Blind Search Single-Visit Exoplanet Direct Imaging Yield for Space Based Telescopes

Dean Keithly^{1,3}, Dmitry Savransky^{1,3}, Daniel Garrett^{1,3}, Rhonda Morgan^{2 ¹Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca NY} ³Carl Sagan Institute, Ithaca NY

Objectives	Telescope Parameters		Observation Stats		
 Modify the WFIRST target list optimization process to detect as many exoplanets as possible on small and large telescopes 1. Optimize coronagraph direct imaging observation times using mixed integer programming and sequential least squares quadratic programming [2] 2. Optimally schedule observations 3. Apply process to target starved and target rich telescopes 4. Observe number and distribution of detected exoplanets 5. Answer how much over-optimization effects overall detection yield 	WFIRST4m MonolithPupil Diam. (m) 2.37 4.0 Contrast mean intensity λ (nm) 565 500 Attenuation fractionIWA (arcsec) 0.15 0.045 fractionOWA (arcsec) 0.428 2.127 OrbitDetection 5 7 Sun Keepout	WFIRST4m Monolithn1.52e-128.24e-150.5090.266L2 HaloL2 Halo45.040.0	Observing Time $\sum \tau$ (d) $\sum \tau + t_{OH}$ (d) Observations Shortest τ (d) Longest τ (d)	WFIRST 4 N N 3 mo 3 14.307 1 91.307 1 77 1 0.019 0 0.343 1	mTakeaway: Overhead and settling times significantly10nolithsettling times significantly.75 yreffect time observing167.56targets367.21Takeaway: Integration406times vary from minutes.035to days.344~¼ of observations yield
WFIRST	SNR Angle (deg) 4900 45° 30°	Finder 140 ຮູ້ 120 ຮູ້	Mean τ (d) Stars with detections Around a star: Max # Detections Mean # Detections Closest Detection (pc) Earthlike Detection: Closest (pc)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.830.92 of observations yield32*detections Takeaway: Dynamic stability of an 11 planet warrants further investigation.04*investigation Takeaway: Closest Earth- Like planet detected is 3 51 pc

15°

-15°

-30°

-45[®]

-60°

-75°

-2 Heliocentric Ecliptic Longitude of Targets (rad) **Takeaway:** WFIRST targets are non-uniformly distributed observations **Takeaway:** Observations strictly at minimum local zodi \mathbf{O} would take 3 years for 3mo observing time 1yr 2yr

0° 30° 60° 90° 120° 150°

∑τ=14.3 (d)

2.0

1.5

- 0.0 🕨

3.51pc 28.31* Furthest (pc) * *From single simulation Immediate Characterizations

We make characterizations immediately following detections

Optimizing au without accounting for characterization leads to 53% completeness remaining unobserved

 10^{-1}

10⁰

100%

95.33%

95.89%

Over Optimization 10⁰ **10¹ Takeaway:** Optimizing τ using Kepler Like 2 (an EXOSIMS planet pop.) conservative planet populations is robust to planet population [±] Detected **Planets:** For 1000 **Universe Distribution** 0.07 2.12 20.78 07.11 18.07 Simulations Kepler Like 2 0.25 6.62 103.39 160.28 39.00 SAG13 0.71 12.25/151.66 172.72 33.97 S Kepler 2,048 *planets* 6, 748 *planets* **31.52 18.21 149.80 99.30 10.29** Like 2 100% SAG13 d 2,002 *planets* 6, 433 *planets* **10¹** 250 **Detected Planet Pop.** R_P Freq. 1000 *sims* Semi-Major Axis (a) in AU 97.75% For 1000 **Universe Distribution** Simulations Kepler Like 2 SAG13 , Kepler **511, 299** *planets* **1, 211, 922** *planets* Like 2 100% a SAG13 Ш 475, 834 *planets* 1, 263, 911 *planets*

EXOSIMS

(p)

Dean Keithly THE PALE BLUE DOT & BEYOND

drk94@cornell.edu