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ABSTRACT

Identifying which systems are more likely to host an imageable planet can play an important
role in the construction of an optimized target list for future direct imaging missions, such as
the planned technology demonstration for the Wide Field Infrared Survey Telescope (WFIRST).
For single-planet systems, the presence of an already detected exoplanet can severely restrict the
target’s stable region and should therefore be considered when searching for unknown companions.
To do so, we first analyze the performance and robustness of several two-planet stability criteria by
comparing them with long-term numerical simulations. We then derive the necessary formulation
for the computation of (a, R) analytic stability maps, which can be used in conjunction with depth-
of-search grids in order to define the stable-imageable region of a system. The dynamically stable
completeness (i.e., the expected number of imageable and stable planets) can then be calculated via
convolution with the selected occurrence grid, obtaining a metric that can be directly compared for
imaging prioritization. Applying this procedure to all the currently known single-planet systems
within a distance of 50 pc, we construct a ranked target list based on the WFIRST CGI’s predicted
performance and SAG13 occurrence rates.

Keywords— numerical simulations - analytic stability maps - dynamical evolution and stability - direct
imaging - exoplanets



CONTENTS

[1__Introductionl

12 Analytic Stability Criteria for Two-Planet Systems|
2.1 Criteria Based on the Outer Pericenter to Inner Apocenter Ratiol . . . . . .. .. ... ... .. ..

[2.2_ Criteria Based on the Angular Momentum Deficit|. . . . . ... ... ... ... ... ........

2.3 umerical Simulations and Criteria Comparison| . . . . . . . . . . . .. . oo

B Dervat |
[3.1 _p Conditional Density Function| . . . . . .. ... ... ... o

3.2 onditional Density Function|. . . . . . . . . . . oo

4 Analytic Stability Maps|

[ Single-planet Systems Prioritization|

6 Conclusions|

17 Acknowledgements|

|A Single-Planet systems Ranking]

(2 BN QTSN w

co Qo

11

14

18

19

21



1. INTRODUCTION

Despite indirect detection methods, such as radial velocity or transit photometry, have been the main source of
exoplanetary information to date, direct imaging emerges as a challenging but highly desirable technique, provid-
ing unique information regarding the atmospheric structure and chemical composition of exoplanets (Konopacky
et al.,2013). In this context, space-based direct imaging surveys, such as the Wide-Field Infrared Survey Telescope
(WFIRST), will surely enable the expansion and better characterization of the known population of exoplanets.
Given the high-cost and complexity of space observatories, a detailed and extensive planning is required in order
to ensure the successful development of the mission. In particular, regarding the construction of an optimized
target list, it is essential to previously identify which systems are more likely to host an imageable planet. |Garrett
et al.| (2017)) addressed this problem by defining the depth-of-search grids in the (a, R) space, where the value of
each bin represented the probability of detecting a planet with semi-major axis a and radius R. The resultant
imageable region was obtained according only to the instrument’s performance and capabilities, allowing for the
estimation of the expected number of detected planets (i.e., total completeness) by convolution with the desired
grid of occurrence rates.

When searching for additional exoplanets in already known single-planet systems, however, the gravitational
effect of the existing body can severely restrict the target’s stable region and must therefore be taken into account.
For instance, let us consider a nearby star with a large imageable region and a massive highly eccentric planet
in the center of such region. In this context, most of the detectable area would be chaotic due to the known
planet’s presence, consequently reducing the probability of detecting a stable unknown companion in a system
which a priori seemed a valuable target. In general, for any system the following question is naturally raised:
How many stable unknown companions will an instrument detect? We seek to answer this question in an accurate
but computationally inexpensive manner, in order to rapidly identify which targets have a higher probability of
hosting an additional planet and discard those systems where no unknown companions can be detected. To do
so, in Section [2] we begin by describing several two-planet stability criteria and comparing them with long-term
numerical simulations. In Section [3| we derive the necessary expressions for the conditional density function of
the outer pericenter to inner apocenter ratio (p) and the angular momentum deficit (C'), which will be essential
for the computation of analytic stability maps presented in Section ] Finally, in Section [5] we make use of this
results, together with depth-of-search and occurrence grids, in order to obtain the expected number of imageable
and stable planets of a certain target. We conclude by presenting a 189 single-planet systems ranking according
to the WFIRST CGI’s predicted performance and the SAG13 occurrence rates.



2. ANALYTIC STABILITY CRITERIA FOR TWO-PLANET SYSTEMS

Unlike systems with three or more planets, the stability of two-planet systems can be analytically characterized
via several different criteria. One of the main results was obtained by Marchal and Bozis| (1982), who extended the
notion of Hill stability to the general three-body problem and showed that certain initial conditions can preclude
close encounters between the outer planet and the inner bodies. Based on this result, |Gladman| (1993)) found that
two planets in initially circular and coplanar orbits are Hill stable if

as — a1 > 2V3Ry , (1)
where 3
mi + mo a1 + as
= 2
B < 3M, ) 2 @)

is the mutual Hill radius, M, is the mass of the central star, a; are the semi-major axes of the planet orbits, m;
are the planetary masses, and the subscripts 1 and 2 refer to the inner and outer planet, respectively. We shall
remember that long-term interactions between planets in Hill stable orbits could ultimately lead to the ejection
of the outer planet or the collision of the inner planet with the star (i.e., Lagrange instability). From another
perspective, [Wisdom! (1980) applied the resonance overlap criterion to the coplanar and circular restricted three
body problem. By studying the region around a planet where first order mean motion resonances (MMRs) overlap,
the author found that a test particle with semi-major axis a would experience chaotic motion if

lo 0] ;pap - Cupy” (3)

where Cy, is a constant value, a, is the semi-major axis of the planet and p, = m,/M, is the mass ratio between
the planet and the star. Although originally Wisdom obtained a theoretical value of Cy, = 1.33, Duncan et al.
(1989) presented a numerically-derived estimate of Cq = 1.57. For the case of two massive planets in circular
orbits, |Deck et al.| (2013]) extended Wisdom’s criterion and predicted that all orbits should be chaotic if

ag — 4y

< 1.46€¥/7 (4)
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where € = (my + mg)/M, is the planets-to-star mass ratio. [Deck et al|(2013) also developed a similar expression
for non-circular configurations, only applicable, however, to high-eccentricity orbits. For arbitrary eccentricities,
several criteria have been proposed (Giuppone et al., [2013; [Petrovichl, [2015; [Laskar and Petit| 2017} [Petit et al.,
2017, 2018)), which we will divide into two generic categories depending on whether the criterion is based on the
outer pericenter to inner apocenter ratio (p) or the angular momentum deficit (AMD).

2.1.  Criteria Based on the Quter Pericenter to Inner Apocenter Ratio

As demonstrated by |Petrovich| (2015)), most of the proposed two-planet stability criteria for arbitrary eccen-
tricities can be expressed as a boundary of the ratio between the pericenter of the outer planet and the apocenter
of the inner planet, here denoted by

- a2(1 — 62)
N a1(1 + 61) ’

(5)

where e; and es are the corresponding eccentricities. For instance, |Giuppone et al.| (2013]) developed an extended
crossing orbit criterion by adding and subtracting Wisdom’s overlap region (Wisdom) [1980, Equation |3)) to the
outer pericentric and inner apocentric distances, respectively. They also took into account the effect of the
difference in the longitudes of the pericenter Aw and proposed stability limits for the case of aligned (Aw = 0°)
and anti-aligned (Aw = 180°) initial orbits. By studying the stability limits of a test planet around a known and
existing planet, they presented the following criterion for the anti-aligned configuration

1
— a2 =ag

p>41-9 (6)
140 a;=ag,

where ay, is the known planet’s semi-major axis and § = 1.57(;1?/7 + ,ugﬁ). Here we will make use of the modifi-

cation proposed by Hadden and Lithwick| (2018), where they employ § = 1.46¢*7 in accordance to the results of
Deck et al.| (2013).



Alternatively, [Petrovich| (2015]) approached the problem numerically by performing long-term integrations for
a large number of planetary systems and a wide range of eccentricities and inclinations. They found p to be the
single parameter that best described the stability boundary and presented the following empirical criterion

~—

1/2
p>115+24 [max(,ul, /1,2)1/3] (;Q) . (7
1

2.2.  Criteria Based on the Angular Momentum Deficit

Considering the secular approximation of a planetary system, [Laskar and Petit|(2017)) developed an alternative
stability criterion based on the conservation of the angular momentum deficit (AMD). Following the definition
of [Laskar| (2000), the AMD (C) is given by the difference between the norm of the angular momentum of an
equivalent circular and coplanar system and the norm of the real system’s angular momentum, which for a system
of n, planets is

p

CzZAj(lfwlfe?cosij), (8)

Jj=1

where i; is the relative inclination, A; = m;4/GM,a; and G is the gravitational constant. For a two-planet system,
Laskar and Petit| (2017)) defined the relative angular momentum deficit as

C ) )
(5=A—Q=’y\/a(1—q/1—e%cosz1)+(1—4/1—e§cosm), 9)

where @ = a1 /as represents the semi-major axis ratio and v = mq/ms is the mass ratio. In this context, they
obtained the minimum relative AMD which allowed for planetary collisions, referred to as the collisional critical
AMD (C’CC) Consequently, since the AMD is conserved at all orders (Laskar and Petit} [2017)), the impossibility
of collisions between the two planets is ensured if the initial relative AMD is bounded as

¢ < CS(a,). (10)

This condition can be extended to multiple planet systems by analyzing the AMD-stability of every pair of
adjacent planets, as well as the innermost planet and the star. Furthermore, [Agnew et al.| (2018) compared
the previous criterion with numerical simulations over a large number of known systems and concluded that the
AMD-stability is a reliable tool for determining the stability of planetary systems. In order to take into account
the effect of mean motion resonances (MMR) ignored by the secular theory, Petit et al.| (2017)) proposed a new
derivation of the first-order MMR, overlap criterion in the AMD framework. They refined the criteria presented
by [Wisdom! (1980) and Deck et al.| (2013]) by deriving a more global expression, for which they then associated a
new critical AMD (C’i\/IMR). Since it only makes sense to apply the first-order MMR criterion when « is close to
1, they combined this with the previous collision criterion (C'CC ) and defined the following piece-wise critical AMD
(Petit et al.| [2017)

CC(a,7) a < ag(ey)
E < Cela,v,€) = c ’ 11
(9 {CSAMRm,e) o> an(e), 1)
where a g represents the semi-major axis ratio at which C¢ = CMMR_ For lower values of «, the collisional criterion
becomes stricter and consequently more convenient.
Continuing their work in the AMD framework, [Petit et al.| (2018) generalized the stability criterion proposed
by |Gladman| (1993)) and defined the Hill stability AMD criterion

34/3¢2/3~
H - T (14432 | % (14277 12
¢ <Cliamd = wa+1- (9| o 1+ T ). (12)

where C!! is defined as the Hill critical AMD. As this expression was obtained as an approximation of the criterion
from |Marchal and Bozis (1982), Petit et al.| (2018]) compared both criteria and proved that Equation is
accurate for the typical range of values of € and still valid for very large or small planetary mass ratios (7).



Table 1. Stellar and Planetary Parameters

Target Star Known Planet (a, €) map (a, m) map
System Distance M ay ek mesinl  wg a e m a e m
(pc) (M) | (AU) Mz)  (°) | (AU) (M3) | (AU) (M;)
HD 154345 18.29 0.71 421  0.04 0.82 (0 [2, 12] [0, 0.5] 0.1 [1.5,25] 0.05 [0.067, 134.45]
HD 114613 20.30 1.27 5.34  0.46 0.36 196 | [1.5,20] [0, 0.5] 1 [1.5,25] 0.1  [0.067, 134.45]

2 The argument of periapsis wy of the planet HD 154345 b was unknown and consequently set to zero.

NoOTE.— The (a, m) grid was ranged taking into account the imageable region of each system, which was supposed to be approximately
the same in both cases. In particular, the limit values of m approximately correspond to a planetary radius R between 4 and 17 Rg.

2.3.  Numerical Simulations and Criteria Comparison

To assess the performance and robustness of the criteria described above, we performed several numerical
simulations in order to study and compare their behaviour over a wide range of parameters. Specifically, we added
a test planet to two known single-planet systems (HD 154345 and HD 114613) and analyzed the long-term stability
of the resultant two-planet systems. The stellar parameters and the orbital elements of the known planet, denoted
by the subscript k, were extracted from the NASA Exoplanet Archiveﬂ and can be found summarized in Table
For simplicity, all systems were assumed to be coplanar and the existing planet’s mass was considered to be
the minimum value my sin I, where I is the system’s inclination with respect to the line of sight. The remaining
unknown parameters, such as the longitude of the ascending node or the initial mean anomaly, were all set to zero.
For each system, we then constructed two different types of stability maps.

1. (a, e) stability map: regular grid with 70 logarithmically spaced semi-major axis bins and 40 linearly spaced
eccentricity bins. The ranges of a and e were selected taking into the account the extension of the chaotic
region around the known planet’s semi-major axis ag. The test planet’s mass m was constant through the
whole grid, being fixed in a different value depending on the system. In particular, for the system HD 114613
a Jupiter mass planet was added, while a smaller value was used in the case of HD 154345. On the other
hand, the argument of periastron w € [0, 27| was always randomly generated.

2. (a, m) stability map: regular grid with 70 semi-major axis bins and 40 mass bins, both logarithmically
spaced. The range of values of a and m was determined considering the imageable region of the system with
the WFIRST CGI. In this case, the test planet’s eccentricity e was constant through the whole grid, being
fixed in a different value depending on the system. In the case of the system HD 154345, a nearly circular
value was used, while a higher eccentricity was asigned to the test planet in the system HD 114613. Finally,
w was again randomly generated.

The particular values employed for every system and stability map are presented in Table[I| For each bin, we inte-
grated the corresponding two-planet system using the Leapfrog integrator implemented in the REBOUND package
(Rein and Liu, 2012)). The simulations were run for 10° yr with a timestep of 7 /50, where T is the orbital period
of the innermost planet. Integrations were terminated if the two planets approached one another within one mutual
Hill radius (Equation , or if a planet reached an astrocentric distance of either 5 x 1073 or 250 AU. The code
used to perform the numerical simulations is publicly available at https://github.com/CarlosGascon/NumSim.

Figure [1| shows the resultant stability maps for a nearly circular configuration (HD 154345) and a highly
eccentric system (HD 114613). In general, we observe that Petrovich’s criterion shows the most conservative
boundaries, appearing to be too pessimistic in the first case and slightly more appropriate for large eccentricities.
In contrast, the complete AMD stability limit (Equation falls inside the chaotic region in most cases and will be
consequently discarded for the purposes of the following sections. Similarly to Giuppone’s criterion, the Hill AMD
boundaries offer an acceptable necessary condition for stability and could therefore be used as a more optimistic
alternative. In particular, we remark how the Hill AMD stability condition accurately delimits the earliest chaotic
orbits in both (a, e) maps, likely corresponding to the region where planetary close encounters occur. Hence,
the remaining instabilities outside these boundaries may be the result of ejections or collisions between the inner
planet and the star, which by definition aren’t taken into account in the Hill criterion.

Furthermore, the HD 114613 (a, m) stability map shows a pronounced increase in the Hill stability limits as
the test planet’s mass decreases, disagreeing with other criteria and the numerical simulations. Such behavior
becomes more significant for high eccentricities and can be related to the Hill stability’s strong dependence on the
planetary mass ratio 7 for non-circular configurations (Deck et al. |2013)). We must keep in mind that the Hill

IThe required orbital parameters where retrieved from the NASA Exoplanet Archive (https://exoplanetarchive.ipac.caltech.edu)
on 2019 June 8.
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Figure 1. Numerical stability maps for the nearly circular system HD 154345 (top) and high eccentricity system HD
114613 (bottom), compared to the stability boundaries given by the criteria specified in the legend. The white marker
indicates the position of the existing planet and the red dashed lines indicate low-order mean motions resonances with the

known planet.

stability criterion from Marchal and Bozis| (1982) cannot be directly applied to the elliptic restricted three body
problem and therefore shouldn’t be used when one of the planetary masses is close to zero. Nonetheless, given that
in most cases the WFIRST-imageable region only covers high-mass planets, the Hill AMD can still be considered
a valid criterion in the following sections. Regarding the test planet’s mean motion resonances with the existing
planet, we note how for the nearly circular case, the stable resonant lines are more predominant and extend up to
larger values of e and m, while being less numerous and significant in the high-eccentricity system.



3. DERIVATIONS

Let us consider a coplanar, three-body system consisting of a central star of mass M,, and two orbiting
planets, where the mass and orbital elements of one of the planets (ay, ex, my) are known. The remaining planet
is unknown, and its parameters (a, e and m) will be consequently treated as random variables. In particular, the
eccentricity e will follow a Rayleigh distribution with parameter o (i.e. mean eccentricity pe = o4/7/2), while the
semi-major axis ¢ and the planet’s mass m will have a joint probability density function f; 7 (a,m) representative
of the population of interest. With this setup, for fixed values of a and m, the integral of the conditional density
function of both the AMD (C) and the outer pericenter and inner pericenter ratio (p) can be easily solved. As
will be shown in Section [4 this result will be essential for the computation of the analytic stability maps and the
prioritization of planetary systems for followup imaging.

3.1.  p Conditional Density Function

Making use of Equation , the outer pericenter to inner apocenter ratio can be rewritten as

qk
a(l+e) @< Ok
p= gp(ea a) = a(l _ e) N (13)
—— a>ay,
Qx ¥

where g = a(1 — e) and Qr = ar(1 + ex) are, respectively, the known planet’s pericenter and apocenter. For a
fixed semi-major axis a, we observe that p = g,(e | a) is a univariate function only dependent on e. Consequently,
the inverse function h, = g;l(p | a) is directly obtained by isolating the eccentricity in Equation

q — ap

ap a < ag
e=hy(pla)= 0= Qup (14)
— a>a.

For simplicity, we will omit the conditional notation in h,(p) from here on out, since we are primarily interested
in evaluating all expressions for a given value of a. Taking the derivative of Equation with respect to p, we
get

Ak a<a
dh,, ap? b
Do) =1 e (19
P —_— a > ag.
a

Using Equations and , the p conditional density function is then given by

dh,,

Tp(p) ; (16)

Faalo | @) = Folho(0)) \

where f5(e) is the density function of the eccentricity, assumed to be Rayleigh distributed. For fixed values of a
and m, the probability of having a stable configuration, denoted by S,(a,m), is obtained by integrating Equation
over the region defined by the specific p stability criterion used:

Sy(a,m) = f " a0 | @) = Fulhopen)) — Fe(hp(per)) (17)

where pc(a,m) and p¢ (@, m) are the lower and upper limit respectively. Given our assumptions, the integral
can be simply calculated as the difference between the Rayleigh cumulative distribution function Fg(e) evaluated
at the limiting eccentricities h,(pc,.) and h,(pe;). Substituting h, from Equation yields the analytic solution

Pe,u

—ex —1 (= 2 a<a
P 952 ap F
Sy(a,m) = < p;:u (18)
N
Cexp [ 2L (A= Qrp 0> a
202 a ke
\ Pec,l



The majority of currently available exoplanet data for WFIRST-imageable planets has been obtained from
radial velocity (RV) surveys. While transit photometry currently leads in the total number of exoplanet discoveries,
most of these (primarily due to Kepler and the K2 mission) are too distant for imaging with the next generation
of space-based coronagraphic instruments, and the WFIRST CGI in particular. While we expect this to change
with TESS and other surveys, for now, the true mass my, of the majority of known exoplanets of interest remains
undetermined, while only the minimum mass my_min = My sin I is known. In these cases, we rewrite the probability
integral as Sp(a, m, my) and we introduce the system’s inclination I € [0, 7) as a new random variable with a
sinusoidal probability density function f7(I) = I/2. We can then take into account the effect of the known planet’s
mass uncertainty by using Equation and defining

S;)(a,m) = L S, (a,m, 2’;2’}3") fr(DHdI . (19)

For the stability criteria based on p, Equations and will be directly used for the computation of
analytic stability maps. Similarly, we now derive the equivalent formulation for the angular momentum deficit C.

3.2. C Conditional Density Function

For a two-planet system (n, = 2), Equation () can be written as

C=gcle,a,m) =K+ Al —+/1-¢2), (20)

where K = Ap(1 —4/1 —e}) accounts for the known planet AMD contribution. For fixed values of a and m,
A = my/GM,a is completely defined and therefore C' = gco(e | a,m) is only a function of e. The inverse function
gal(C | a,m), which we will denote as h¢, is then obtained by solving Equation for the eccentricity

e=hc(0a,m)=\/1—<A_i+K>2, (21)

where again the conditional notation will be dropped for simplicity. Since the inverse function must have the
range e = ha(C) € [0,1), the derivative

dh 1 (/1= hZ(0)
o) 3 (V) @)

is well defined except for the case C' = K (i.e. h¢(C) = 0). However, this singularity is naturally solved when the
expression of the conditional density function is simplified

Fetam(C 1 a:m) = £ (€| G 0] = YD exp ("339) , (23)

where the formula of the Rayleigh probability density function for fz(e) has been used. Following the same
procedure as in Section for certain values of C, ;(a, m) and C. ,(a, m) determined by the specific AMD stability
criterion used, the integral of the conditional density function is

Ce,u

Scla,m) = L feam(C | 4m)dC = Fo(he(Con)) — Fa(he(Cop) . (24)

Making use of Equation , the analytic solution is then given by

Ce,u

2
Sc(a,m) = —exp ﬁ ((W) — 1) . (25)



As described in the previous subsection, in the case of systems with an undetermined planetary mass my, we
redefine the probability of having a stable configuration as

T

Selam) = |

&{wmmmﬁﬁmﬂ. (26)
0

sin([])

Although a more detailed and consistent single-planet ranking is described in Section [f] a first approach relies on
the definition of the a, m and C (or p) joint probability density function

f&ﬁz,é’(aa m,C) = fam(a,m) - fé|d7ﬁ1(c | a,m). (27)

By choosing the appropriate limits of integration which approximately define the imageable region, together
with the stability boundaries of C, a rapid estimation of the probability of detecting a stable planet can be

computed as
Moy Oy Ce,u
f f fam(a,m) J f@‘a’m(C’ | a,m)dC | dadm, (28)
my ay

Cc,l

where the term in the inner parentheses has already been analytically solved, simplifying the calculation to a
double integral. Equation , which can be equivalently derived for p, can be used to discard those systems
with barely any stable imageable region or to obtain a first imaging prioritization in a fast and computationally
inexpensive manner.
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4. ANALYTIC STABILITY MAPS

Following the previous assumptions and derivations, in this section we compute the analytic stability maps
which will allow us to rapidly characterize the stable region of a particular single-planet system. Essentially, these
maps consist of a regular grid with 100 semi-major axis bins and 100 mass bins, both logarithmically spaced and
ranged around the system’s imageable region. For a particular pair (a, m), the value of the corresponding bin
represents the probability of having a stable configuration according to the specific criterion used. For the systems
where the known planet’s mass my, is completely determined, the stability maps are built using Equations (18)
and (25), depending on the type of criterion used. On the other hand, if only my sin I is known, Equations
and are employed. To illustrate this, we select the empirical criterion presented by |Petrovich| (2015)), since it
appears to give the most conservative and consistent boundaries according to the results from Section [2.3] Based
on the critical p from inequality 7 we define the lower limit of integration

115+ 24 [max(u,uk)l/?’] (ax/a) 2o < ag
P —

pc,l(aam) - 1/2 (29)
1.15+24 [max(uk, u)l/S] (a/ay) a> a.

In general, given that we are only considering elliptical orbits (i.e e € [0,1)), the outer pericenter to inner apocenter
ratio must have a range p € (¢,(1, a), g,(0, a)] and therefore, p.; should always be conveniently adjusted to the range
of values of p. That is, if p.;(a,m) < g,(1,a) then p.;(a,m) = g,(1,a), and equivalently if p.;(a,m) > g,(0,a)
then pc;(a, m) = g,(0,a). Furthermore, the expression of g,(0,a) allows us to set the upper limit as

dk

— a < ag
a
peu(a) = 9p(0,a) = { g (30)
-_—  a>akg.
Qk

In addition, we will also construct stability maps using Giuponne’s criterion (Giuppone et al., 2013, Equation
@ and the Hill AMD criterion (Petit et al., [2018, Equation , which will serve as an alternative for ranking
planetary systems. In the first case, the lower limit of integration is directly given by Equation @ and can be
written as

1
S ——r <
pg’l (a’ m) = 1 — 1.46€2/7 “ @ (31)

14146677 a> ag ,

while the upper limit p. ,, is again given by Equation . On the other hand, assuming that the stellar mass M,
is known, the Hill critical AMD is only a function of the semi-major axis and mass ratios. From the definition of
CH(a,~) given in Equation , we then derive the upper limit of integration as

Cen(a,m) = (32)

Ap CH(a/ar, m/my) a < a

ACH(ar/a,mp/m)  a> ay,
for which again the range of values of C' € [gc(0,a,m),gc(1,a,m)) should be taken into consideration. In
particular, the lower limit of integration is defined and given by C. (a,m) = gc(0,a,m) = K.

We demonstrate this procedure by generating the (a, m) analytic stability maps of the single-planet systems
HD 154345 and HD 114613 (Figure. Since none of the system’s inclinations are known, we make use of Equations
and , together with the limits of integration presented above. The mean eccentricity for the Rayleigh
distribution is taken to be p. = 0.225 (Moorhead et al., 2011)) and the required orbital parameters, as well as the
range of values of a and m, are as in Table |l The code used to compute the analytic stability maps and perform
the single-planet ranking presented in the following section, can be found at https://github.com/CarlosGascon/
StableDoS.

Furthermore, we can easily build (a, R) stability maps by considering instead a set of logarithmically spaced
planetary radius R bins and applying the previous expressions to the corresponding planetary masses. For each
value of R, the related mass m is predicted using the FORECASTER best-fit density model (Chen and Kipping}
2016)), originally composed of linear segments (in log-log space) of the form

R = 109 10(mS (33)

where C' and S are fit coefficients defined in four mass intervals: Terran, Neptunian, Jovian and Stellar Worlds.
Due to inclusion of many tidally locked, inflated Jupiters in the model, the original results tend to overestimate

11


https://github.com/CarlosGascon/StableDoS
https://github.com/CarlosGascon/StableDoS

HD 154345 - Petrovich’s Criterion HD 114613 - Petrovich’s Criterion

1
100 100
0.9 0.9
3 08
08 . .
o7 ¢ 07 2
10 g 10 g
— 06 & — 06 Z
= g = G
= 05 = = 05 =
- e, =X
g 04 w E 04 @
1 ) 1 s
03 = 03 Z
02 < 02 =
0.1 0.1
0.1 0.1
: 0 0
2 5 10 20 2 5 10 20
a(AU) a(AU)
HD 154345 - Giuppone’s Mod. Criterion HD 114613 - Giuppone’s Mod. Criterion
1 1
100 100
0.9 0.9
08 . 0.8 .
07 ¢ 07 2
10¢ g 10 g
— 06 2 — 06 Z
= 5 L =
= 05 = = 05 =
= =8
. 04 = & 04 0
1 S 1 &
03 & 03 &
02 = 02 =
0.1 0.1
0.1 0.1
y 0 0
2 5 10 20 2 5 10 20
a(AU) a(AU)
HD 154345 - Hill AMD Criterion HD 114613 - Hill AMD Criterion
1
100 100
0.9 0.9
3 08
0.8 . .
07 S 07 ©
10 g 10 g
— 06 & —~ 06 Z
5 g = g
= 05 = = 05 =
- =8 - =X
g 04 @ S 04 @
1 ® 1 ®
03 03 &
02 < 02 <
0.1 0.1
0.1 0.1
0 0
2 5 10 20 2 5 10 20
a(AU) a(AU)

Figure 2. Analytic stability maps for the systems HD 154345 (left column) and HD 114613 (right column), using Petrovich’s
empirical criterion (top row), Giuppone’s modified criterion (middle row) and the Hill AMD criterion (bottom row). The
white marker indicates the position of the existing planet and the dashed curve accounts for the 0.95 contour line.
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Table 2. C and S parameters of the FORECASTER modified fit

m (Mq;) C S
m < 2.04 0.00346053 0.279
2.04 <m < 95.16 -0.06613329  0.50376436
95.16 < m < 317.828407 0.48091861  0.22725968
317.828407 < m < 26635.6863  1.04956612 0
m > 26635.6863 -2.84926757 0.881

the radius for Jovian-size planets, and so we slightly modify the initial fit by moderating the transition between
the Saturn and Jupiter mass-radius points. Specifically, the Neptunian Worlds segment is adjusted to end at the
Saturn mass-radius point, from which a new fit is added as a straight line (in the log-log space) until the Jupiter
mass-radius point. Moreover, the Jovian segment is corrected to be a constant Jupiter radius value ranging from
1 Jupiter Mass through 0.08 Solar Masses. The Terran and Stellar Worlds, on the other hand, remain unchanged.
The resultant values of C' and S, for Earth mass and radius units, are shown in Table

It is important to note that we are not suggesting that our modified fit is in any way more ‘correct’ than the
original FORECASTER model. Rather, as we are focusing on only the larger orbits amenable to direct imaging,
we wish to avoid generating planetary mass objects of greater than 1 Jupiter radius, which are expected to be
exceedingly rare at the relevant separations. As the original fit also passes quite near the Saturn mass-radius
point, we chose to explicitly incorporate it in our modification as well.
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5. SINGLE-PLANET SYSTEMS PRIORITIZATION

Having constructed the analytic stability maps, we now address the main purpose of this study by identifying
which single-planet systems are more likely to host an additional, imageable planet. Basically, the proposed
methodology consists of estimating and comparing the expected number of planets (i.e., occurrence rates) within
each system’s stable-imageable region defined in the (a, R) space. To do so, together with the stability maps
obtained in Section [ we shall make use of the following additional grids:

1. Depth-of-search grid: Given a particular system, we obtain its imageable region by computing the depth-of-
search grids as defined by |Garrett et al.|(2017). For given values of a and R, the corresponding bin represents
the conditional probability of detecting a hypothetically existing planet (i.e., completeness Brown| (2005))
according to the considered instrument’s design and capabilities. In particular, here we set the necessary
optical parameters and contrast limits according to the WFIRST CGI’s inner and outer working angles and
predicted contrast curve in the 575 nm imaging band. For planet photometry, we use the model grids from
Batalha et al.| (2018]), which are interpolated to find the phase curves of various planets in reflected light.

2. Occurrence grid: In order to calculate the expected number of planets in a certain region, we build occurrence
grids using the SAG 13 parametric fit for G-dwarfs. Similarly to |Garrett and Savransky| (2018)), we translate
the original period-radius broken power law into the (a, R) space and we add an exponential decay term
starting at a; = 10 AU.

Given that the size of the imageable region strongly depends on the distance from the observer to the target star,
all three grids are ranged according to each system’s detection boundaries (@min, @Gmax and Rpin). This is intended
to increase the accuracy of the results by only calculating stability around the imageable zone. In general, the
maximum planetary radius is set to Rpna.x = 17Rg, since we only wish to consider bodies near the planetary
mass regime. For the semi-major axis, the inner limit will be essentially determined by the minimum projected
separation

Amin = Smin — IWA . d, (34)

where IW A is the telescope’s inner working angle and d is the distance to the system. To find the maximum value
of a, we consider the expression for the ratio of fluxes between the planet and the star (Brown, [2005)

R\ 2

Fr=p () (1) (35)
where p and ( are the planet’s albedo and phase angle respectively, ® is the phase function and r is the distance
between the planet and the star. For a particular value of R, the upper limit of the imageable region is charac-
terized by the maximum a such that the planet meets the instrument’s obscurational and photometric contraints,
determined by spyi, and the expected mininum contrast cpi,. These values can be related to the upper boundary
of the nonzero region of the completeness joint probability density function (Garrett and Savransky, [2016]) given

by one of the solutions of
R\ 2
=) =0, 36
(£) (36)

where r has been replaced by a, since the depth-of-search grids are defined assuming that e = 0 (Garrett et al.|
2017)). Since the width of the imageable region increases with R, the maximum semi-major axis amax iS consequently
given by the upper bounding solution of the equation F(a | Rmax) = 0, where again Ry,ax is the largest planetary
radius considered. Having determined @i, and apyax, we can finally obtain the minimum radius by isolating R in

Equation and calculating

F(a | R) = cmin — p® lsin_1 (Smin)

a

CI,QCHIin

min
a€(amin,max) pd (sirf1 (Smin/a))

Rmin = (37)

For each system, the product of the stability and depth-of-search grids yields the intersection between the
stable and imageable regions, where the value of each bin gives the probability of detecting a stable planet of
radius R and semi-major axis a. For instance, in Figure [3] we represent the resultant grids for the systems HD
154345 and HD 114613, using the Hill AMD and Petrovich’s criteria respectively. In order to properly identify the
limits of the nonzero regions, the bins with null probability are not coloured. As expected, in both cases the size
of the imageable region is clearly defined by the solutions to the equations presented above. Such limits, together
with the estimated detection probability of each bin, are only a function of the distance to the system and the
instrument’s capabilities. In consequence, the resemblance between both depth-of-search grids can be directly
related to the similar target distance (see Table , while also evidencing that the results ignore integration time
constraints since there is no dependence on the magnitude of the star.
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Figure 3. Depth-of-Search (top), Stability (middle) and Intersection (bottom) grids for the system HD 154345 using the
Hill AMD criterion (left), and the system HD 114613 using Petrovich’s criterion (right). The black marker indicates the
position of the existing planet.
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Figure 4. Depth-of-Search (top), Stability (middle) and Intersection (bottom) grids for the system GJ 649 using Giuppone’s
modified criterion (left), and the system HD 221420 using Petrovich’s criterion (right). The black marker indicates the

position of the existing planet.



Regarding the (a, R) stability maps, we first note a clear contrast between the extension of the unstable regions
of both systems, essentially as a result of the difference in the orbital eccentricities of the existing planets and
the stability criteria employed. Moreover, the use of the modified FORECASTER best-fit described in Section [4]
results in a discontinuous increase in planetary mass occurring at 1 Ry (~ 11.2Rg), causing the steep growth in
the unstable region observed at that point.

In general, the stable-imageable grid demonstrates how the depth-of-search is highly perturbed by the region
where planets cannot exist due to instabilities, confirming that the presence of the known planet should be con-
sidered when optimizing the target selection. The sum over the intersection bins, normalized by the number of
bins and multiplied by the grid area, yields what we refer to as the dynamically stable depth-of-search. This
value has no dependence on the assumed planet population and only accounts for the considered instrument’s
performance and stability criterion. Finally, the convolution of the intersection region with the occurrence grid
returns the desired estimation of the expected number of stable and imageable planets in the system (i.e., dynam-
ically stable completeness), obtaining a metric that can be directly compared for imaging prioritization. We apply
this procedure to 189 currently known single-planet systems within a distance of 50 pc, creating a ranking based
on Petrovich’s stability criterion and complemented by the results obtained with the Hill AMD and Giuppone’s
criteria (Appendix . Naturally, the results show a clear dependence on the system’s distance d, generally being
the closest targets the most valuable. Nonetheless, we also note how some of the nearest stars present a lower
dynamically stable completeness in comparison to farther targets with smaller imageable regions. Although we are
focusing on the search of unknown companions, the systems where the already existing exoplanet falls inside the
detectable region (such as HD 154345 or HD 114613) are in any case interesting targets, given that the majority
of known exoplanets have been discovered with indirect detection techniques and still need to be directly imaged.
Alternatively, in Figure [4] we represent the resultant grids for the systems GJ 649 and HD 221420, where the
existing planet is located outside the lower and upper limits of the imageable region respectively.
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6. CONCLUSIONS

Running numerical simulations up to 10° years, we have analyzed and compared various stability criteria for
two-planet systems with arbitrary eccentricities, showing that the criterion from [Petrovich! (2015) is generally the
most conservative and convenient, while the stability limits defined by |Giuppone et al| (2013) and [Petit et al.
(2018)) also perform reasonably well. For any criterion expressed as a boundary of the outer pericenter to inner
apocenter ratio (p) or the angular momentum deficit (C), we have derived expressions for the conditional prob-
ability of having a stable companion given fixed values of a and m. This formulation has been directly used for
the computation of analytic stability maps, allowing us to rapidly characterize the stable region of a system in the
(a, R) space. By intersecting with the depth-of-search grids defined by |Garrett et al| (2017), we have obtained
the corresponding stable-imageable region, yielding the definition of the total dynamically stable depth-of-search,
with no dependence on the assumed planet population. In particular, we have presented two cases where the
detectable region is clearly perturbed by the stability boundaries, remarking the importance of accounting for
the effects of the existing planet in such systems. Furthermore, we added two examples of systems where the
existing planet falls outside the imageable region but its gravitational effect is still noticeable. Finally, the convo-
lution with the selected occurrence grid returns the expected number of stable and imageable planets in the system.

Applying this procedure to 189 currently known single-planet systems and several stability criteria, we have
built a ranked target list based on the WFIRST CGI’s capabilities and the SAG13 parametric fit. The code
used for both the numerical simulations and the construction of analytic stability maps is publicly available at
https://github.com/CarlosGascon. Although a numerical analysis could lead to more accurate results, the
proposed methodology is a powerful tool, not only for rapidly identifying which targets have a higher probability
of hosting an additional planet, but also for discarding those systems where no unknown companions can be
detected.
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A. SINGLE-PLANET SYSTEMS RANKING

Table 3. Dynamically stable depth-of-search and completeness values obtained using Petrovich’s, Giuppone’s, and the Hill
AMD criteria. The results are ranked according to the completeness values calculated with Petrovich’s criterion.

Target Petrovich’s Crit. Giuppone’s Crit. Hill AMD Crit.

Name Distance | DoS  Completeness | DoS  Completeness | DoS  Completeness
(pc) (Dynamically Stable) | (Dynamically Stable) | (Dynamically Stable)

Proxima Cen 1.29 44.24 0.40551 52.07 0.41417 39.36 0.39529
GJ 411 2.55 52.74 0.36635 57.83 0.37178 45.10 0.35241
Ross 128 3.38 56.36 0.36253 57.89 0.36422 44.39 0.34085
GJ 674 4.55 59.15 0.35824 59.22 0.35833 48.65 0.33922
GJ 687 4.55 54.38 0.35171 59.20 0.35829 46.51 0.33472
GJ 625 6.49 61.57 0.33250 61.90 0.33296 46.37 0.30134
HD 180617 5.91 47.38 0.31862 59.09 0.34147 44.13 0.30938
GI 686 8.16 62.30 0.30438 62.40 0.30452 45.93 0.27003
GJ 433 9.07 61.39 0.28633 61.40 0.28633 46.16 0.25442
HD 285968 9.47 60.72 0.27940 60.73 0.27941 45.44 0.24688
GJ 436 9.76 61.41 0.27324 61.41 0.27324 53.47 0.25771
GJ 1265 10.26 61.33 0.26413 61.33 0.26413 49.17 0.23932
GJ 536 10.41 61.58 0.26188 61.59 0.26189 44.50 0.22627
GJ 86 10.79 60.60 0.25471 60.61 0.25473 60.58 0.25467
HD 102365 9.29 46.68 0.25305 60.46 0.28073 42.19 0.24034
HD 147379 10.77 57.22 0.24945 60.68 0.25505 42.52 0.21667
HD 85512 11.28 56.84 0.24178 59.67 0.24641 37.89 0.19852
HD 3651 11.14 49.03 0.22822 60.18 0.24871 42.86 0.19890
GJ 96 11.94 51.28 0.22096 59.49 0.23535 40.26 0.19454
HD 211970 13 58.40 0.21789 58.48 0.21803 40.11 0.17966
GJ 685 14.32 56.90 0.19775 56.92 0.19778 37.47 0.15785
Gl1 378 14.96 56.53 0.18868 56.53 0.18869 45.72 0.16748
51 Peg 15.47 55.16 0.18147 55.16 0.18147 54.73 0.18073
HIP 79431 14.54 47.86 0.17898 56.73 0.19474 50.32 0.17229
tau Boo 15.66 55.17 0.17870 55.17 0.17870 55.17 0.17870
HD 177565 16.93 53.47 0.16163 53.54 0.16175 32.81 0.12110
GJ 3942 16.94 53.50 0.16162 53.51 0.16162 36.18 0.12781
HD 99492 18.21 51.17 0.14590 51.21 0.14596 36.71 0.11838
70 Vir 17.91 45.37 0.13814 51.75 0.14952 31.18 0.06765
GJ 3021 17.56 41.02 0.13318 52.29 0.15379 31.72 0.07319
HR 810 17.33 39.74 0.13230 52.05 0.15566 40.97 0.13318
HD 192263 19.65 49.38 0.12921 49.39 0.12923 47.07 0.12521
HD 104067 20.38 48.34 0.12136 48.41 0.12147 33.61 0.09494
GJ 649 10.38 19.02 0.11644 33.36 0.17733 22.72 0.12031
HD 27442 18.28 33.25 0.10883 49.18 0.14084 33.70 0.11120
HD 90156 21.96 45.78 0.10545 45.96 0.10574 25.81 0.07127
HD 4308 22.03 45.71 0.10502 45.71 0.10502 29.52 0.07730

Tablela continued on next page
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Table 3. (continued)

Target Petrovich’s Crit. Giuppone’s Crit. Hill AMD Crit.

Name Distance | DoS  Completeness | DoS  Completeness | DoS  Completeness
(pc) (Dynamically Stable) (Dynamically Stable) (Dynamically Stable)

HD 147513 12.91 18.76 0.09718 36.59 0.16009 17.02 0.07226
HD 39855 23.28 43.83 0.09364 43.83 0.09364 31.51 0.07335
HIP 12961 23.39 43.40 0.09253 43.49 0.09267 36.14 0.08056
HD 62509 10.34 14.14 0.08778 27.77 0.14964 23.74 0.14113
alf Ari 20.21 29.00 0.08573 46.18 0.11943 30.00 0.08271
HD 156668 24.35 41.73 0.08465 41.73 0.08465 23.43 0.05555
HD 42618 24.35 40.24 0.08235 41.72 0.08465 18.04 0.04719
HD 19994 22.54 31.68 0.07736 44.25 0.09911 28.41 0.07206
HD 16417 25.41 40.37 0.07640 40.37 0.07641 26.16 0.05467
alf Tau 20.43 23.15 0.06803 43.99 0.11322 31.01 0.08361
HD 103949 26.52 37.91 0.06749 38.51 0.06837 15.19 0.03489
HD 33564 20.97 23.40 0.06584 45.14 0.11157 22.30 0.04140
HD 210277 21.31 21.54 0.06324 42.74 0.10522 20.85 0.04918
HD 179949 27.48 37.02 0.06204 37.02 0.06204 37.01 0.06204
gam Cep 13.54 11.61 0.05853 24.50 0.11021 19.57 0.09668
HD 125595 28.22 35.59 0.05742 35.59 0.05742 18.00 0.03347
HD 164595 28.28 35.64 0.05703 35.65 0.05704 16.88 0.03169
HD 10647 17.34 14.42 0.05688 29.20 0.10051 19.64 0.07528
HD 93083 28.54 34.76 0.05475 35.31 0.05554 23.91 0.03983
HD 75289 29.14 34.48 0.05209 34.48 0.05209 34.42 0.05201
HD 21411 29.16 34.02 0.05140 34.43 0.05199 21.71 0.03514
HD 102195 29.36 33.97 0.05095 33.97 0.05095 33.87 0.05082
HD 46375 29.58 33.59 0.04972 33.59 0.04972 33.31 0.04934
HD 101930 30.05 32.87 0.04722 32.94 0.04731 23.62 0.03523
HD 52265 30.01 32.52 0.04680 33.04 0.04751 29.55 0.04280
HD 218566 28.85 29.71 0.04652 34.74 0.05377 16.39 0.02947
7 CMa 19.82 13.83 0.04466 31.95 0.09044 15.10 0.04114
HD 162020 30.85 31.45 0.04335 31.45 0.04335 31.40 0.04323
HD 8326 30.71 31.05 0.04302 31.78 0.04402 16.66 0.02535
HD 128356 26.03 19.20 0.04014 38.84 0.07121 24.49 0.04687
HD 64114 31.55 30.40 0.04010 30.41 0.04011 13.45 0.02018
HD 130322 31.91 29.96 0.03848 29.96 0.03849 29.94 0.03846
HIP 71135 32.36 28.97 0.03642 29.08 0.03656 11.29 0.01656
HIP 35173 33.19 27.96 0.03323 27.97 0.03324 10.98 0.01492
HD 22781 32.63 26.46 0.03229 28.86 0.03546 23.83 0.02921
HD 106515 A 34.12 24.81 0.02776 26.47 0.02987 25.50 0.02860
HD 45652 34.89 25.25 0.02719 25.32 0.02727 22.60 0.02420
HD 63765 32.57 20.78 0.02495 28.98 0.03568 15.32 0.01992
BD-11 4672 27.3 11.50 0.02437 28.83 0.04993 12.47 0.02798
16 Cyg B 21.15 7.42 0.02279 24.29 0.06416 5.32 0.00864

TableH continued on next page
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Table 3. (continued)

Target Petrovich’s Crit. Giuppone’s Crit. Hill AMD Crit.

Name Distance | DoS  Completeness | DoS  Completeness | DoS  Completeness
(pc) (Dynamically Stable) (Dynamically Stable) (Dynamically Stable)

HD 114386 27.95 11.40 0.02257 31.48 0.05175 15.47 0.02921
HD 216770 36.7 22.17 0.02131 22.65 0.02187 17.88 0.01697
HD 195019 37.71 21.21 0.01928 21.21 0.01928 21.21 0.01928
HD 63454 37.73 21.17 0.01923 21.17 0.01923 21.08 0.01913
HD 117618 37.82 20.98 0.01899 20.99 0.01899 16.14 0.01435
HD 16141 37.83 20.94 0.01894 20.97 0.01897 14.03 0.01245
HD 23079 33.49 16.93 0.01857 27.25 0.03182 18.24 0.02107
HD 113337 36.22 18.69 0.01768 23.32 0.02320 20.99 0.02042
HD 108147 38.96 19.41 0.01644 19.41 0.01644 18.52 0.01555
HD 4208 34.23 15.63 0.01621 26.02 0.02920 10.63 0.01259
HD 102117 39.62 18.57 0.01508 18.57 0.01508 15.11 0.01198
HD 216437 26.71 6.99 0.01477 23.64 0.04185 10.05 0.01748
GJ 849 8.8 2.11 0.01471 6.50 0.04151 8.12 0.04800
HD 28185 39.43 17.99 0.01448 18.89 0.01545 18.25 0.01479
gam 1 Leo 38.52 17.33 0.01444 19.94 0.01736 19.32 0.01667
HD 114762 40.23 17.67 0.01383 17.74 0.01391 17.70 0.01385
HD 38283 38.1 16.16 0.01336 20.61 0.01833 8.86 0.00779
HD 111232 28.98 8.22 0.01310 28.52 0.04389 15.47 0.02011
HD 142415 35.57 13.80 0.01267 24.28 0.02504 18.23 0.01823
HD 83443 40.95 16.85 0.01262 16.85 0.01262 16.83 0.01260
HD 178911 B 41.02 16.73 0.01250 16.73 0.01251 16.73 0.01250
HD 98736 32.48 9.50 0.01185 26.57 0.03297 14.83 0.01852
kap CrB 30.09 7.71 0.01173 23.10 0.03222 11.21 0.01781
HD 89744 38.68 14.95 0.01162 19.88 0.01700 18.03 0.01450
HD 103720 41.6 16.08 0.01155 16.08 0.01155 16.08 0.01155
HD 168746 41.62 16.05 0.01152 16.05 0.01152 15.80 0.01130
bet UMi 38.78 14.86 0.01150 19.69 0.01677 17.96 0.01493
HD 7199 36.19 13.18 0.01150 23.30 0.02319 6.45 0.00719
HD 121504 41.71 15.91 0.01138 15.91 0.01138 15.68 0.01117
HD 10697 33.15 10.23 0.01093 25.67 0.03040 16.88 0.01920
HD 197037 33 8.94 0.01080 25.08 0.02974 9.39 0.01283
HD 216435 33.01 9.25 0.01066 23.86 0.02803 9.01 0.01218
HD 6434 42.41 15.02 0.01032 15.02 0.01032 14.70 0.01004
HD 204941 28.74 4.85 0.01019 16.90 0.02533 7.83 0.01659
GJ 179 12.36 1.91 0.01012 6.68 0.03543 3.79 0.01857
HD 85390 33.56 8.02 0.00977 26.30 0.03050 6.17 0.00961
HD 70642 29.3 5.69 0.00972 19.99 0.02877 9.03 0.01691
HD 141937 33.39 9.36 0.00968 26.46 0.03103 19.30 0.01923
HD 49674 43.09 14.26 0.00937 14.26 0.00937 12.92 0.00831
HD 137388 40.53 12.99 0.00897 17.31 0.01333 5.15 0.00386
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Table 3. (continued)

Target Petrovich’s Crit. Giuppone’s Crit. Hill AMD Crit.

Name Distance | DoS  Completeness | DoS  Completeness | DoS  Completeness
(pc) (Dynamically Stable) (Dynamically Stable) (Dynamically Stable)

iot Dra 31.67 6.88 0.00875 28.08 0.03664 20.21 0.02218
HD 208487 44 13.22 0.00815 13.27 0.00820 9.87 0.00576
91 Aqr 44.08 13.14 0.00808 13.17 0.00811 12.87 0.00786
HD 42012 36.84 9.14 0.00713 22.01 0.02103 11.52 0.01047
HD 285507 45.09 12.10 0.00699 12.10 0.00699 12.10 0.00699
HD 8574 44.88 12.03 0.00697 12.31 0.00721 11.43 0.00653
30 Ari B 44.71 12.03 0.00695 12.52 0.00739 12.48 0.00735
HD 330075 45.36 11.82 0.00670 11.82 0.00670 11.82 0.00670
HIP 91258 45.95 11.20 0.00612 11.20 0.00612 11.19 0.00612
HD 77338 46 11.14 0.00608 11.14 0.00608 8.94 0.00467
HD 114729 37.85 7.82 0.00538 20.03 0.01784 7.32 0.00631
HD 17674 44.48 9.88 0.00522 12.69 0.00765 6.04 0.00315
HD 29021 31.02 3.11 0.00520 18.49 0.02331 6.62 0.00589
BD-17 63 34.49 3.36 0.00519 23.80 0.02593 12.96 0.01147
HD 164604 39.41 8.11 0.00495 18.73 0.01537 13.07 0.01004
HD 210193 42.25 9.01 0.00482 15.22 0.01051 4.77 0.00295
HD 30562 26.18 2.37 0.00481 12.23 0.02055 2.36 0.00212
mu Leo 32.63 3.96 0.00448 26.96 0.03281 20.08 0.02078
HD 154345 18.29 1.43 0.00422 5.19 0.01520 4.90 0.01734
HD 20782 36.02 3.34 0.00400 21.24 0.02064 10.46 0.00810
HD 143105 48.7 8.63 0.00394 8.63 0.00394 8.63 0.00394
HD 89307 32.04 2.67 0.00372 14.66 0.01594 5.71 0.00698
HD 107148 49.49 8.01 0.00344 8.01 0.00344 5.78 0.00232
HD 196885 34.2 2.62 0.00329 17.06 0.01705 7.33 0.00540
HD 167042 49.73 7.46 0.00307 7.81 0.00330 5.83 0.00225
BD+14 4559 49.42 7.15 0.00288 8.07 0.00348 6.37 0.00256
HD 50554 31.19 1.96 0.00282 16.92 0.02023 7.51 0.00590
HD 81040 34.47 2.70 0.00280 20.04 0.02079 12.88 0.01059
eps Tau 49.23 6.88 0.00270 8.17 0.00359 7.47 0.00315
HD 153950 48.52 6.83 0.00268 8.81 0.00406 7.65 0.00334
HD 117207 32.38 1.83 0.00258 11.42 0.01128 4.33 0.00619
HD 100777 49.6 6.41 0.00241 7.90 0.00338 5.47 0.00212
HD 213240 40.92 4.85 0.00213 16.15 0.01186 12.59 0.00833
HD 32963 38.12 2.15 0.00202 13.39 0.00984 2.55 0.00270
14 Her 17.94 0.55 0.00135 5.32 0.01546 0.79 0.00067
HD 222582 42.21 3.37 0.00117 15.06 0.01033 13.87 0.00911
HD 156846 47.8 3.92 0.00102 9.42 0.00455 9.32 0.00448
HD 4113 41.92 1.93 0.00081 15.16 0.01060 9.60 0.00587
HD 7449 38.71 0.66 0.00074 8.75 0.00493 1.64 0.00072
HD 70573 45.7 2.90 0.00062 11.27 0.00620 9.57 0.00490
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Table 3. (continued)

Target Petrovich’s Crit. Giuppone’s Crit. Hill AMD Crit.

Name Distance | DoS  Completeness | DoS  Completeness | DoS  Completeness
(pc) (Dynamically Stable) (Dynamically Stable) (Dynamically Stable)

eps Eri 3.21 0.09 0.00046 6.99 0.04011 0.13 0.00016
HD 106252 38.23 0.51 0.00044 11.97 0.00812 7.10 0.00349
HD 142022 A 34.31 0.43 0.00044 9.26 0.00698 3.68 0.00157
HD 171238 44.87 1.29 0.00021 10.99 0.00598 4.63 0.00184
HD 86226 45.74 1.52 0.00020 10.20 0.00524 1.80 0.00059
HD 187085 45.96 1.50 0.00020 10.57 0.00557 3.04 0.00127
HD 87883 18.3 0.12 0.00019 1.56 0.00299 0.16 0.00008
psi 1 Dra B 22.16 0.13 0.00016 1.67 0.00216 0.26 0.00017
HD 20868 47.79 1.34 0.00015 9.44 0.00457 6.89 0.00303
HD 221420 31.17 0.04 0.00009 1.11 0.00239 0.23 0.00034
GJ 328 20.54 0.03 0.00003 0.98 0.00120 0.08 0.00003
HD 220689 46.94 0.44 0.00002 7.78 0.00320 1.09 0.00023
HD 114613 20.29 0.02 0.00002 0.35 0.00031 0.14 0.00016
HD 45350 46.94 0.15 0.00001 8.99 0.00417 4.84 0.00191
HD 8673 37.9 0.01 0.00001 5.99 0.00252 4.66 0.00143
HD 24040 46.68 0.05 0.00000 4.52 0.00110 0.46 0.00003
HD 13931 47.46 0.07 0.00000 4.31 0.00099 0.29 0.00001
HD 108341 49.4 0.01 0.00000 6.66 0.00246 4.66 0.00152
HD 79498 49.02 0.00 0.00000 4.93 0.00134 1.46 0.00031
HD 40979 34.12 0.00 0.00000 0.78 0.00014 0.26 0.00001
HD 133131 B 47 0.00 0.00000 0.00 0.00000 0.00 0.00000
HD 13724 43.52 0.00 0.00000 0.06 0.00001 0.00 0.00000
HD 150706 28.29 0.00 0.00000 0.00 0.00000 0.00 0.00000
HD 166724 45.19 0.00 0.00000 0.13 0.00001 0.00 0.00000
HD 181234 47.81 0.00 0.00000 0.33 0.00002 0.00 0.00000
HD 196067 39.98 0.00 0.00000 0.00 0.00000 0.18 0.00000
HD 219077 29.21 0.00 0.00000 0.00 0.00000 0.00 0.00000
HD 220773 49 0.00 0.00000 0.00 0.00000 0.14 0.00000
HD 25015 37.47 0.00 0.00000 0.03 0.00000 0.00 0.00000
HD 92987 43.59 0.00 0.00000 0.02 0.00000 0.00 0.00000
HD 98649 42.22 0.00 0.00000 0.00 0.00000 0.00 0.00000
HIP 70849 24.07 0.00 0.00000 0.85 0.00003 0.00 0.00000
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