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Modular spacecraft start  Solar sails unfurl and Spacecraft are assembled : : : .1
on Earth orbits with mirror  propel the mirrors to L2, on a Lissajous orbit, Dynamlcs_ are modeled using the Clr_c_ular Three Body formallsm_ : 1 Earth Escape
as payload.  Solar radiation pressure exerts specific force onto each solar sail <. _ _
« A control law 3 for the sail angles is used to
| T AND A ,B _ o maximize energy gain: Leo
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« When within 1000 km, two spacecraft will rendezvous and dock together. 0. Suauyduy \/gv%+8(vg 7 E- . &
« Sails overlap, remain attached to mirror cluster through extensible tether. . The lightness number B < used as a non-dimensionalized sail n, — Eny £ = Z(vZ 1 02) 100
- Y z
Characteristic acceleration. | » Equations of motion with sail normal control 80
« Itis a function of the sail area A, payload mass my, , sail areal law integrated until escape energy is reached

density Os of units 7.z ) 7
and a critical lightness number 0 .
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A « Assuming a set sail density
based on JPL NEA Scout design

« Design space includes payload
mass and sall size — each
corresponds to a characteristic
acceleration

* Time to escape earth orbit shown
as contours on design space plot

 Solar sails create a sunshield
for the telescope.
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I ! « Mirrors all dock together to
_ I form a segmented telescope.
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- Lissajous orbit found through an z $ Indm_dual modules mse_rted at different points on the
iterative differential correction / Lissajous where they will eventually rendezvous and dock
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20! 200 [0 process* about Sun-Earth L2. e ‘ * Close approaches of 1000 km occur when spacecraft are injected one
« A Lissajous revolution is defined as ” revolution apart — they occur at top and bottom of Lissajous
* W H_h . e | =l two successive ecliptic plane - o » Rendezvous trajectories found using multiple shooting algorithm to minimize Av at
Al Nm | l 1 I8 ol crossings. £
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Spare Payload [Kg] C3 [m?/s?] =10’ ) . . . E ’
» |nitial Earth orbits simulated by sampling distribution of potential launch orbits and providers. * One spacecrait is kept on nominal orbit while the other &£, :
« Launch specs generated using launch data from 2016-2017 uses solar sail to minimize Av at end point . . o , : .
E 175 .+ , ...,g-.:g'..:‘ « e :.::,.._::,:‘:
50 transfers are initiated at the top and bottom of the Lissajous, on £ I A Ll ¥
2 Transfer to L2 average taking 17.5 days to complete with Av on the order of 1 m/s ] ' "
£ 16.5.
+ Transfer to L2 initiated sometime before or after reaching escape energy R e
« Constrained optimization problem usin . equations of motion perturbed by a . . . | R | | | |
P P 9 f :eq P ys Boundary value problem with 12 variables, 6 boundary conditions -150 -100 0 -50 O o s0 100 150

H—J+)\.f == )\ __ _OH OH __ 0 each at start and end of trajectory (position and velocity) Angte on Lissajous Orott 1dea,
ox on  Single shooting problem wrapped into optimization problem using
Variational Hamiltonian: minimize cost J and Co-states add 6 more Definition of new

basinhopping algorithm

constrained by equations of motion equations to integrate control law
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« Optimization variables: This work Vé%ii‘épé’fgﬁggbggmm eran Send correspondence to
- Optimal control law points solar sail in direction of velocity co-states (Lagrange ity At Aags Ayos Azgs Avgos vy o5 Avs o) L. Koon W.S. Lo, M. W.. Marsden, J. E.. & Ross, S. D. (2008). Gabriel Soto
inli N " . i i ) . . Dynamical systems, the three-body problem and space mission
multipliers pertaining to velocity) . iz defines time at which transfer to L2 is initiated design.
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