
Quadrotor Modeling and Control
Senior Design Final Report

Nikhil Ranganathan

Spring 2019

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Project Concept . 3

2 Quadrotor Modeling 5
2.1 Definitions and Formalisms . 5
2.2 Force Modeling . 6
2.3 Equations of Motion . 7

3 Simulation 7
3.1 Simulator Architecture . 8
3.2 Propagator . 8

4 Estimator Design 9
4.1 Attitude Estimator . 9

4.1.1 Quaternion Estimator . 10
4.1.2 Extended Kalman Filter 11

4.2 Altitude Estimator . 13
4.3 Implementation and Performance 13

4.3.1 Attitude Estimator . 13
4.3.2 Altitude Estimator . 18

5 Controller Design 18
5.1 Problem Setup . 18
5.2 Linear Quadratic Regulator (LQR) 19
5.3 Controller Architecture . 19
5.4 Attitude Controller . 20

5.4.1 Error Linearization . 20
5.4.2 Ricatti Solution . 21
5.4.3 Controllability . 21
5.4.4 Simulation Performance 22
5.4.5 Global Stability Questions 22
5.4.6 Torque to Input Transformation 23

5.5 Position Controller . 24
5.5.1 Linearization . 24
5.5.2 Position Control Performance 26

6 Implementation 27
6.1 Hardware Setup . 27

6.1.1 Computation . 27
6.1.2 Propulsion . 30
6.1.3 Communications . 30

1

6.1.4 Power . 32
6.1.5 Sensing . 33

6.2 Software Setup . 34
6.3 System Identification . 34
6.4 Estimator Integration . 34
6.5 Controller Implementation . 38

7 Results 38
7.1 Attitude Control . 38
7.2 Altitude Control . 42

8 Conclusion 43

2

Figure 1: DJI Phantom 1

1 Introduction

1.1 Motivation

Applications for autonomous UAVs, specifically quadrotors, are numerous, with significant im-
plications for socioeconomic growth. Autonomous quadrotors would allow farmers to continually
monitor crop quality, grant energy companies the ability to survey pipelines, cables, and roads,
without exhaustive labor costs, and allow infrastructure companies to continually assess bridge and
building security. Additionally, quadrotors are increasingly being used as a research platform to
test novel concepts in estimation, control, and autonomy, particularly because the parts are rela-
tively cheap and well documented, and quadrotors do not require a large testing apparatus. As I
intent to study control systems in graduate school, studying the quadrotor system would give me
useful insight into not only quadrotors themselves, but practical control system design in general.
Particularly, I wanted experience implementing a control system in hardware, as the control sys-
tems I have implemented in class have been generally in software. Thus, the primary educational
objectives were to gain experience implementing a state-space controller in hardware, and to gain
experience with quadrotor hardware as a research platform.

1.2 Project Concept

The primary project objective was to develop a quadrotor capable of stable hover and reaching
waypoints autonomously. This was to be accomplished using a purpose-built attitude estimator
from MEMS sensors and purpose-built control software. The only components allowed to be utilized
from the DJI frame were the casing, motors, ESCs, and power distribution system. The components
allowed to be COTS purchased were the sensors, transmitter, and reciever. All other elements were
intended to be produced by me. In particular, I did not utilize a commercial flight controller or
commercial attitude estimator.
The project was broken into several parts. The rough project timeline is shown in table 1.

3

Project Component Time given
Complete assembly and perform system ID 1 week
Develop simulator 3 weeks
Develop attitude estimator 4 weeks
Develop attitude controller 2 weeks
Integrate attitude estimator 1 week
Integrate attitude controller 1 week
Test and tune attitude controller 2 weeks
Develop and integrate position estimator 1 week
Develop and integrate position controller 1 week
Test and tune position controller 1 week

Table 1: Project timeline

I allocated only one week for hardware assembly and system identification because much of
the assembly had been accomplished by me the previous semester. The bulk of the time was
allocated to development of the simulator and attitude estimator, as those required the most novel
work. I chose to schedule position controller and estimator towards the end of the project in
case the attitude controller took the entire semester. Complete development and integration of an
autonomous quadrotor in one semester was an ambitious concept, so I wanted to ensure a result.

4

(a) Inertial reference frame I and body-fixed frame B
(b) Body Fixed Frame B

Figure 2: Reference Frames

2 Quadrotor Modeling

2.1 Definitions and Formalisms

Figure 1 displays the two reference frames used throughout this report. First, there is an inertial
earth-fixed North-East-Down (NED) frame I, composed of unit vectors {N̂ , Ê, D̂}, where N̂ points
in the direction of magnetic north, D̂ points in the direction of gravity, and Ê ≡ D̂ × N̂ . Second,
there is a body fixed frame B, composed of unit vectors {x̂, ŷ, ẑ}, where x̂ points in the quadrotor’s
’forward’ direction, ẑ points downwards, and ŷ ≡ ẑ × x̂.
The quadrotor’s attitude is represented in this report in two ways. First, all algorithms presented
utilize the unit quaternion q which defines the rotation from the inertial frame to body frame,
where

q ∈ R;q ≡


q0

q1

q2

q3

 ; q0 ∈ R; q̄ ∈ R3 (1)

The quaternion q, by definition, must satisfy

vb = R(q)vi (2)

where vi is a vector in the inertial frame, vb is a vector in the body frame, and R(q) is the rotation
matrix defined from the quaternion, which is given by

R(q) =

1− 2q2
2 − 2q2

3 2(q1q2 − q3q0) 2(q1q3 + q2q0)
2(q1q2 + q3q0) 1− 2q2

1 − 2q2
3 2(q2q3 − q1q0)

2(q1q3 − q2q0) 2(q2q3 + q1q0) 1− 2q2
1 − 2q2

2

 (3)

In addition, I utilize for convenience the 3-2-1 Euler angle sequence, defined as a yaw rotation ψ
about D̂, a pitch rotation θ about Ê′, where Ê′ is the rotated Ê, and a roll rotation φ about

5

Figure 3: Free Body Diagram

x̂ = N̂ ′′. Euler angle representation is used only for intuition for data output, and is given byφθ
ψ

 =

atan2(2(q0q1 + q2q3), 1− 2(q2
1 + q2

2))
asin(2(q0q2 − q3qq)

atan2(2(q0q3 + q1q2), 1− 2(q2
2 + q2

3))

 (4)

where atan2 is the two argument arctangent function.

2.2 Force Modeling

The quadrotor system is modeled as a 3-dimensional rigid body. When modeling the forces acting
on the body, I made the following assumptions:

1. Due to the quadrotor’s size, inertial forces dominate viscous drag, and so the plant model
includes no damping.

2. The only aerodynamic forces considered are the motor thrust and propeller drag.

3. The mass of the the motor casing and propellers is negligible in comparison to the overall
quadrotor mass, and so the motor moment of inertia Im is treated as zero.

4. The quadrotor center of mass is at the geometric center of the symmetric quadrotor. While
this is likely inaccurate, an offset center of mass can be modeled as a disturbance torque.

Figure 2 shows the resulting model. The three forces considered are gravity, the motor thrust forces,
and the propeller drag torque. The gravity force is given by

Fg = mg (5)

6

and is assumed to act at the geometric center of the body in the direction D̂, and is thus decoupled
from the attitude model. To model the motor thrust forces, a quadratic relationship between
propeller angular velocity, which is derived in [1], is assumed:

Ti = kω2
i (6)

Practical modeling of the motor thrust is difficult to perform due to unsteady flows and propeller
deformations that are complicated to model, so implementation is performed empirically as de-
scribed in section 6.2. Propeller drag force can also be described as a quadratic function of angular
velocity, as in

Di = bω2
i (7)

as derived in [1].

2.3 Equations of Motion

The rotational and translation equations of motion can be decoupled. I start the derivation with
the Newton-Euler equations of motion

F = ma

τ = Iω̇ + ω × Iω
(8)

where I is the moment of inertia matrix. The motor torque acting in the body frame is given by

τm =

 Lk(w2
1 + w2

2 − w2
3 − w2

4)
Lk(w2

1 − w2
2 − w2

3 + w2
4)

Lb(−w2
1 + w2

2 − w2
3 + w2

4)

 (9)

The motor force acting in the body frame is given by

Fm =

 0
0

k(w2
1 + w2

2 + w2
3 + w2

4)

 (10)

where L is the distance from rotor to the x and y axes. The complete equations of motion are given
by 

q̇
ω̇
ṗ
v̇

 =


1
2q⊗ ω

I−1(τ − ω × Iω)
v

q⊗ Fm ⊗ q∗ + g

 (11)

3 Simulation

The aim of the simulator was to test the control laws in advance before implementing in hardware.
The simulator is also used to perform model verification. The simulator is written as a script in
MATLAB.

7

Figure 4: Simulator High Level Architecture

3.1 Simulator Architecture

Figure 3 shows the high level architecture of the simulator. The user sets the initial conditions,
quadcopter properties, and integration timespan. The controller zero order hold is simulated by
the timestep size, which is set to realistic values of the controller loop time. The controller logic is
identical to the real controller, with several key exceptions.

1. The simulator assumes perfect attitude knowledge and does not currently model the attitude
observer or attitude noise.

2. The simulator utilizes torque and thrust as the input parameters to the propagator, and does
not incorporate the decomposition of thrust and torque to motor angular velocity.

Performance of the simulator will be discussed in section 7.

3.2 Propagator

The main difficulty in implementing the attitude simulator was choice of a numerical integrator.
My first choice was to integrate the equations of motion for one timestep using MATLAB’s ode45.
This proved numerically unstable due to the unit norm constraint on the attitude quaternion.
Some in the literature have resolved this by implementing an RK45 and normalizing the quaternion
every timestep, but I chose to utilize a different approach which explicitly encodes the unit norm
constraint. I followed the approach in [2] in implementing a quaternion variational integrator. the
algorithm as derived in the paper is implemented as in Algorithm 1. A variation is taken on the
intermediate quaternion

fk = qkqk+1 (12)

such that the variation explicitly obeys the unit norm constraint. This can be converted into the
unconstrained parameterization

fk =
φk√

1− φk · φk
(13)

This parameterization is only valid assuming that the rotation for any timestep k is not greater
than π. This can be enforced by using an arbitrarily small integration timestep.

8

Algorithm 1: Quaternion Integration

Result: qt+1 given qt,ω,τ ,h
while t0 < t < tf do

pk = Iω;

φ0 = h
2ω;

f0 = [1, 1, 1]T ;
while f>tol do

f(φ) =
√

1− φ · φ · I · φ+ φ× Iφ− pk h2 + τ h
2

2 ;

f ′(φ) = 2
h (
√

1− φTφ)I − IφφT√
1−φTφ

+ crs(φ)I − crs(Iφ);

φn+1 = φn − f ′(φ)−1f(φ)
end

fk =
[√

1− φTφ φ
]
;

qt+1 = qtfk;

wt+1 = I−1(2
h

√
1− φTφIφ+ φ× Iφ+ hτ)

end

Attitude Estimation Quaternion EKF
Attitude Rate Estimation Gyroscope

Altitude Estimation LIDAR

Table 2: Attitude Estimation Summary

Algorithm 1 summarizes this approach. the parameter φ is solved using a Newton method,
which displays good convergence within a few iterations. The distinction between the integration
timestep and the simulation timestep is important; the integration timestep should be chosen to
reduce integration error, while the simulation timestep should be representative of the system loop
time, to accurately model the zero order hold. The position integration is trivial and is therefore
not explicitly derived here, but is accomplished by extending the variational integrator.

4 Estimator Design

As complete state estimation was out of the project’s scope, I constrained the estimator to measure
attitude, attitude rates, and altitude. Discussion of further state estimation is in section 8. The
design is summarized in Table 1.

4.1 Attitude Estimator

I decided to utilize the quaternion for attitude estimation for several reasons. First, quaternions do
not exhibit singularities at large angles, and are a comparatively minimal representation to SO(3).
Second, calculation of the body rates does not require differentiation and can be taken directly from
the gyroscope.
Attitude estimation is performed through measurement of Earth’s gravitational field and magnetic

9

field in the body frame. It is well known that two inertial vectors is sufficient to calculate the body
attitude. The gravitational vector ĝ is assumed to point in the D̂ direction, while the magnetic field
vector m̂ is assumed to point in the N̂ direction. Given an ideal acceleration signal a comprising
of only gravity in the body frame, and a magnetometer signal m, the problem is then reduced to
solving for q in

R(q)g = a

R(q)m = h
(14)

where h is the global magnetic field vector. Possible solutions to this overdetermined system are
discussed below.

4.1.1 Quaternion Estimator

There are many popular solutions to (14), also known as Wahba’s problem. To design my esti-
mator, I looked at three solutions: the Quaternion Estimator (QUEST), the Algebraic Quaternion
Algorithm, and the Factored Quaternion Algorithm (FQA).
The QUEST algorithm [3] determines the optimal rotation quaternion given a series of weighted
vector observations. However, this solution is often overcomplicated for this problem, because for
a quadcopter, the roll and pitch estimation ought to be invariant on the yaw estimation. Thus, I
chose not to implement QUEST.
The Algebraic Quaternion Algorithm [4] produces an analytic formula for the attitude quaternion
given acceleration and magnetometer observations. It solves Wahba’s problem by assuming pitch
and roll information are obtained only using the accelerometer data, and heading information is
only obtained by the magnetometer data. This results in the following analytical formula for qacc,
the pitch and roll quaternion,

qacc =

{[
λ1 − ay

2λ1

ax
2λ1

0
]
, az ≥ 0[

− ay
2λ2

λ2 0 ax
2λ2

]
, az < 0

λ1 =

√
az + 1

2

λ2 =

√
1− az

2

(15)

The two representations are used to avoid the singularity. Similarly, the heading quaternion qmag
is written as

qmag =

{[√Γ+lx
√

Γ√
2Γ

0 0
ly

√
2
√

Γ+lx
√

Γ

]
, lx ≥ 0[

ly
√

2
√

Γ−lx
√

Γ
0 0

√
Γ−lx

√
Γ√

2Γ

]
, lx < 0

(16)

where
l = RT(qmag)m

Γ = l2x + l2y
(17)

Finally,
q = qacc ⊗ qmag (18)

10

This parameterization has several benefits. First, the measurement vector is considered to be the
true measurement, acceleration and magnetometer measurements, and the Jacobian of the quater-
nion estimate with respect to the measurement can be explicitly computed for use in the Kalman
filter. Second, the algebraic formulation reduces computation time. However, while this parameter-
ization was successful for me for qacc, but not for qmag, which in retrospect may have been caused
by improper magnetometer calibration. Thus, I attempted method 3.
the Factored Quaternion Algorithm (FQA) [5] is a method that constructs the estimate quaternion
from computed Euler angles. While this does suffer from singularities, the paper gives parameteri-
zations that avoid these problems. The elevation quaternion is computed as

qe =
[
cos θ2 0 sin θ

2 0
]

sin θ = ax
(19)

The roll quaternion is computed as

qr =
[
cos φ2 sin φ

2 0 0
]

sinφ =
−ay
cos θ

cosφ =
−az
cos θ

(20)

Finally, the azimuth quaternion is computed by rotating the magnetic field vector by the pitch and

roll angles. Given a normalized magnetic field reference vector n =
[
nx ny nz

]T
and a rotated

magnetic field measurement vector me = qeqrmbq
−1
r q−1

e , the problem is simplified to solving the
system of equations [

nx
ny

]
=

[
cosψ − sinψ
sinψ cosψ

] [
mex

mey

]
(21)

The azimuth quaternion is then constructed as

qa =
[
cos ψ2 0 0 sin ψ

2

]
(22)

Finally, the estimate quaternion is computed by

qest = qaqeqr (23)

I utilized FQA over the algebraic quaternion method not due to a specific benefit, but only because
FQA worked first. Performance of the estimator is discussed further in section 7.

4.1.2 Extended Kalman Filter

Data from the magnetometer and accelerometer form an estimated quaternion, which can be op-
timally combined with the gyroscope information using an EKF to create a better estimate than
gyroscope integration or two-vector estimation alone. There are generally two different architec-
tures for a quaternion EKF. In both cases, the process model [6] gives the projected quaternion
given the current quaternion and gyroscope measurement as

q̇ = Ω(ω)q (24)

11

where

Ω(ω) =
1

2


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

 (25)

The discrete time form of equation (24) is given by

qt = exp(Ωt−1∆t))qt−1 + wk (26)

where wk is the process noise. Equation 26 can be linearized to get

q̄t = (I4x4 + Ω(ω)∆t)qTt−1 + wk (27)

Assuming the process noise is solely a function of gyroscope noise, and assuming gyroscope noise
can be modeled as ω = ω̄ + δω, where ω̄ is the true angular velocity and δω is the gyroscope noise,
the process noise matrix Qt can be written as

Qt =
∆t2

4
GtΣgG

T
t (28)

where

Gt =


q1 q2 q3

−q0 q3 −q2

−q3 −q0 q1

q2 −q1 −q0

 (29)

and Σg is the zero-mean white Gaussian noise covariance. The measurement model is treated in dif-
ferent ways in the literature. Some define the measurement vector z =

[
ax ay az mx my mz

]
and define analytically h(q) = z by using a parameterization that is amenable to such an analytic
approach. The benefit of this approach is that the measurement uncertainty can be directly es-
timated from the noise characteristics of the accelerometer and magnetometer. For example, [4]
explicitly derives the measurement covariance Σq = JΣzJ

T , where J = ∂q
∂z . The downside of this

approach is difficulty in implementation and computational cost of computing this Jacobian. The
alternate approach is to consider the measurement z = qest, and thus the measurement equation is
just

z = I4x4q (30)

which does not require linearization. The measurement noise Σz is just estimated empirically,
which has disadvantages. This approach assumes a constant measurement uncertainty throughout
the state space, which is in many cases is a bad assumption due to external accelerations and large
rotations of the magnetic field vector. However, experiment has shown this simplifying assumption
to be reasonable in the case of a quadcopter, which does not experience large pitch and roll angles
often, and does not exhibit large unmodeled external accelerations. Figure 4 displays the high level
architecture of the EKF. An intermediate measurement quaternion qest is produced which is then
used for the update, in comparison to a traditional EKF which would utilize z =

[
a m

]
as the

measurement. Implementation of the EKF is discussed in section 6.3 and performance of this EKF
is discussed in section 7.

12

Figure 5: Extended Kalman Filter Architecture

4.2 Altitude Estimator

While I considered utilizing a Kalman filter to profess my altitude state, I decided that this would
introduce more noise than using the raw altitude signal provided from the LIDAR. Because the
EKF would utilize the attitude estimate, it would compound the error, and accelerations induced
by change in velocity were often close to the noise floor of the sensors and would further introduce
noise into the measurement. Additionally, the high sample rate of the LIDAR gives generally good
altitude information at every timestep. Performance is discussed in section 7.

4.3 Implementation and Performance

4.3.1 Attitude Estimator

The attitude estimator was implemented utilizing an InvenSense MPU-9250 9-axis inertial mea-
surement unit. Communication was performed using I2C protocol. More details on IO pin control
is found in Section 6.
The accelerometer is configured to the ± 2g setting, because a high resolution is desired. Bias
removal was difficult, because bias determination required a level surface and I was without an
electronic level. Discussion of possible effects of accelerometer bias is in section 7.
To calibrate the gyroscope, the stationary bias signal was subtracted away. For this chip, the bias
was determined to be ωbias =

[
0.0043 0.0185 −0.0064

]
rad/s. While this bias is small, it incurs

an appreciable error on the EKF.
Magnetometer calibration was more involved. Magnetometers are subject to a number of distur-
bances, which can be classified into ’hard iron’ and ’soft iron’ offsets. Hard iron offsets involve
magnetic fields other than the Earth’s that the magnetometer senses. This could be magnetic fields
induced on the IMU chip itself, or fields in the quadrotor motors and power supply. Soft iron off-
sets are offsets created by the interaction of Earth’s magnetic field with objects in the environment,
distorting the field. Ideally, with no distortions, points measured by the magnetometer should lie
on a sphere of radius h, the strength of Earth’s magnetic field at that location. Hard iron offsets
have the effect of moving the center of the sphere from the origin, while soft iron offsets transform
the sphere into an ellipsoid. The problem of magnetometer calibration is simply a transformation

13

(a) Uncalibrated Magnetometer Data (b) Calibrated Magnetometer Data

Figure 6: Ellipsoidal fit and calibration of magnetometer data

of this ellipsoid into an origin-centered sphere. Assuming the ellipsoid is described by equation

x2

a2
+
y2

b2
+
z2

c2
= 1 (31)

The volume-preserving transformation into a sphere is

(u, v, w) =
1

(abc)
2
3

(bcx, acy, abz) (32)

Figure 5 displays magnetometer data before and after calibration. The ellipsoidal fit was ac-
complished using a least-squares fit in MATLAB. It is clear immediately that in the testing envi-
ronment, soft iron offsets were negligible, as the raw ellipsoid is actually approximately spherical
already. However, hard iron offsets are significant, and are resolved in the calibrated picture. With-
out magnetometer calibration, yaw estimation is severely inaccurate.
The attitude estimator is successful in certain circumstances. Figure 6 shows data taken with the
IMU held static. While these tests do not demonstrate the EKF’s effectiveness compared to ground
truth, as I did not have access to a gimbal setup with pose measurement, it allows comparison of
the EKF to the direct measurement. It is clear that the considerable static noise introduced by the
accelerometer and magnetometer is effectively rejected by the EKF. Figure 7 displays how the EKF
performs in a dynamic environment. In general, the EKF tracks the measurement while rejecting
noise. Additionally, figure 7 (b) demonstrates the EKF rejecting measurement disturbances created
by external acceleration. The peaks of the FQA curve are induced by the acceleration at the peak
of the motion, which are successfully rejected by the EKF. However, large external accelerations
still induce severe disturbances. Figure 8 is the result of shaking the IMU without changing its
orientation. The acceleration norm is seen in figure (b), which oscillates around 1g. It is clear that
the EKF is not sufficient to reject disturbances of this magnitude and frequency. Luckily, these

14

(a) Roll Angle (b) Pitch Angle

(c) Yaw Angle

Figure 7: EKF vs FQA Estimates, static case

15

(a) Roll Angle (b) Pitch Angle

(c) Yaw Angle

Figure 8: EKF vs FQA Estimates, dynamic case

16

(a) Pitch Angle (b) Accelerometer Norm

Figure 9: Pure external accelerations induce substantial disturbances

types of disturbances are generally not seen in quadrotors. However, I discuss this problem and
potential solutions in section 8.

17

4.3.2 Altitude Estimator

Figure 10: Implementation of altitude estimator

The altitude estimator, shown in Figuree 10, consists of a single LIDAR Lite rangefinder mounted
to the bottom of the quadrotor. The sensor returns a pulse width which is proportional to the time
of flight of the laser beam. I did have difficulties in implementation, as the I2C output of this sensor
is not compatible with the Raspberry Pi 3. This motivated the choice of using PWM. The sensor’s
update rate is significantly faster than the loop time and thus imposes minimal time delay, and is
relatively noise free when pointed at a flat surface.

5 Controller Design

5.1 Problem Setup

A quadcopter controller must regulate the attitude of the quadcopter, expressed in any param-
eterization, using four input thrust vectors. The system input, while often described as u =[
ωm1 ωm2 ωm3 ωm4

]
, is more conveniently expressed as u = τ , the torque on the body frame.

The motivation for this choice is discussed later.
The most common approach to designing a quadcopter controller in the literature is a Proportional-

18

Integral-Derivative (PID) controller. The first control law I attempted to implement was a PID on
the Euler angles, with a control law

u = Kpθ +Kdθ̇ +Ki

∫ t

0

θdt (33)

While this has been successful in the literature, there are several issues with this method. First,
parameterization using Euler angles has the disadvantages described earlier. Second, the PID
requires tuning 9 parameters which are co-dependent, which can be an arduous task. Finally, the
PID gives no guarantees on optimality. As a result, I have chosen to reframe the problem as an
optimal controls problem.

5.2 Linear Quadratic Regulator (LQR)

A Linear Quadratic Regulator (LQR) is a control law designed to produce the optimal gain matrix
K in the law

u = −Kx (34)

given the linear system with state x, output y, and control input u

x = Ax + Bu

y = Cx + Du
(35)

This is performed by minimizing the cost function

J(x,u) =

∫ ∞
0

xTQx + uTRudt (36)

by decomposing the gain matrix K = −R−1BTS, this can be reframed as a continuous-time
algebraic Ricatti equation

0 = SA + ATS− SBR−1BTS + Q (37)

5.3 Controller Architecture

Figure 5 displays the final architecture of the controller. Because the attitude and position dynamics
are decoupled, it makes sense to control them in separate loops. Additionally, if the position
controller fails, the result is not always catastrophic, but if the attitude controller fails, it is much
more problematic. This approach enables a faster loop time for the attitude controller, and prevents
potentially costly position measurements from impacting the attitude loop time. For each position
and attitude, there is an LQR gain matrix and integrator, which are summed to produce the control
input. The position LQR produces an input upos consisting of a vector encoding both the reference
quaternion qref and input thrust Tref . This feeds into the attitude loop, containing both an LQR
gain and integrator, which results in a reference torque, which is decomposed into the motor angular
velocities. Specific design is discussed below.

19

Figure 11: Controller Block Diagram

5.4 Attitude Controller

5.4.1 Error Linearization

In order to utilize the analysis in section 5.2, the nonlinear attitude equations in (11) must be

linearized. The linearized state dynamics equation, with x =
[
q ω

]T
, yields

A =

[∂q̇
∂q

∂q̇
∂ω

0 ∂ω̇
∂ω

]
(38)

The partial derivatives are given by

∂q̇

∂q
=

1

2


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

 (39)

∂q̇

∂ω
=

1

2


−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q2

−q2 q1 q1

 (40)

∂ω̇

∂ω
= ω× − I−1ω×I (41)

With the control input u = τ ,

B =

[
04x3

I−1

]
(42)

Next, in order to control to an arbitrary reference point, it is necessary to control the attitude error.
The attitude error, expressed as a quaternion, is given by

qe = q−1 ⊗ qr (43)

20

and angular velocity error given by
ωe = ωr − ω (44)

where qr is the reference attitude quaternion and ωr is the reference angular velocity. Due to the
fact that the reference attitude is considered static, q̇ = q̇e, and thus the linearized error dynamics
are equivalent to the linearized dynamics.

5.4.2 Ricatti Solution

As described in section 5.2, in order to solve for the gain matrix K, equation (37) must be
solved. While there are numerous methods to solve the Continuous-time Algebraic Ricatti Equation
(CARE), I chose the method described in [7], which utilizes the Schur decomposition. The method
considers the Hamiltonian matrix

Z =

[
A −BRBT
−Q −AT

]
(45)

The Schur decomposition then produces a linear transformation U such that Z maps to real Schur
form (RSF)

UTZU =

[
S11 S12

S21 S22

]
(46)

Additionally, the matrix U is arranged such that the real parts of the eigenvalues of S11 are negative
and the real parts of S22 are positive. Then, the U can be partitioned into

U =

[
U11 U12

U21 U22

]
(47)

The matrix S is then given by solving the linear system

SU11 = U21 (48)

Finally,
K = −R−1BTS (49)

I chose this method for its speed and numerical stability, properties demonstrated by the [7].

5.4.3 Controllability

Unfortunately, the system described in 5.4.1 is not controllable, a fact that can be easily seen by
examining the controllability Gramian

C =
[
B AB A2B . . . An−1B

]
(50)

which is not full rank in the given system. This is caused by the fact that the quaternion space
double covers SO(3). This is resolved in much of the literature by considering the reduced state
space x =

[
q1:3 ω

]
utilizing the unit norm constraint to remove the quaternion real part. However,

this approach exhibits variable stability throughout the state space, and is actually uncontrollable
when the quaternion rotation angle θ = π, a fact proven by [8]. The authors of that work propose

21

(a) Euler Angles (b) Quaternion Elements

Figure 12: Step response in roll, pitch and yaw. Stability to hover is demonstrated.

an alternate solution; the addition of a virtual control input ua renders the non-controllable mode
controllable. This involves the creation of the augmented system

Aa = A

Ba =

[
B

[
q
0

]]
(51)

This guarantees the controllability as full rank. It makes intuitive sense to place the virtual control
input in the direction of the quaternion, as this is the direct that the original model exhibits no
control authority. This control input is simply ignored in the final dynamics.

5.4.4 Simulation Performance

The above control law was simulated using representative values for quadcopter properties, as
discussed in 6.2. In this case, I used weighting matrices of Q = 100CTC and R = 0.1I4x4. Figure
10 displays a representative step response in both Euler angles and quaternion elements. Clearly, the
LQR successfully stabilizes the quadcopter about the reference point, while minimizing overshoot
and ringing, which can be tuned by changing Q and R.

5.4.5 Global Stability Questions

The use of quaternions does introduce some unfavorable dynamics into the system. As explained
previously, the quaternion double covers the space of orientations and SO(3). Thus, there are two
quaternions that correspond to hover with no yaw, q =

[
±1 0 0 0

]
. This results in two prob-

lems. First, while the LQR renders both of these equilibrium points in the closed loop system,
stability for both is not guaranteed. In fact, only one of these equilibrium points will be stable. In

22

(a) Initial condition close to equilibrium point (b) Initial condition far from equilibrium point

Figure 13: Unstable dynamics demonstrated by step response in quaternion space

this case, the stable equilibrium point is q =
[
−1 0 0 0

]
. While the proof of this is beyond the

scope of this work, it can be shown through numerical integration, as in Figure 11. While both of
the initial orientations were identical in Euler space, they represented opposite quaternions, and it
is clear that the second case jumped from a position around the unstable equilibrium to the stable
equilibrium. This is demonstrated most clearly by q3, which moves from 1 to -1. I resolved this
issue in the simulation by ensuring the initial condition is always in the correct ’hemisphere’ of
quaternion space, which means choosing the sign of q0 correctly. In the quaternion estimator, this
requires forcing the estimated quaternion to always have negative real part, thus preventing this
instability.
Another issue that quaternions introduce is more prohibitive. Under large rotations, the lineariza-
tion becomes gradually less accurate, to the point of introducing significant instability. The impetus
for this discussion is that my initial design does not control for yaw, as I wanted to ensure pitch
and roll stability first. However, the performance proved extremely variable dependent on yaw
angle, and under large yaw angles often failed completely. Figure 11 displays this behavior. With
zero yaw, the control input is entirely in the roll direction, as expected. With nonzero yaw, the
control input disturbs the pitch direction as well, resulting in significant ringing. It is important
to note that the equilibrium state is still globally stable, but the path is substantially sub-optimal.
This is an issue I was unable to resolve, but fixed by simply disregarding yaw information in the
implemented controller.

5.4.6 Torque to Input Transformation

The input to the system was chosen as torque over rotor angular velocity because it was difficult
to force the output of the LQR to be strictly positive. Thus, a transformation from torque to rotor
thrust must be determined. This intuitive transformation was implemented only for τx,τy, and

23

(a) ψ = 0 (b) ψ = 120o

Figure 14: Instability introduced by large yaw, as demonstrated by roll step response

throttle, but can be easily extended to include τz. This approach considers four independent cases
depending on the signs of τx and τy. For example, in the case where τx > 0 and τy > 0, then only
motors 1,3,and 4, as notated in Figure 3, will need to contribute to the total torque. If, in this
case, τy > τx, then motor 4 is expected to generate (τx+τy)/2, and motor 1 is expected to generate
τy/2 − τx/2. This produces the correct torque, and can be extended to all cases. Thus, only two
rotors are required to produce any given τx and τy. Then, the required thrust is simply calculated
by subtracting the desired thrust from the thrust required to generate the reference torque, and is
distributed equally across each rotor. The full algorithm is presented in Algorithm 2.

5.5 Position Controller

The original intention of the project was to control all degrees of freedom of the quadrotor, including
position. However, due to complications implementing GPS in the testing space, I chose to only
implement altitude control. Full position control is still implemented in the simulator, and is thus
presented here.

5.5.1 Linearization

Unlike the attitude controller, which is relinearized every step, the position controller is not. Thus,
the linearization, expressed through the error dynamics pe = pr − p and ve = vr − v, is simply

A =

[
03x3 I3x3

03x3 03x3

]
B =

[
03x3
1
mI3x3

]
(52)

24

Algorithm 2: Input torque and thrust to input pulse width transformation

Result: PW1,PW2,PW3,PW4 given τx,τy,Tref ,k,l,PW0
Initialize PW1=0,PW2=0,PW3=0,PW4=0;
if τx >= 0 τy >= 0 then

PW4 = PW4+(τx + τy)/(2kl);
if τx−klPW4>0 then

PW3 = PW3+(τx−klPW4)/(kl)
else

PW1 = PW3+(τy−klPW3)/(kl)
end

else if τx >= 0 τy < 0 then
PW3 = PW3+(τx − τy)/(2kl);
if −τx−klPW3>0 then

PW4 = PW4+(τx−klPW3)/(kl)
else

PW2 = PW2+(−τy−klPW3)/(kl)
end

else if τx < 0 τy >= 0 then
PW1 = P1+(−τx+τy)/(2kl);
if −τx−klPW3>0 then

PW2 = PW2+(−τx−klPW1)/(kl)
else

PW4 = PW4+(τy−klPW1)/(kl)
end

else if τx < 0 τy < 0 then
PW2 = P2+(−τx − τy)/(2kl);
if −τx−klPW3>0 then

PW1 = PW1+(−τx−klPW2)/(kl)
else

PW3 = PW3+(−τy−klPW2)/(kl)
end

Tres = Tref − k(PW1 + PW2 + PW3 + PW4);
if Tres¿0 then

PW1 = PW1+Tres/4;
PW2 = PW2+Tres/4;
PW3 = PW3+Tres/4;
PW4 = PW4+Tres/4;

end

25

(a) Position (b) Euler Angles

Figure 15: Example position control step response from [0,0,0] to [1,0,1]

The input vector thrust vector up then must be decomposed into an input thrust and reference
quaternion. This transformation was computed by [9]. The reference quaternion is computed as

q′r = (ẑ · up + ||up||) + ẑ × up

qr =
q′r
||q′r||

(53)

The reference thrust is computed simply by ẑ||up||m.

5.5.2 Position Control Performance

Position control, unlike attitude control, is not sensitive to rise time, but is highly sensitive to
overshoot. For example, when landing, it is desirable for the quadrotor to have zero vertical
velocity upon touchdown. To accomplish this, the closed loop eigenvalues of the position system
must all have zero imaginary parts. While there is no analytical method to accomplish this, it
is possible by simply weighting the velocity components sufficiently in the Q matrix. As is clear
from Figure 13(a), the closed loop poles are heavily damped and exhibit zero overshoot. For this
application, the large rise time is acceptable. Figure 13(b) shows the resulting control orientation,
which approaches level hover in steady state.

26

Figure 16: Quadrotor Setup

6 Implementation

In this section, I will discuss implementation of these algorithms both in hardware and software.

6.1 Hardware Setup

The quadrotor setup, as pictured in Figure 14, consists of a stripped down DJI Phantom 1 frame and
custom electronics. As described in the introduction, the only parts original to the Phantom 1 are
the frame, motors, speed controllers, and power distribution board. The high level wiring diagram
is shown in figure 15. The main hardware components are the motors, electronic speed controllers
(ESCs), battery, power distribution board (PDB), reciever, IMU, LIDAR, and computation unit.
Implementation of these subsystems are discussed below.

6.1.1 Computation

Computation is performed by a Raspberry Pi Model 3, as pictured in figure 18. The Pi runs the
Unix-based operating system Raspbian. I chose the Raspberry Pi because they are cheap, easy to
implement, and can communicate over WiFi, precluding a complicated communications protocol.
Utilizing a non real time operating system is considered dangerous for two main reasons. First,
there are no hardware timed GPIO pins on the Raspberry Pi, and so precision timing is difficult. In
particular, the Pi must generate precise PWM waveforms, and measure PWM waveforms from the
LIDAR and reciever. Second, it is possible for the operating system to interrupt the flight controller,
which is undesirable. I resolved the first issue through the library PIGPIO, which runs a daemon
to simulate hardware timed PWM on software timed pins. In practice, this enables accuracy to
around ±6µs, which is sufficient for measuring PWM signals on the order of milliseconds. While

27

Figure 17: Quadrotor Setup

28

Figure 18: Raspberry Pi onboard computation

I did not explore the effects of the operating system on the computation, I did not see significant
interruptions during flight tests.
The computer communicates to the quadrotor components through the GPIO pins. Table 3 shows
the usage of each pin on the Pi, by CPU pin number (Broadcom).

Function GPIO Pin # (BCM)
RECIEVER CHANNEL 1 17
RECIEVER CHANNEL 2 27
RECIEVER CHANNEL 3 22
RECIEVER CHANNEL 4 18
RECIEVER CHANNEL 5 11
MOTOR 1 10
MOTOR 2 9
MOTOR 3 25
MOTOR 4 11
LIDAR 7
IMU SDA 2
IMU SCL 3

Table 3: Raspberry Pi GPIO Pin Usage

29

6.1.2 Propulsion

Figure 19: Propulsion system components

The propulsion subsystem consists of the motors and ESCs. Both of these components are leftover
from the original DJI Phantom frame. The motors are given three-phase control signals from the
speed controllers. The ESCs are powered directly from the battery voltage, and the control signal
is supplied by the Raspberry Pi. The input to the DJI ESCs, found through trial and error due to
lack of documentation, is a PWM signal operating at 400 Hz. Zero throttle is a 1ms pulse and full
throttle is a 2ms pulse. The PWM duty cycle is given by

DC =
255

2.5
T (54)

Where DC is the supplied duty cycle and T is the desired pulse width in milliseconds. The square
wave is generated using the PIGPIO package for the Raspberry Pi.

6.1.3 Communications

There are two relevant communication links. The transmitter, a FrSky Taranis Pro, must commu-
nicate with the Raspberry Pi information regarding desired input attitude and throttle, as well as
arm/kill information. Additionally, a ground station computer must provide commands and receive
data from the quadrotor.

30

Figure 20: Communications system components

The receiver (FrSky Delta-8) has several possible communication protocols: PPM, CPPM, and
RSSI. CPPM, or combined pulse position modulation, is the most compact, as it requires only one
signal wire, and each pulse is modulated on one period. However, the code required to read this
protocol was more complex, so I decided to utilize only PPM (pulse position modulation), and
utilize one signal wire per channel. In this case, the five channels are roll, pitch, yaw, throttle, and
arm/kill. Each of the roll, pitch, and yaw sticks gives a pulse position in the range of 1-2ms. The
roll and pitch sticks both map to ±10o, such that the sticks at the center is 0o. The arm/kill switch
is binary, such that if the channel width is greater than 1.4ms, the command is ARM, and if it is
less than 1.4ms, the command is KILL.
In order to measure the transmitter command signals, the pulse widths of each channel had to be
measured. I ultimately decided to utilize ’callback functions’ in PIGPIO, which function similarly
to interrupts. These callback functions are configured to fire on a rising edge or falling edge of the
receiver GPIO pins. This algorithm is summarized in Algorithm 2.
The communication between ground station and computer is done through WiFi. The nmap pack-
age is utilized to locate the Raspberry Pi network, and ssh is used to communicate. I used sftp to
transfer files between the ground station and the Pi.

31

Algorithm 3: Pulse Width Measurement Algorithm

Result: Pulse Width PW
if level == RISING then

risingtime = tick;
else

PW = tick-risingtime
end

6.1.4 Power

Figure 21: Power system components

The objective of the power subsystem is to ensure each system component receives the correct
voltage and sufficient current. The components requiring power are the ESCs, computer, Receiver,
LIDAR, and IMU. Implementation is shown in Figure 21. The DJI Phantom contains onboard
power distribution for the ESCs, supplying the battery 11.1V. It also contains a 5V power supply
circuit, which converts the variable battery voltage into a constant, reliable 5V supply. This is
routed into the central breadboard, and distributed to the LIDAR breadboard, receiver, and Pi.
One important consideration was how to power the Raspberry Pi; while it is possible to power
through the GPIO pins, this provides no protection against current spikes and could damage the
Pi. Instead, I utilized a microUSB breakout board and soldered power and ground directly from the

32

Phantom PDB. Testing showed that the DJI PDB was reliable and relatively noise free. Another
concern was the relatively small gauge wire connecting to the DJI PDB, as the 1̃A drawn by the Pi
could overheat the wires. However, while a larger gauge wire is recommended for this amperage, I
did not experience issues.

6.1.5 Sensing

The sensing subsystem consists of the IMU and LIDAR. The IMU, pictured in Figure 22, commu-
nicates with the Raspberry Pi through I2C. Reading the IMU data through I2C requires the bulk
of the loop time, and so raising the I2C bitrate substantially improved the controller performance.
The IMU was generally configured to default state, and the IMU startup routine was as follows:

• Open I2C connection at bus 1 to MPU9250 address

• Restart IMU to default by writing 0x02 to 0x6B

• Calculate accelerometer and gyroscope offsets

• Set MPU9250 magnetometer bypass byte to 1 by reading MPU9250 address 0x37 and writing
(0x37—0b00000010) to 0x37, and writing 0x01 to 0x38

• Open I2C connection at bus 1 to AK8960

• sleep 0.1s

Figure 22: LIDAR circuitry

The LIDAR required extra onboard circuitry to implement, as shown in Figure 22. The LIDAR
can draw current unpredictably, so to prevent the power subsystem from being overloaded, two

33

470µF capacitors are placed in parallel across power and ground, effectively low-pass filtering the
power supply. As suggested by the datasheet, a 1KΩ resistor is added between signal and ground.
Additionally, I constructed a JST connector for the LIDAR, so the sensor could be removed with
ease.

6.2 Software Setup

The onboard software is all written in Python, due to its accessibility and my familiarity with it.
One potential issue with Python as compared to lower-level languages such as C is speed. However,
after porting some system components into C as a test, there was a minimal effect on the loop time,
as the majority of the loop is spent on I2C communication with the IMU.
As explained above, the package PIGPIO is used for GPIO control. The flight controller utilizes the
Python bindings to the C software. Integration is done in Sublime and pushed to the Pi through
sftp.

6.3 System Identification

In order to simulate the quadrotor model, the physical properties of the drone must be found. The
relevant constants to be calculated are the motor thrust constant k, the motor drag constant b, the
quadrotor mass m, the moment of inertia I.
The mass of the drone was determined by a scale to be 1kg. The moment of inertia matrix was
difficult to estimate because of a lack of an air bearing table or accurate CAD models. Thus, the
inertia matrix used in [10] was used: Ixx = 0.081kgm2,Iyy = 0.081kgm2,Izz = 0.142kgm2. The
motor thrust constant was found by empirics. Rather than find the thrust as a function of rotor
angular velocity, it is found as a function of input pulse width. The experiment was performed by
placing the quadrotor on a scale and measuring the change in weight for various input pulse widths.
The total thrust was then divided by four to find the thrust for a single rotor. The results are
shown in figure 23. The ESCs are clearly designed to have a linear thrust response to input pulse
width. The thrust to pulse width relationship is given by the linear fit as

T = 5.73PW + 1.16 (55)

where the pulse width PW is in ms and T is in kg. The motor drag constant b is more difficult
to compute experimentally and theoretical models are highly unreliable, so this property was not
found for this project. A potential experiment would involve a motor mounted perpendicular to
the scale, with a lever arm pressing against the scale. The motor drag torque would then exert a
force on the scale which could be isolated.

6.4 Estimator Integration

Integration of the attitude estimator proved troubling for a few reasons. First, there was not a
convenient, level surface to mount the IMU to. It was important to place the IMU close to the center
of mass to minimize external accelerations generated by rotation of the quadrotor. Additionally,
the surface must minimize vibrations generated by the rotors and minimize possible interference
with the magnetometer. I finally chose to place the IMU as shown in figure 18. This placement has
several effects. First, there is significantly more vibration in the x and y directions (in the plane
of the surface) than the z direction because the ability of the surface to warp in the z direction

34

Figure 23: Rotor thrust as a function of input pulse width

functionally acts as a vibration damper. Second, the rotation of the sensor frame with respect to
the body frame necessitates that the quaternion measured by the estimator be rotated into the
body frame, as

qadj = qest ⊗ qstatic (56)

where qadj is the adjusted body quaternion, and qstatic is the static rotation between sensor and
body frames, measured to be qstatic = [0.57444037,−0.8178944, 0.01441685, 0.02727644].
Additionally, the placement of the IMU was not sufficient to damp out rotor vibrations. When
ramped up, the motors produced significant noise in the estimated quaternion. This is caused by
small imbalances in the rotors producing an external acceleration on the IMU. The solution to this
was to low-pass filter the IMU, utilizing the formula for the discrete time low pass filter

ât = (1− α)at−1 + αat (57)

where

α =
∆t

2πf + ∆t
(58)

and f is the low-pass cutoff frequency.

35

Figure 24: IMU placed on non-level surface on the side of the quadrotor

36

Figure 25: Periodogram of accelerometer x direction, with and without low pass filter

Figure 19 shows a periodogram, plotting the power spectral density as a function of frequency,
of the accelerometer, with the rotors running at a 1.6ms PWM input. In order to plot up to 500Hz,
I raised the I2c bitrate to 600kbps from the default 100 kbps, in order to achieve a loop speed of
around 1KHz. The result shows a very clear peak in the signal, placed exactly at the expected rotor
frequency. Thus, by placing a low pass filter with a corner frequency of 30Hz, the noise is all but
eliminated, with a small time delay cost. This also proves the useful result that an accelerometer can
be used to measure rotor speed relatively accurately, rather than using an expensive tachometer.
The low pass filter successfully eliminated most of the EKF noise.
The altitude estimator also required filtering. While the sensor provided relatively noise-free data,
the altitude rate was computed through numerical differentiation, and was extremely noisy when
applied to the raw data. To resolve this, two low pass filters were utilized; a filter with cutoff
frequency of 1Hz for the altitude data, and another filter of cutoff frequency 1.5Hz applied to the
resulting velocity data. This produced sufficiently noise-free velocity data.

37

6.5 Controller Implementation

Safety was a key priority when implementing the flight controller. The key requirements can be
summarized as:

• The pilot must have complete ARM/KILL authority authority at all times and must be able
to kill the rotors at any time during operation.

• The controller must autokill if the receiver loses connection with the transmitter.

• The controller must autokill if the receiver loses connection with the IMU or LIDAR.

• The controller must autokill if the controller crashes during operation.

This was resolved by using two global variables ARM and AUTOARM. The controller will kill if
either of these variables are set to zero. The transmitter arm/kill switch controls the ARM variable,
and flight checks control the AUTOARM variable. If the receiver, IMU, or LIDAR loses connection,
then AUTOARM is zeroed and the controller self kills. Additionally, if the controller crashes, the
script executes code to kill the motors before the program exits. The full flight controller flow
diagram is shown in figure

7 Results

In this section, I present data taken from flight tests. For attitude control tests, I controlled only the
throttle and arm/kill swtich, and for altitude control tests, I controlled only the arm/kill switch.
These tests were performed outdoors, and effects of wind disturbances are present and will be
discussed.

7.1 Attitude Control

Tuning the attitude controller proved much easier than my attempts to tune the PID controller.
Initially, the only adjustments I had to make were tuning the Q and R matrices. Generally, I held
R fixed and adjusted Q. If the gains were too high, the quadrotor would either go visibly unstable
or would incur significant ringing. In this case, I would lower Q. If the gains were too low, the
quadrotor would act sluggish and drift significantly, in which case I would raise Q. The following
analysis was produced with Q = 100CCT and R = 0.2I4x4.
Another issue that was that due to bias in the estimator, the integrator would result in significant
drift. With the integrator turned off, the controller did not regulate about the origin, but still
hovered relatively well, a phenomenon I was unable to explain.

Figure 16 demonstrates the quadrotor operating at stable hover. The quadrotor took off at
approximately 1.5s with a slight initial pitch. The quadrotor regulates the roll and pitch angles
around approximately ±4o in both direction. At around 6s, a gust of wind occurred, and the
quadrotor successfully rejected this disturbance. The noise present at hover is likely due to several
factors. First, slight environmental disturbances, such as wind, result in noise. Second, the attitude
estimator introduces noise and time delay. This noise could be attenuated by improving the attitude
estimator.
Figure 17 displays an example step response in pitch, as compared to a similar step response in the

simulator. While the steady state value is not pictured, it is around 5o, likely due to estimator bias.

38

Figure 26: Full flight controller flow diagram

39

Figure 27: Euler angles, Stable Hover

40

(a) Step response, Euler angles (b) Simulated step response

(c) Motor Control Signal

Figure 28: Step response in pitch, as compared to simulated step response

41

First, a main difference between experiment and simulation is the large disturbance in roll angle,
which is likely due to disturbances during takeoff. These disturbances, though not shown in the
plot, are damped out eventually, but with a very large settling time. Second, it is clear that there
is an undesirably large overshoot of approximately 100%, while the simulator exhibits an overshoot
of 48%. The experimental rise time is approximately 0.5 seconds, and the theoretical rise time is
approximately 0.5 seconds as well. There is a significant difference in theoretical and experimental
overshoots, which is likely due to unmodeled time delay. Time delay results in an increase in phase
lag, which increases both overshoot and settling time. Sources of unmodeled time delay include the
estimator and zero order hold computation delay. One possible method to model this delay is to
utilize the frequency response of the zero order hold:

L(s) =
1− exp(−sT)

sT
(59)

where T is the zero order hold period, taken as the loop time. Additionally, the estimator could
be modeled directly in the simulation. To resolve the issues with overshoot, a more precisely timed
compute unit could be used, such as a microprocessor. Additionally, utilizing a faster sensor pro-
tocol, such as SPI, would cut down on the loop time. Finally,a less aggressive controller would
produce a smaller overshoot.
The near identical rise times suggest that the quadcopter model is very reasonable, and that the
values for I are near correct. Additionally, it implies that the relationship between control input
and motor torque is approximately accurate.
The control inputs for each motor, in PWM (ms), are show in in 17(c). It is clear that the control
inputs are never saturated during the step response, but that there is also significant jitter. This
would increase the effect of motor slew rate, which is also unmodeled, and would be accounted for
in a more accurate model.

7.2 Altitude Control

The altitude control is implemented as explained in section 6.2. For these tests, the quadrotor is
instructed to execute a simple autonomous mission: take off to a certain altitude, hold altitude
for a certain time, and land. Performance is compared to the simulator. The tolerance is set to
2cm for the first waypoint and altitude hold, and 15cm for landing. Figure 18 shows an example
mission versus a simulated altitude step response. In this mission, the quadrotor was instructed
to take off to 0.4m altitude, hold altitude for 2 seconds, then land. It successful completed this
trajectory and held altitude to the prescribed tolerance and timespan. The jitter in altitude was
surprisingly low, likely due to high quality measurements from the LIDAR. Often, the quadrotor
would tip on landing due to uncontrolled horizontal velocities, but when horizontal velocity was
low, the quadrotor would land consistently upright.
The altitude step response appears to match the experiment well. Both exhibit zero overshoot,
suggesting that if the closed loop poles are sufficiently damped, the added phase lag due to time
delay would not cause overshoot. This also allowed the quadrotor to land softly from the 0.15m
tolerance. The experimental rise time is 0.64s, compared to a theoretical rise time of 4.44s. These
values are extremely different, suggesting an error in the position integrator or incorrect values
for motor thrust. I was unfortunately restricted in performing tests for a longer duration due to
significant horiziontal position drift and a relatively small testing space. However, this altitude

42

(a) 2 second altitude hold at 0.4m, altitude and alti-
tude rate

(b) Simulated altitude step response to 0.4m

Figure 29: Experimental altitude hold as compared to simulated altitude step response

control appears capable of performing arbitrarily complex mission absent failure of the attitude
control system.

8 Conclusion

The quadrotor is increasingly being used in industry as well as research, because it is a convenient
platform for testing control technology on an under-actuated system that exhibits strong nonlin-
earities. For this project, I successfully designed, simulated, and constructed a quadcopter with
an estimator and controller. The key design choices I made were the utilization of a kalman filter
for orientation estimation, the use of onboard LQR control, and the use of quaternions for atti-
tude representation. The attitude estimator is successful at producing a quaternion estimate while
rejecting disturbances from external accelerations and gyroscope drift. While I initially chose a
complementary filter, the Kalman filter more generally handle nonlinear quaternion schemes. The
LQR controller is more successful than the PID in terms of tuning, but ultimately suffers from sig-
nificant nonlinearities in quaternion space, which do not allow direct quaternion feedback with yaw
information. In the end, the quadrotor faced several key obstacles that allow for further research.

1. The quadrotor was unable to fly with yaw information.

2. The quadrotor exhibited significant drift in horizontal position due potentially to estimator
bias.

3. Estimator noise resulted in significant oscillations during level flight.

4. Performance was highly variable on battery charge.

Further research into nonlinear performance in quaternion space could allow for direct quaternion
feedback even in the presence of large rotations. Better modeling of accelerometer and magnetome-
ter noise and bias could resolve position drift and improve estimator noise characteristics. Finally,

43

better system identification, including the power subsystem, could help resolve battery nonlineari-
ties. If I were to repeat this project, I would likely approach the problem differently. First, I would
implement the controller on a real time operating system to improve loop time. Second, I would
develop a transformation to better linearize the quaternion model. In summary, I have learned an
appreciable amount about implementing a real control system, and the challenges associated with
hardware.

44

References

[1] P. Bristeau et al., ”The Role of Propeller Aerodynamics in the Model of a Quadrotor UAV”,
Proceedings of the European Control Conference, 2009.

[2] Z. Manchester and M. Peck, ”Quaternion Variational Integrators for Spacecraft Dynamics”,
Journal of Guidance, Control, and Dynamics, Vol. 39, No. 1, 2016.

[3] F. Markley and D. Mortari, ”QUATERNION ATTITUDE ESTIMATION USING VECTOR
OBSERVATIONS”, Journal of Guidance and Control, 2010.

[4] R. Valenti et al.,”A Linear Kalman Filter for MARG Orientation Estimation Using the Algebraic
Quaternion Algorithm”, IEEE Transactions on Instrumentation and Measurement, vol. 65, no.
2, 2016.

[5] X. Yun et. al, ”A Simplified Quaternion-Based Algorithm for Orientation Estimation From
Earth Gravity and Magnetic Field Measurements”, IEEE Transactions on Instrumentation and
Measurement, vol. 57, no. 3, 2008.

[6] K. Feng et al., ”A New Quaternion-Based Kalman Filter for Real-Time Attitude Estimation
Using the Two-Step Geometrically-Intuitive Correction Algorithm”, Sensors, vol. 17, 2017.

[7] A. Laub, ”A Schur Method for Solving Algebraic Ricatti Equations”, IEEE Transactions on
Automatic Control, Vol. AC-24,no.6, 1979.

[8] L. Lustosa et al., ”A new look at the uncontrollable linearized quaternion dynamics with impli-
cations to LQR design in underactuated systems”, European Control Conference, June 2018.

[9] J. Carino et al., ”Quadrotor Quaternion Control”, International Conference on Unmanned Air-
craft Systems, 2015.

[10] F. Morbidi et al., ”Minimum-Energy Path Generation for a Quadrotor UAV”, IEEE Inter-
national Conference on Robotics and Automation, May 2016, Stockholm, Sweden. ICRA16 -
International Conference on Robotics and Automation, 2016.

45

