Optical Design of a Large Segmented Space Telescope

Jacob Shapiro¹,², Dean Keithly¹,², Dmitry Savransky¹,², Gabriel Soto¹,², Christopher Della Santina¹, Erik Gustaffson¹

1. Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
2. Carl Sagan Institute, Cornell University, Ithaca, NY, United States

Mission Overview

• Approximately 1,000 identical, mass-produced spacecraft
• Spacecraft travel via solar sail to L2
• Each spacecraft combines to form one large telescope via autonomous in-space assembly
• Each flat mirror modulated to control shape
• Completed structure combines with instrument spacecraft and secondary mirrors.

Segmentation of Primary

• Finds the correct location for each mirror
• Center mirrors removed based on geometry
• Segments excluded if >40% of the hexagonal area is outside the 31 m diameter.
• Gaps between mirrors determined by relative angle and assumed thickness

Ideal Optical System

Ritchey-Chrétien Cassegrain Telescope

• Aperture: $d = 31$ m
• Primary Focal Length: $f_p = f/2$
• Secondary Diameter: 3 m
• Effective focal length $F = f/5.6$
• Mirror Size: 1 m (flat-to-flat)
• Gap Size: 0.006 m

Shape Reconstruction

• Each mirror begins identical and flat
• Must be adjusted to the ideal shape at that location
• Least-squares fit the shape to Zernike polynomials
• Uses a hexagonal domain
• Leverage JWST technology to modulate to the first 4 modes.

Modelling and Simulation

Example segment with complex shape

Zernike polynomials used

Point Spread Functions

Gaps, ideal shape:

Gaps, reconstructed shape:

Acknowledgements

This work was supported by NASA Grant NNX03CC82G.

References

Parameters selected from comparisons to TMT¹, GMT², Hubble³, and JWST⁴

Deformation is dominated first by angular rotation, then by a curvature mode

Example of residuals on a specific segment using only piston, tip, tilt and defocus modes

Root Mean Square residuals for every segment in the primary mirror

Example segment with complex shape

Zernike polynomials used

Acknowledgements

This work was supported by NASA Grant NNX03CC82G.

References

Parameters selected from comparisons to TMT¹, GMT², Hubble³, and JWST⁴

Deformation is dominated first by angular rotation, then by a curvature mode

Example of residuals on a specific segment using only piston, tip, tilt and defocus modes

Root Mean Square residuals for every segment in the primary mirror