropbox and the database, respectively.

2.1.2 Database

After receiving new data, the Cornell server adds entries for all
of the data into a MySQL database. For all of the science and
calibration data taken by the IFS, header information and meta-
data get uploaded into the raw and reduced data tables. The raw
table contains one row for each raw file, with one column for
each of the fields in the file headers (e.g., observing mode,
wavelength band, time of observation), along with a column
for the unique identifier (ID) for each file. The reduced table
contains one row for each reduced file, produced either by
the quicklook GPI DRP on the summit or by the Data
Cruncher afterward. The reduced data table contains informa-
tion after some data processing has happened such as whether
the data product is a quicklook or science-grade reduction, the
sensitivity achieved at some fiducial separations, flux calibration
conversions, as well as a unique ID for the reduced file. To link
the reduced data to their original raw data products, a third
“Raw2Reduced” table is a two-column table where each row
associates one raw file ID with one reduced file ID. Multiple

Fig. 1 Schematic of the GPIES automated data processing infrastructure. Boxes represent the different
components of the infrastructure that are described in Sec. 2. The boxes are colored so that black rep-
resents the telescope, blue represents data storage, orange represents data processing modules, and
teal represents user-facing services. Arrows indicate the flow of data or information from one component
to another.
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GPIES Database Schema
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GPIES Database Contents

14 GB (metadata and ancillary products only)

136,151 IFS Raw Data Files (30,142 GPIES)

263,973 IFS Reduced Data Products

86,092 AO Raw Telemetry Files

86,325,374 Contrast Values

What can we do with all this data?
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Previous Work

Performance characterization of GPI’s AO with IFS data
[Poyneer et al., 2016, Bailey et al., 2016]

GPI performance variation characterization with operating conditions
[Tallis et al., 2018]

See also: Tallis et al., this conference [10703-267]

That’s not what this talk is about
Here, we are only looking for purely data-driven results, with no specific

physical modeling of underlying processes
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Finding Correlations

For two random variables x̄, ȳ :

Pearson product-moment:

rx̄,ȳ =
E[(x̄− µ(x̄))(ȳ − µ(ȳ))]

σ(x̄)σ(ȳ)

Spearman rank correlation:

ρx̄,ȳ = rrank x̄,rank ȳ

Kendall rank correlation:

τ =
2

n(n− 1)

∑
i 6=j

[((xi > xj)&(yi > yj))|((xi < xj)&(yi < yj))]

−
∑
i 6=j

[((xi < xj)&(yi > yj))|((xi > xj)&(yi < yj))]
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Contrast Correlations
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Contrast Correlations
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Contrast Correlations
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The Data is Noisy
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Mixture Models

A point yi may belong to the “true” data or be considered an outlier
drawn from a normal distribution ∼ (µo, σo), governed by binary flag oi:

p(yi|xi, σi,θ, oi, µo, σo) =

1√
2π (σ2

i + oiσ2
o)

exp

(
− [yi − (1− oi)fθ(xi)− oiµo]2

2 (σ2
i + oiσ2

o)

)
The marginalized likelihood is then:

p({yi}ni=1|{xi}ni=1, {σi}ni=1,θ, µo, σo)

=

n∏
i=1

[Op(yi|xi, σi,θ, oi = 0) + (1−O)p(yi|xi, σi,θ, oi = 1)]

for

p(oi) =

{
O oi = 0

1−O oi = 1

See: [Hogg et al., 2010, Hogg and Foreman-Mackey, 2017]
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Linear Modelling (I-Magnitude)

2 0 2 4 6 8 10
I mag

5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0

lo
g 1

0(
Co

nt
ra

st
)

0.25 as

2 0 2 4 6 8 10
I mag

6.0

5.5

5.0

4.5

4.0

3.5

lo
g 1

0(
Co

nt
ra

st
)

0.40 as

2 0 2 4 6 8 10
I mag

7.0

6.5

6.0

5.5

5.0

4.5

4.0

lo
g 1

0(
Co

nt
ra

st
)

0.80 as



12/19

Linear Modelling (Ambient Temperature)
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DNN Regression

From: [G. Lion, 2016]

This work done entirely in TensorFlow r1.8.
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Choice of Network
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Single Layer, 8 Neuron, 9 Input Regression Network
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Two Layers, 16 Neuron, 6 Input Regression Network
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What Can We Say After the First Observation?
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Three Layers, 60 Neuron, 22 Input Regression Network
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Conclusions

Jointly exploiting operational and science data metrics can lead to new
discoveries, but is difficult if you don’t have the proper infrastructure in
place

Polynomial models are likely insufficient to accurately describe
performance variations given the large numbers of endogenous and
exogenous factors in play

Machine Learning is great, but it’s hard to tell if you really have the right
answer
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