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time

With thousands of possible target stars and

a limited amount of time on a future multi-billion dollar telescope

How do we maximize the number of new exoplanets detected?
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Maximizing Exoplanet Detections of a Direct Imaging Mission

Dean Keithly

September 9, 2019
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Outline

÷ Why Imaging?

÷ ∆mag, s

÷ P(detection)

÷ Optimization My contributions start here

÷ Validation

÷ WFIRST Results

÷ Future Work
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Confirmed Planets
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Transit
Imaging

• More transits (green) than
other detections

• Imaging detects planets
further fromthe host star

https://exoplanetarchive.ipac.caltech.edu/
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Confirmed and Solar System Planets

• More transits (green) than
other detections

• Imaging detects planets
further fromthe host star

• Imaging hasn’t detected
anything smaller than
≈Jupiter

• Earth-Like rocky bodies
undiscovered

https://exoplanetarchive.ipac.caltech.edu/
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Directly Imaging Exoplanets Geometry
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(Marois et al. 2014)

This is WFIRST;

the observatory

we will focus on.
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Visual Magnitude Reference

∆mag is difference in

magnitude between the

host star and exoplanet
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Joint Probability Density Function, fs̄,∆mag (s,∆mag)
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Calculating P(detection), ci
Completeness, ci , is the probability of detecting an exoplanet around

a host star should a planet exist around that star

ci =
∫ ∆magi

0

∫ smax,i

smin,i

fs̄,∆mag (s,∆mag) ds d∆mag

(Savransky et al., 2017)

index of the target star - i

0- fundamental lower limit (for non-self-luminous)

smin,i - smallest planet-star separation observable

smax ,i - largest planet-star separation observable
next slides - ∆magi
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Photon Sources
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∆magi and ti
This is the background limiting ∆mag

∆magi (ti ) =−2.5 log10

SNR

√
Cb,i
ti

+C2
sp,i

CF0
10−0.4νi (λ)T (λ ,WA)εPC

(Nemati, 2014), (Nemati et al., 2017)

• λ = 565nm wavelength

• νi (λ ) - target star B-V
color

• SNR = 5 - minimum
required for detection

• εPC = 0.8 - photon
counting efficiency

• Cb,i - net background
count rate

• Csp,i - speckle residual
count rate

• Csr ,i - starlight residual

• CF0 - spectral flux density

Cb,i = ENF 2× (Csr ,i +Cz ,i +Cez) + (ENF 2× (Cdc +Ccc) +Crn)

Csp,i = Csr ,i × εpp

Csr ,i = CF0×10−0.4×νi ×Ψ(λ ,WA)×Npix

CF0(λ ) = F0(λ )A∆λεq(λ )εinstεsyst
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Reward & Cost

We now have a metric describing the “reward” for observing each star.

We related the “reward” to the time “cost” of making that observation.

How do I determine integration time for each star, i in I (ti )?
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Reward & Cost

We now have a metric describing the “reward” for observing each star.

We related the “reward” to the time “cost” of making that observation.

How do I determine integration time for each star, i in I (ti )?

We have a set of time constraints to consider:

Tsettling - time reserved for vibration damping, reaching thermal equilibrium,

“digging the dark hole” (0.5d)

TOH - time reserved for momentum dumping, orbit maintenance,

dark hole maintenance (0.5d)

Tmax - total mission time (30d)
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Reward & Cost

We now have a metric describing the “reward” for observing each star.

We related the “reward” to the time “cost” of making that observation.

How do I determine integration time for each star, i in I (ti )?

We have a set of time constraints to consider:

Tsettling - time reserved for vibration damping, reaching thermal equilibrium,

“digging the dark hole” (0.5d)

TOH - time reserved for momentum dumping, orbit maintenance,

dark hole maintenance (0.5d)

Tmax - total mission time (30d)

What is an initial feasible solution to the

full non-linear optimization problem?
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Optimization: Part 1

Algorithm 1: Binary Integer Program - x∗1 = BIP(c0, t0)

Input: I, c0, t0, TOH , Tsettling , Tmax, and an optimization time limit maximum of 5
minutes

Output: x∗1, the list of binary values signaling to keep (1) or remove (0) each target

x∗1 = arg min
x

−
N−1

∑
i=0

xic0,i

s.t.

∑
i∈I

xi (t0,i +TOH +Tsettling )≤ Tmax ,

xi ∈ {0,1}, ∀ i ∈ I

Coin-OR MIP - (Lougee-Heimer, 2003), (Savransky et al., 2017), (Keithly et al., 2019)
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Initial ti , Maximizing dc/dt

What is a good initial

feasible solution to the

full non-linear

optimization problem?
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Slope of Reward/Cost, ε =dc/dt

1. Assemble the expression and take the derivative w.r.t time

ε = dci
dti

∣∣∣
ti

= d
dti

[∫∆magi (ti )
0

∫ smax,i
smin,i

fs,∆mag (s,∆mag) ds d∆mag
]∣∣∣

ti

19 / 53



Why Imaging? ∆mag, s P(detection) Optimization Validation WFIRST Results Future Work End

Slope of Reward/Cost, ε =dc/dt

1. Assemble the expression and take the derivative w.r.t time

ε = dci
dti

∣∣∣
ti

= d
dti

[∫∆magi (ti )
0

∫ smax,i
smin,i

fs,∆mag (s,∆mag) ds d∆mag
]∣∣∣

ti

2. Multiply by d∆magi/d∆magi

= d
d∆magi

[∫∆magi (ti )
0

∫ smax,i
smin,i

fs,∆mag (s,∆mag) ds d∆mag
]

d∆magi
dti

∣∣∣
ti
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Slope of Reward/Cost, ε =dc/dt

1. Assemble the expression and take the derivative w.r.t time

ε = dci
dti

∣∣∣
ti

= d
dti

[∫∆magi (ti )
0

∫ smax,i
smin,i

fs,∆mag (s,∆mag) ds d∆mag
]∣∣∣

ti

2. Multiply by d∆magi/d∆magi

= d
d∆magi

[∫∆magi (ti )
0

∫ smax,i
smin,i

fs,∆mag (s,∆mag) ds d∆mag
]

d∆magi
dti

∣∣∣
ti

3. Apply Fundamental Theorem of Calculus

=
[∫ smax,i

smin,i
fs,∆mag (s,∆mag(ti )) ds

]
d∆magi

dti

∣∣∣
ti
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Slope of Reward/Cost, ε =dc/dt

1. Assemble the expression and take the derivative w.r.t time

ε = dci
dti

∣∣∣
ti

= d
dti

[∫∆magi (ti )
0

∫ smax,i
smin,i

fs,∆mag (s,∆mag) ds d∆mag
]∣∣∣

ti

2. Multiply by d∆magi/d∆magi

= d
d∆magi

[∫∆magi (ti )
0

∫ smax,i
smin,i

fs,∆mag (s,∆mag) ds d∆mag
]

d∆magi
dti

∣∣∣
ti

3. Apply Fundamental Theorem of Calculus

=
[∫ smax,i

smin,i
fs,∆mag (s,∆mag(ti )) ds

]
d∆magi

dti

∣∣∣
ti

d∆magi
dti

(ti ) =
5Cb,i

4ln(10)
1

Cb,i ti+(Csp,i ti)
2 From (Nemati, 2014)
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Optimization: Part 2

Algorithm 2: Bounded Scalar Minimization Wrapping Binary Integer Program

Input: I, Cp0, Cb0, Csp0, TOH , Tsettling , Tmax, and an optimization time limit
maximum of 5 minutes

Output: ε∗, the value of dc/dt evaluated for each target which maximizes yield
Output: t∗, integration times for each target evaluated at ε∗

Output: x∗2, the list of binary values signaling to keep or remove each target

ε
∗ = arg min

ε
−∑

i∈I
BIP(ci (t

∗
i (ε)), t∗i (ε),TOH ,Tsettling ,Tmax)ici (t

∗
i (ε))

s.t.
ε ≤ 7,

−ε ≤ 0

t∗2 ⇐ [t∗i (ε∗), ∀ i ∈ I]
x∗2 ⇐ [BIP(ci (t

∗
i (ε∗)), t∗i (ε∗),TOH ,Tsettling ,Tmax), ∀ i ∈ I]

(Savransky et al., 2017), (Keithly et al., 2019)
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Optimization: Part 3

Algorithm 3: SLSQP Optimization

Input: I, fZ , t, TOH , Tsettling and Tmax
Output: t∗3, the integration times to spend on each star

t∗ = arg min
t

−
N−1

∑
i=0

ci (ti )

s.t.
ti < Tmax, ∀ i ∈ I,

−ti < 0, ∀ i ∈ I,

∑
i∈I

xi (TOH +Tsettling ) + ti < Tmax

Scipy SLSQP - (Boggs and Tolle, 1995), (Savransky et al., 2017), (Keithly et al., 2019)
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Completeness vs Integration Time - Kepler Like Planet Population

Kepler Like
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Sky Distribution of Target List Time
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EXOSIMS
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Simulating Single Missions
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Keep-out Regions

Problem: Sensors saturate when looking at bright objects

Solution: Designate regions the telescope is not allowed to look at

45 Deg

Anti-Solar 
Point 

Visible 
Targets

124 Deg

Body
Keep-out
Angle (deg)

Earth 45◦

Moon 45◦

Sun 45◦

Small Bodies 1◦

Solar Panels 56◦, 124◦

(WFIRST SDT, 2015)
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Keep-out Map

(Soto et al., 2019)
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Keep-out Map
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Zodiacal Light

0 25 50 75 100 125 150 175
|l(ri/SC) l(r /SC)| in deg

0

10

20

30

40

50

60

70

80

90

|b
(r

i/S
C
)

b(
r

/S
C
)|

 in
 d

eg

10 9

10 8

Zo
di

ac
al

 L
ig

ht
 In

te
ns

it
y

f Z
(l

,b
,

=
56

5n
m

) 
in

 W
m

2 s
r

1
m

1

(Leinert et al., 1998)

32 / 53



Why Imaging? ∆mag, s P(detection) Optimization Validation WFIRST Results Future Work End

Zodiacal Light
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• Red dots - linear
interpolant minimums
for each latitude

• 15d deviation from
minimum has marginal
value change

(Leinert et al., 1998)
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Zodiacal Light
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• Red dots - linear
interpolant minimums
for each latitude

• 15d deviation from
minimum has marginal
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Idea! lets make
observations at
minimums!

(Leinert et al., 1998)
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Zodiacal Light
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A Resulting Schedule
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Convergence
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How many simulations do I need to run? (to get within XX% of the mean)

µi = (i−1)µi−1+xi
i

(Savransky et al. 2015)

# Sims CI
|%|
error

1000 1σ 1.16
1000 2σ 2.33
1000 3σ 3.19
100 1σ 3.45
100 2σ 6.95
100 3σ 9.58

37 / 53



Why Imaging? ∆mag, s P(detection) Optimization Validation WFIRST Results Future Work End

Confirmed with WFIRST Detected Planets

• All planets detected in
WFIRST all simulations
(purple)

• WFIRST might detect
≈ 2R⊕ planets

• WFIRST is likely to detect
planets with
0.5AU≤ s ≤ 5AU

https://exoplanetarchive.ipac.caltech.edu/
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Mean Unique Detections

Planet Population

Completeness Kepler Like SAG 13

Kepler Like 5.484 16.117

SAG13 5.206 16.266

Unique Detections

The summed completeness of the planned observation list was 2.31.

Multiplying by the planet occurrence rate (2.375) predicts 5.48 detections will be made.

Planet Population

Completeness Kepler Like SAG 13

Kepler Like 0.214 1.003

SAG13 0.217 0.718

# Characterizations
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Mean Unique Detections

Planet Population

Completeness Kepler Like SAG 13
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Mean Unique Detections

Planet Population
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Mean Unique Detections

Planet Population

Completeness Kepler Like SAG 13

Kepler Like 5.484 16.117
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The summed completeness of the planned observation list was 2.31.

Multiplying by the planet occurrence rate (2.375) predicts 5.48 detections will be made.
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Observed Planet Populations
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Observed Planet Populations
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Observed Planet Populations
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Summary

1 Target list optimization method
2 ∑c planned ≈ ∑c implemented
3 Target ti distribution on sky is uneven
4 WFIRST can detect unique planets in Rp vs a space
5 EXOSIMS simulates universes, validates the planned target list
6 Optimizing with Kepler-Like population is preferred
7 Optimizing with Kepler-Like leads to detections of smaller Rp planets
8 WFIRST can detect planets in the regime between “imaging” and “transits”
9 Running 1000x simulations → ≈3% uncertainty

10 WFIRST can detect ≈5.48 exoplanets in a blind-search survey
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HabEx
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• HabEx is one of 4 future
flagship telescope concepts

• Designed to image
exo-Earths
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Confirmed with HabEx Detected Planets

• All planets detected in
HabEx simulations (purple)

• HabEx might detect ≈ R⊕
at 1AU

• “lines” are limits of
simulated planets

https://exoplanetarchive.ipac.caltech.edu/
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Future Work

Detecting and Characterizing Earth-Like Exoplanets, Revisiting targets, Characterizing
Orbits

• Dynamic program rewarding only confirmed & characterized Earth-Like planets

• P(planet type|s0,∆mag0) - what is the probability a detected planet is of a given
planet type?

• P(s1,∆mag1,θ1|planet type,MET + ∆t,s0,∆mag0) - when is the earliest I can
take my next image?

• simulating stable star systems
• Decompose completeness by planet-type
• Decompose dynamic-completeness by planet type
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Contributions

Journal Publications:
[1] Keithly D., et al., (2018) ”A cephalopod-inspired combustion powered hydro-jet

engine using soft actuators.” Extreme Mechanics Letters.

[2] Keithly D., et al., (In Review) ”Optimal Scheduling of Exoplanet Direct Imaging
Single-Visit Observations of a Blind Search Survey.” Journal of Astronomical
Telescopes, Instruments, and Systems.

Conference Presentations:
[1] Keithly D., et al., (2019) ”Blind Search Single-Visit Exoplanet Direct Imaging Yield

for Space Based Telescopes.” American Astronomical Society Meeting 233.

[2] Keithly D., et al., (2018) ”Scheduling and target selection optimization for
exoplanet imaging spacecraft.” International Society for Optics and Photonics.

[3] Keithly D., et al., (2018) ”WFIRST: Exoplanet Target Selection and Scheduling
with Greedy Optimization.” American Astronomical Society Meeting 231.

Code Contribution: github.com/dsavransky/EXOSIMS
Report: Savransky et al., (2019) ”Modular Active Self-Assembling Space Telescope
Swarms,” NIAC - Future conference paper (Mirro Force Opt.)
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Coursework

Completed:
SYSEN 5400 - System Architecture
SYSEN 5100 - Model Based Systems Engineering
MAE 5160 - Spacecraft Technology & Systems
MAE 6060 - Spacecraft Dynamics, Estimation, & Control
SYSEN 5200 - Analysis Behavior & Optimization
MAE 5730 - Intermediate Dynamics & Vibrations
MAE 5780 - Feedback Control Systems
MAE 6700 - Advanced Dynamics
ASTRO 6525 - Optical, Infrared, and Sub-millimeter Telescopes
MAE 6720 - Celestial Mechanics
ORIE 6125 - Computational Methods in Operation Research
ORIE 5300 - Optimization I
ORIE 5310 - Optimization II

Future:
Multivariable Control
Celestial Mechanics
Global Positioning System
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Super Awesome Side-Work

Internships:
Marshall Space
Flight Center 2015
Jet Propulsion Lab 2016 (Atkinson et al., 2016)
Jet Propulsion Lab 2017 Lander Launched Impact Probe - Future Conference
Jet Propulsion Lab 2018 Procedural Thermal Model Generation
Air Force Research Lab 2019 Valuing Ground Station Images - Future Conference
Ball Aerospace? 2020 GOAL

Extra:
SPLASH 2018-19 Teaching Space Classes (obviously)
FIRST 2018 FRC 5254 Trumansburg
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Constructing Joint Probability Distributions: Kepler Like

fā(a) = a−0.62

anorm
exp
(
− a2

a2
knee

)
anorm =

∫ amax
amin

a−0.62exp
(
− a2

a2
knee

)
da

amin = 0.1 AU
amax = 30 AU
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Constructing Joint Probability Distributions: Kepler Like
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Nemati 2014 SNR Equation

SNR =
rpl t√

rnoiset + σ2
spstr

rpl - Electron count rate from the planet
rnoise - noise “rate” from planet, speckle, zodi, exo-zodi, DC, CIC, RN
σspstr - variance of the residual speckle structure
ENF - Excess Noise Factor caused by signal gain
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WFIRST Optics: Shaped pupil coronagraph

Shaped pupil coronagraph for spectroscopic characterization

First Focal Plane 
Bowtie Mask

Final 
Image

Lyot Stop
Shaped Pupil 

“Characterization” MaskTelescope Pupil 

Contrast in final image, closed loopImage Credit: Jeremy Kasdin 2014
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WFIRST Optics: Final image contrast

Shaped pupil coronagraph for spectroscopic characterization

First Focal Plane 
Bowtie Mask

Final 
Image

Lyot Stop
Shaped Pupil 

“Characterization” MaskTelescope Pupil 

Contrast in final image, closed loop

Image Credit: Jeremy Kasdin 2014
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Zero-Magnitude Flux CF0

F0(λ ) = 104×10(4.01− λ−550nm
770nm )ph/s/m2/nm
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Core Throughput
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Core Mean Intensity
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Transit Detection Diagram

Image courtesy of NASA
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Planet Occurrence Rates
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Orbital Elements to r

ω argument of perigee
I Inclination of the orbital plane
O Right ascension of the ascending node

Table: Caption

[x1 x2 x3
y1 y2 y3
z1 z2 z3

]
=

[
cosω sinω 0
−sinω cosω 0

0 0 1

]
·

[
1 0 0
0 cos I sin I
0 −sin I cos I

]
·

[
cosO sinO 0
−sinO cosO 0

0 0 1

]
After

expanding
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Planet Semi-major axis

Kepler-Like: Modified power-law distribution for semi-major axis (a) of the form

fa(a) =
a−0.62

anorm
exp
(
− a2

a2
knee

)
(1)

where -0.62 is adopted from refnumMoorhead2011 derived from the power law fit from
refnumCumming2008.
In this model, we include an exponential decline in semi-major axis past a “semi-major
axis knee” (aknee), which we place at 10 AU, based on the observed, sharp decline in
detected planets with period ≈ 104 d around an assumed solar mass star (Cumming et.
al. 2008). The normalization factor is given by the integrating the un-normalized
distribution over a specific a range

anorm =
∫ amax

amin

a−0.62exp
(
− a2

a2
knee

)
da , (2)

where we consider values of a range in amin = 0.1 AU to amax = 30 AU, again based on
the paucity of wide-separation planets discovered to date.
We note, however, that for WFIRST, which has an inner working angle (IWA) of 0.15
arcsec, the closest target list star has distance, di , of 2.63 pc and would have the
smallest observable planet star separation smin, given by IWA×di ≈ smin, at 0.394 AU.
Since smin ≈ amin(1 + emax), the smallest observable semi-major axis is 0.292 AU for a
maximum eccentricity, emax of 0.35.
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McBride2011

1. The goal of direct detection is to spatially separate the exo- planet light from that
of its primary. This affords access to exo- planet atmospheres, which yields
fundamental information including effective temperature, gravity, atmospheric
composi- tion and abundances, orbital motion, and perhaps even weather and and
planetary spin. 2. The goal of direct imaging is to assem- ble the first statistically
significant sample of exoplanets that probes beyond the reach of indirect searches and
quantifies the abundance of solar systems like our own. (McBride et al., 2011)Read
Section 1 of McBride2011 for all other scientific motivation.
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Significance of Orbital Eccentricity

A significant orbital eccentricity effects a planet’s climate (i.e. equilibrium
temperature, amplitude of seasonal variability and potentially its habitability due to
variations in the incident stellar flux) (Moorhead et al., 2011) From Williams and
Pollard 2002, Gaidos and Williams 2004
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dMag vs s of Different Solar System Planets
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EXTRA
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