

CCAT-prime Wall Climbing
Robot

Project Report

Cornell University

Master of Engineering
Department of Mechanical and Aerospace Engineering

Xiaotian Liu
12/04/2019

xl425@cornell.edu
415-419-0489

mailto:xl425@cornell.edu

Abstract
This is a final report from the MAE 6900 independent research project of Xiaotian Liu.
The main purpose of this project is to design a wall-climbing robot capable of performing
metrology on the CCAT-prime telescope in Cerro Chajnantor, Chile. The work covered
in this report is completely or partially developed by the author through Jan 2019 to Dec
2019. Main topics in Chapter 1 of this paper involve simulation algorithm, Matlab
Simulink model introduction, toolbox required for simulation, defects of simulation
compared with real operation, current simulation status. For Chapter 2, implemented
matlab code, TCP communication, GUI introduction are involved. All hardware layout,
pin configurations, wire strategies are described in Chapter 3 with figures. It also
summarizes the future efforts that may take place to ensure successful project
completion. We worked alongside other Cornell University students on the Controls
Team, as well as students on the Mechanical and Testing group.Overseeing the project
was our MAE faculty advisor, Professor Dmitry Savaransky as well as Stephen
Parshley, the Project Engineer and Terry Herter, the Project Director and a faculty
member of the Cornell University Department of Astronomy.

1

Table of Contents

Abstract 1

Table of Contents 2

List of Terms 4

Acknowledgement 4

Introduction 5

Chapter 1 Simulation 6

1.1 Matlab Simulink Introduction 6

1.2 Simulation Modules and Algorithms 8

1.3 Simulation Results & Future Work 13

Chapter 2 Software Development 15

2.1 Software Platform Introduction 15

2.2 Overall Control Architecture 16

2.3 TCP/IP Communication 18

2.4 MATLAB GUI 20

2.5 Current Control Status and Future Work 21

Chapter 3 Hardware Connections 22

2

3.1 On-board/Off-board Hardware Introduction 22

3.2 Motor Connections 24

3.3 Fan Connections 24

3.4 Eddy Current Sensor Connections 25

3.5 Power Support and Limitations 25

Conclusion 26

Appendix A MATLAB Simulink Input and Output 27

Appendix B Hardware Pin Layout 29

3

List of Terms
● TCP: ​(Transmission Control Protocol) is a standard that defines how to establish

and maintain a network conversation through which application programs can
exchange data. TCP works with the Internet Protocol (IP), which defines how
computers send packets of data to each other.

● Differential Drive: ​consists of 2 drive wheels mounted on a common axis, and
each wheel can independently be driven either forward or backward.

● Simulink: ​a MATLAB-based graphical programming environment for modeling,
simulating and analyzing multi domain dynamical systems. Its primary interface is
a graphical block diagramming tool and a customizable set of block libraries.

● Raspberry Pi: ​a low cost, credit-card sized computer that can plug into a
computer monitor or TV, and uses a standard keyboard and mouse. It programs
in languages like Scratch and Python.

● PWM:​ Pulse width Modulation signal, to control speed of fans
● Serial Communication: ​the process of sending data one bit at a time,

sequentially, over a communication channel or computer bus.
● ESC:​ Electronic Speed Controller for fan
● ECS:​ Eddy Current Sensor
● ADC:​ Analog to Digital Converter

Acknowledgement
Acknowledge to the support from Prof. Savaransky who served as our project advisor
for providing us with many resources and technical guidance, as well as Stephen and
Terry, the Project Engineer and the Project Director, for giving us this opportunity to
work
on this great project. We would also like to thank the other Cornell University students
alongside whom we worked.

4

Introduction
Over the summer of 2018, two M.Eng. students from Cornell University developed a
prototype autonomous mobile robot to assist in the process of deformation analysis on
the primary and secondary mirrors of the CCAT-p observatory in Cerro Chajnantor,
Chile. This robot proved to be an adequate solution to the problem of positioning a
retro-reflective puck at specific measurement nodes across the mirror panels. Used in
tandem with a laser measurement system from Etalon AG, a complete deformation
analysis of the mirrors will result.
Upon approval of the robot’s capabilities, a project group was formed to design,
assemble and test a robot capable of meeting a stringent set of requirements. These
requirements are derived from the harsh environmental conditions of the observatory,
the necessity of precision measurement and the damage risks associated with an
autonomous wall-climbing robot. This group is split into two subgroups of Cornell
University students, Mechanical and Controls, and is overseen by Professor Dmitry
Savransky. At the beginning of the 2018-2019 school year, the project was in its initial
stages. The major deadline for this project is August 2019, when a second prototype will
need to be completed in order to conduct tests in Germany in a simulated operational
environment.
Entering the second year of the project, the fundamental structure of the robot is
developed and general control algorithm is produced. The second prototype was built
from CAD drawing to real components and sent to Germany for a measurement test.
Both mechanical and control groups work together to make a functionable prototype
which can perform all angle climbing with two 500 W suction fans. Testing group
performed a pressure chamber test to simulate half pressure atmosphere conditions. A
second generation of prototype that solves current problems is expected to be built at
the beginning of 2020 and full close loop control should be implemented.

5

Chapter 1 Simulation

1.1 Matlab Simulink Introduction
Simulink is a block diagram environment for multi domain simulation and Model-Based
Design. It supports system-level design, simulation, automatic code generation, and
continuous test and verification of embedded systems. Simulink provides a graphical
editor, customizable block libraries, and solvers for modeling and simulating dynamic
systems. It is integrated with MATLAB, enabling users to incorporate MATLAB
algorithms into models and export simulation results to MATLAB for further analysis. For
this project, Simulink is used to demonstrate possible moving trajectory of designed
robot under particular circumstances. Some basic blocks and general procedure of
building a model is introduced for more information, check MATLAB Simulink page
https://www.mathworks.com/help/simulink/getting-started-with-simulink.html​.

Component-Based Modeling Guidelines

Consider componentization for large models and multiuser development teams.

STEP 1: ​Choose Among Types of Model Components
STEP 2: ​Compare Capabilities of Model Component Types
STEP 3: ​Define Interfaces of Model Components

Basic Modeling Workflow

Model a simple mechanical system, then scale the model for a collaborative
component-based modeling project.

STEP 1: ​Model a System Algorithm
STEP 2: ​Create Model Components
STEP 3: ​Manage Signal Lines
STEP 4: ​Manage Model Data
STEP 5: ​Reuse Model Components from Files
STEP 6: ​Create Interchangeable Variations of Model Components

6

https://www.mathworks.com/help/simulink/getting-started-with-simulink.html
https://www.mathworks.com/help/simulink/ug/component-based-modeling-guidelines.html
https://www.mathworks.com/help/simulink/ug/types-of-model-components.html
https://www.mathworks.com/help/simulink/ug/model-architecture-guidelines.html
https://www.mathworks.com/help/simulink/ug/interface-design.html
https://www.mathworks.com/help/simulink/ug/modeling-workflow.html
https://www.mathworks.com/help/simulink/ug/model-a-mechanical-system.html
https://www.mathworks.com/help/simulink/ug/visualize-model-components.html
https://www.mathworks.com/help/simulink/ug/reduce-signal-lines.html
https://www.mathworks.com/help/simulink/ug/manage-model-data.html
https://www.mathworks.com/help/simulink/ug/reference-model-components-from-files.html
https://www.mathworks.com/help/simulink/ug/create-interchangeable-components.html

STEP 7: ​Set Up a File Management System

Configuration Management

Projects can help you work with configuration management tools for team collaboration.

Preview Content of Model Components

Display representation of block contents on the face of a block.

Navigate Model Hierarchies

Navigate model hierarchy of subsystems and referenced models.

Besides the general model set up procedure, additional toolbox can provide external
help with existing modules such as Raspberry Pi Compiler or Differential Drive Motor
Simulator. Some of them are free to use but some of them might need to be purchased.
For this specific project, the following tool boxes shown in Figure 1 are used.

Figure 1: Toolbox installed for MATLAB Simulink

7

https://www.mathworks.com/help/simulink/ug/setup-a-file-management-system.html
https://www.mathworks.com/help/simulink/ug/configuration-management.html
https://www.mathworks.com/help/simulink/ug/preview-content-of-hierarchical-items.html
https://www.mathworks.com/help/simulink/ug/navigate-subsystems-in-the-model-hierarchy.html

Since the control algorithms are relatively complicated, block diagrams are not sufficient
to perform simulation. One important technique used to ​provide a graphical language
that includes state transition diagrams, flow charts, state transition tables, and
truth tables is Stateflow. One demonstration of the usage of Stateflow is motion
control algorithm based on differential drive principle. As shown in Figure 2, a
waypoint tracking logic is implemented with a PID controller. Note that two
different states are created and if/else statements are used to compute
interconnected calculations and decide when to enter different states. Simulink
Functions and MATLAB Functions can be specified individually in Stateflow and
used as normal functions. Stateflow is commonly used in control diagrams,
localization algorithm, danger loop creation and other blocks in this simulation.

Figure 2: Stateflow in Simulink Control Block

1.2 Simulation Modules and Algorithm
The whole simulation is based on a general simulation scheme outline. Besides the
fundamental waypoint tracking method, several additional subsystems are constructed
to satisfy the requirements of CCATp robot: TCP/IP communication system with
external device; Auto-generated path plan to map the entire mirror surface; Localization
subsystem to minimize the cumulative error; and danger loop to prevent damage under
extreme conditions such as power shutdown or communication lost. Because most

8

control algorithms need sensor output, simulation also requires generation of signal
output (often booleans) as input of subsystems. Figure 3 demonstrates overall control
outlines and all developed Simulink simulations are based on this outline.

Figure 3: Simulation Control Scheme Outline

The rest of the content in this section will be a close description of how each module is
constructed and what are the inputs and outputs of each module. All related files can be
found in shared Google Drive - Control Group - Simulink Simulation folder. Please use
the following description as a reference while using related Simulink files. Figure 4 is the
overview of the whole simulation diagram, notice that two TCP/IP inputs are required to
make the entire simulation operable. One TCP/IP inputs are simulated as Etalon
Measurement and another indicates laboratory emergency signal. The entire simulation
generates 10 waypoints as moving path, the robot moves along the path with
continuously updated position and auto generated small adjustment. Noises are actively
inserted in both moving process and IMU simulator to simulate real world errors to
check the capability of the relocalization algorithm.

All blocks in the Simulink diagram involve one or more matlab functions. The inputs and
outputs of each function is documented in the script itself. For the purpose of clarity ,
they are not going to be explained in detail. For more information, please refer to other
students’ reports in their specific fields. For example, all matlab scripts used in frame
transformation are explained in detail in Ruohan Gao and Seth McCall Final Report in
google drive.

9

Figure 4: Simulation Diagram Overview

Dynamic States/Motion Control
As shown in Figure 5, there are 4 states in total in the outer stateflow hierarchy, each
state represents the following moving conditions: normal operation, return to base,
emergency stop and back up. Each state has its own embedded control algorithm that
adjust the wheel velocities based on position update. The decision made on which state
is chosen depends on one of the input: ​state​, which is an integer between 1 and 4. The
number is determined as a combination of both TCP/IP danger signal and danger loop
subsystem output. The other inputs are ​waypoints, current_pose, Backup_v, Backup_w
while the outputs are ​meas_index and ​vRef​. ​Meas_index ​determines when to take IMU
data and used for relocalization and ​vRef ​outputs the desired wheel velocities for left
and right wheels. For more information regarding the inputs and outputs, please refer to
Appendix A MATLAB Simulink Input and Output.

10

Figure 5: Dynamic State Subsystem Overview

Localization
Localization algorithm is based on updating current position (x,y,w) based on IMU data
and using Kalman Filter to filter out the noises. ​Sigma_init and Mu_init are inputs that
initialize the function and ​measurement_data is output of IMU simulator. The
meas_index from dynamic state subsystem determines when to triggle the position
update. The output is the current position ​mu which will be used as current position
input. For more information regarding the inputs and outputs, please refer to Appendix A
MATLAB Simulink Input and Output.

Figure 6: Localization Subsystem Overview

11

Danger Loop
As shown in Figure 7, Danger Loop subsystem is similar to localization but has only
one output that partially determines which dynamic state should robot operate in. The
size ​of robot and ​panel_coordinate determine whether the robot is approaching the
edge of panel and ready to switch to ​back up mode. The output ​Control will combine
with laboratory danger signal to give a ​state input into the dynamic state. In real world
situations, the input of the danger loop will be switched to edge sensor signal input. For
more information regarding the inputs and outputs, please refer to Appendix A MATLAB
Simulink Input and Output.

Figure 7: Danger Loop Subsystem Overview

Frame Transformation
Fram transformation is required when triggle Etalon Measurement. Since the received
robot position is its 3D position in global coordinate, transformation is required to
compute 3D coordinates into 2 dimensional coordinates in panel frame. Notice in Figure
9,unlike other subsystems, all 4 blocks are matlab functions. For more information
regarding the inputs and outputs, please refer to Ruohan Gao and Seth McCall Final
Report in google drive.

12

Figure 8: Frame Transformation Subsystem Overview

Figure 9: Detailed Block Diagram inside Frame Transformation Block

1.3 Simulation Results & Future Work
The overview of the final version of Simulink simulation is Figure 4, however, several
different generations of similar models are generated to simulate robot trajectory under
different circumstances. The fundamental differences focus on whether outer TCP/IP
inputs are needed and whether noises are required to take into consideration. Some
videos are recorded for different Simulink models and placed in google drive. In general,
a 10 waypoints trajectory is shown in the video. Figure 10 exhibits the complete results
of model without TCP/IP inputs and Figure 11 demonstrates the trajectory with backup
motion and emergency stop. More tests can be performed based on the requirement
and some issues are popping up during the implementation.

● Sensor Data is hard to simulate because some of them are booleans and limited
by sampling frequency

● Frictions and Sliding can only be simulated by manually adding noise into the
result, this method may not correctly generate errors in real tests.

● The current version of Simulink model is based on one panel waypoint tracking.
Although a new cross panel algorithm is developed and demonstrated, it needs
to be implemented into the general model.

● At this point, the moving method is based on differential drive. However, due to
the limitation of the torque provided by motor, the maximum angular velocity it

13

can achieve is limited. Deeper evaluations of this problem need to be assessed
to ensure it can turn successfully in sharp angles.

● Further simulation is needed, but at this point, testing should be based more on
actual test in similar environment of Chili facility. Working closely with the testing
group for future implementation is recommended.

Figure 10: Simulation results with noises

Figure 11: Simulation Result with Backup and Return-to-base Motion

14

Chapter 2 Software Development

2.1 Software Platform Introduction
The entire control algorithm architecture is described in section 2.2. Since the
requirement restricts the amount of computation on board, three levels of computation is
developed: Teensy 3.5 for data acquisition, Raspberry Pi 3B+ for on-board computation,
data storage and transmission, and off-board computer for close loop control and user
input. Different softwares are used for coding in different platforms. This section will
introduce some basic knowledge and command in three software platforms to get
readers familiar with them.

Teensy 3.5 & C Language
Teensy 3.5 & 3.6 are high-end offerings in the new line of Teensys. The main CPU is
the Freescale/NXP Kinetis K66 ARM Cortex-M4 running at 180 MHz. There’s 1
Megabyte of Flash on board, 256K of RAM, and 4K of EEPROM in this chip, 32 DMA
channels, two CAN bus ports, and a USB High Speed (480 Mbit/sec) port. The
microcontroller also supports 25 analog inputs with 13-bit resolution, two analog outputs
with 12-bit resolution, a native SD card port, Ethernet MAC capable of 100 Mbps (you’ll
need a ‘shield’ for this), I2S audio, a crypto acceleration unit, random number generator,
six serial ports, three SPI ports, four I2C ports, and a real-time clock. . There are 62 IO
pins available as 0.1″ headers and as SMD pads on the back.

Similar to Arduino, the coding software is C language based, the library needs to be
installed before using. The 13 bit resolution of the analog pins can support higher
accuracy with Eddy Current Sensor installed on board. In the current version of Teensy
code, it takes ECS data and transmitted to pi for temporary storage and encoder
readings from four motors into PID controller in Pi. For Detailed Pin Playout, please
refer to Appendix B Hardware Pin Layout. Serial connection is used to communicate
with Pi for data transmission. Therefore, the ECS data acquisition frequency is limited.
All commands to motors, including fan motors are transformed into PWM signals here
and send to ESCs or Motor Drive.

Raspberry Pi 3B+
The Raspberry Pi is a fully-fledged mini computer, capable of doing whatever you might
do with a computer. It comes with 4x USB, HDMI, LAN, built-in Bluetooth/WiFi support,
1GB RAM, 1.2GHz quad-core ARM CPU, 40 GPIO (General Purpose Input Output)

15

pins, audio and composite video output, and more. Rather than not having many
choices, instead, your options are staggeringly large. With pre-programed python
scripts, the Pi can auto start the script once it boots up and set up all TCP/IP
connections with off-board control computers. It can also support SSH, VNC
connections and get remote control from any laptop that knows its IP address. For this
project, the python scripts development is processed by using display with HDMI cable,
keyboard and mouse. For Detailed Pin Playout, please refer to Appendix B Hardware
Pin Layout.

The current script in the Pi contained serial connection with Teensy and TCP/IP
connection with control computer. For security purposes, the TCP/IP communication is
setup in a separate router. For detailed information please refer to section 2.3 TCP/IP
communication. The script will store ECS data and send it back to the control computer
through the socket and receiving control command. PID controller is developed to tune
the motor torques.

Control Computer & MATLAB
Any computer with WIFI access and MATLAB subscription is capable of performing
off-board control computing. All related files and functions can be found in google drive -
control group - Matlab Code. Basically, the off-board computer will give out
measurement commands and motor speed commands based on sensor output
received. The overall control algorithm is similar to the MATLAB Simulink model
described in section 1 but in pure function form. Off-board computers should establish
TCP/IP communication to Raspberry Pi, Etalon measuring environment, and Laboratory
server.

At the end of Fall 2019, an open loop control script is implemented for Germany Test on
5th December. It takes desired linear velocity, angular velocity, travelling distance as
input. The user can choose percent of fan throttle and triggle ECS measurement. A
Graphical User Interface (GUI) is created for clarity and convenience and will be
described in detail in section 2.4 MATLAB GUI.

2.2 Overall Control Architecture
This project requires communication between off-board computers between not only
on-board hardwares, but also Multiline Server (provided by Etalon Measurement
Environment) and Chili Telescope Laboratory server. To corporate the communication
and according to the testing environment provided by Etalon, TCP/IP socket is used for

16

data transmission. However, the limitation of TCP/IP reading frequency limits the data
transmission speed and related sensor reading frequency. Further work is needed to
accomplish this problem.

As shown in Figure 12, besides the three level control platform described above in
section 2.1, additional control required to adjust tether length. Tether is used to support
power for all electronics and motors on board and prevent potential damage to mirror
while power shut down. The length of the tether needs to be adjusted along with the
movement of the robot. This particular part has not been developed yet but needed to
be noticed since this command will be directly controlled from the off-board computer.
Since Teensy 3.5 cannot store large amounts of data by itself, ECS data must be
transmitted to Pi immediately, this limits the reading frequency. Better control
architecture might be created to solve this problem later on. Edge sensors are tested
individually but have not been implemented into the entire script since the danger loop
is not finished.

Multiline Server Testing Environment is tested with TCP/IP communication in Spring
2019. Command sending and receiving are success. However, since the testing
environment is not fully functionable, the format of real measurement results are not
clear at this point. The detailed command format received from Multiline Server can be
found in drive.

Figure 12: Simulation Result with Backup and Return-to-base Motion

17

2.3 TCP/IP Communication
TCP/IP is the communication protocol for communication between computers on the
Internet. TCP/IP stands for Transmission Control Protocol / Internet Protocol. It defines
how electronic devices should be connected to the Internet, and how data should be
transmitted between them. TCP is for communication between applications. If one
application wants to communicate with another via TCP, it sends a communication
request. This request must be sent to an exact address. After a "handshake" between
the two applications, TCP will set up a "full-duplex" communication between the two
applications. The "full-duplex" communication will occupy the communication line
between the two computers until it is closed by one of the two applications.

This communication protocol is used in CCATp project to establish communication
between Etalon Multiline Server, Off-board Computer, On-board Raspberry Pi and
Laboratory Server. The off-board computer is treated as TCP Client while others are
treated as TCP Client. Before establishing the protocol, all applicants must under the
same Local Area Network (LAN) and know IP addresses. To establish TCP/IP protocol
in both MATLAB and Python, please refer to the following procedures.

Configure Properties of TCP/IP In MATLAB

● Address: Remote host name or IP address for connection. Specify address as
the first argument when you create the tcpclient object. In this example Address
is '172.28.154.231'. t = tcpclient('172.28.154.231', 4012)

● Port: Remote host port for connection. Specify port number as the second
argument when you create the tcpclient object. The Port must be a positive
integer between 1 and 65535. In this example Port is 4012.

● BytesAvailable: Read-only property that returns the number of bytes available in
the input buffer.

● Timeout: Waiting time in seconds to complete read and write operations,
specified as a positive value of type double. The default is 10. You can change
the value either during object creation, or after you create the object.

● ConnectTimeout: Maximum time in seconds to wait for a connection request to
the specified remote host to succeed or fail, specified as a positive value of type
double. If not specified, the default value is Inf. You can change the value only
during object creation.

Functions:

● fopen(t) will start the TCP/IP

18

● fscanf(t) will read out bytes available in TCP Buffer as text
● fread(t) will read out bytes available in TCP Buffer as numbers
● fwrite(t, data) will write data into buffer and ready to be read
● t.BytesAvailable can check bytes of data in buffer that is ready to be read
● t.InputBufferSize will specify the number of bytes can be written in

Here is the code used in GUI for TCP/IP set up:

t = tcpip('192.168.1.105', 20000, 'NetworkRole', 'client');

t.InputBufferSize = 40000;

t.Timeout = 30;

TCP/IP Client in Python

● Import socket is necessary to
● Specify Ip address: TCP_IP = '127.0.0.1'
● Specify Port number: TCP_PORT = 5005
● Specify BUFFER_SIZE = 1024
● Create Socket: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
● Start the socket as client: s.connect((TCP_IP, TCP_PORT))
● Start the socket as server: s.bind((TCP_IP, TCP_PORT))

TCP/IP Functions in Python

● s.send(MESSAGE)
● s.close()
● s.recv(BUFFER_SIZE)
● conn, addr = s.accept()
● conn.send(data)
● conn.recv(BUFFER_SIZE)
● conn.close()

Notice that for this project, TCP server is created in python script in Pi and client is
created in MATLAB in off-board computer. The input buffer size is increased to 40000 to
allow large amounts of ECS data to be transfered. The timeout range is 30 seconds to
avoid a long waiting period. However, the whole data processing time and bytes reading
time is roughly 50 seconds from measuring initialized until data has been plotted. This is
not ideal in terms of measuring continuity. Further development is needed to allow
faster data transmission time.

19

2.4 MATLAB GUI
GUIs (also known as graphical user interfaces or UIs) provide point-and-click control of
software applications, eliminating the need to learn a language or type commands in
order to run the application. MATLAB apps are self-contained MATLAB programs with
GUI front ends that automate a task or calculation. The GUI typically contains controls
such as menus, toolbars, buttons, and sliders. Many MATLAB products, such as Curve
Fitting Toolbox, Signal Processing Toolbox, and Control System Toolbox include apps
with custom user interfaces. In this project, for simplicity, GUIDE is used to help create
simple UI with callback functions. Figure 13 is the GUI created for Germany Test in Dec.
2019. Notice there are several buttons, user input text fields and a slider for fan throttle
control. The empty plot area is for ECS reading visualizer. The whole GUI can be found
in Google Drive - Control Group - Control_script_Matlab folder.

Figure 13: Graphical User Interface Created in MATLAB

For a detailed tutorial of how to create GUI with guide, please refer to MATLAB tutorial.
https://blogs.mathworks.com/videos/2013/02/06/introduction-to-gui-building-with-guide-i
n-matlab/​. The rest of this section will summarize some important points that are worth
noting in GUI created above.

● Each GUI includes two parts: a script file with all callback functions, and a GUI
template that determines how the interface will look like.

20

https://blogs.mathworks.com/videos/2013/02/06/introduction-to-gui-building-with-guide-in-matlab/
https://blogs.mathworks.com/videos/2013/02/06/introduction-to-gui-building-with-guide-in-matlab/

● The ​tag property of each handle corresponds to the name of each callback
function. To read or change the values of the handle, the following function can
be used

○ handles.TCP_IND.String = 'ON' set​s handle’s string text
○ set(handles.slider1, 'Value', speed)​ sets handle’s value
○ str2double(handles.Linear_Vel.String) reads out user input string as

numbers
● For variables created in one callback function and need to be used in other

functions, please create it as a global object first and call the object in function
that need to be used. For example, global t create tcp objects as a global object.

● If some buttons or slider should not be activate until an event happen, the
following function can be used:

○ set(handles.Move_Forward,'enable','on')
○ set(handles.Move_Forward,'enable','off')

2.5 Current Control Status and Limitations
So far until Dec 2019, the focus is on open loop control and device communications.
This section will summarize the work that has been done in the past year and work
might need to be finished in future. Note that all the following content is based on
control algorithm decided in previous sections and further adjustment is needed
alongside any changes.

Current Status

● Motor drive script that controls 4 motors with PWM signal is finished.
● Encoder reading is successfully received by Teensy 3.5 and sent to Pi through

serial communication.
● Teensy is able to receive commands from an off-board computer passed by Pi to

triggle ECS readings.
● Pi is capable of performing PID control on motor speed based on user input

desired speed and received encoder data.
● TCP/IP communication between off-board computer and Pi is stable, timeout and

inputbuffersize are specified particular for Germany Test, further modification
required.

● ECS reading can be read from ADC and past to Pi, the readings are noisy
caused by 5V limitation on current ADC.

● IMU data acquisition script is finished but has not been implemented in the entire
algorithm.

21

● To ensure data safety, a particular rotor is used to provide Local Area Network
which is separate from Ethernet. The password and name is shown below:

○ Name: CCATprobot
○ Passward: IM4CCATp#

● MATLAB GUI is created with functions to set fan speed, pass desired motor
speed, receiving and processing ECS readings, establishing and disconnecting
TCP/IP protocol. All relevant functions are located in the same folder described in
section 2.4 .

Future Work

● Solve reading frequency problems, possibly find a better way to read and store
data.

● Test command sending and data receiving with real Multiline Server.
● Working with a mechanical team to design new chassis that fit all electronic

devices and have space for wiring .
● Implement control algorithms that adjust tether length.
● Purchasing new ADC that is able to take 10V analog signal.
● The current motor cannot provide enough torque to make sharp turns. Either

differential drive motion needs to be changed or, motor with larger torque needs
to be considered.

● Close loop Control
○ Implement IMU into the control script
○ Test EKF accuracy
○ Get Dangerloop working with edge sensors

Chapter 3 Hardware Connection

3.1 On-board/Off-board Hardware Introduction
This section will evaluate electronic devices and mechanical structures installed on the
robot or will be potentially installed in the Chili facility. Electronic devices include Teensy
3.5, Raspberry Pi 3B+, edge sensors, Eddy Current Sensor, Analog to Digital
Converter, motors, 2 suction fans, 12V to 5V transformer and IMU. Puck tower will be
used at the center of robot to support measuring devices as well as secure ECS sensor.
For detailed description of Teensy and Pi, please see section 2.1 and for puck tower
design and thermal expansion results, please refer to project report from mechanical
team. The rest of this section will provide a brief introduction of other electronics
mentioned above.

22

● Edge sensors: SparkFun Line Sensor Breakout - QRE1113 (Digital) - ​This
version of the QRE1113 breakout board features a digital output, using a
capacitor discharge circuit to measure the amount of reflection. This tiny board is
perfect for line sensing when only digital I/O is available, and can be used in both
3.3V and 5V systems. The power input and output pins are brought out to a
3-pin, 0.1" pitch header. The board also has a single mounting hole to screw it
onto the chassis.

● ADC: ADS1115 contains ​a system that converts an ​analog signal​, such as a
sound picked up by a ​microphone or light entering a ​digital camera​, into a ​digital
signal​. This ADC may also provide an isolated measurement such as an
electronic device that converts an input analog ​voltage or ​current to a digital
number representing the magnitude of the voltage or current. Typically the digital
output is a ​two's complement binary number that is proportional to the input, but
there are other possibilities.

● 12-5V Transformer: SolarSynthesis DC DC converter 12V/24V input voltage,
output voltage range is 3.7-12V, max output current is 4.2A. Note: the output
voltage is Automatically detected, cannot be adjusted manually. The waterproof
car power regulator can convert DC 12V/24V down to DC 5V 9V 12V; with max
95 percent conversion efficiency. Protective function includes over current
protection, short circuit protection, over voltage protection, reverse connection
protection, and over temperature protection.

● Other electronics will be introduced later in sections between 3.2 and 3.4. The
overall wiring diagram is shown in Figure 14.

Figure 14: Wiring Diagram of Electronic Devices

23

https://en.wikipedia.org/wiki/Analog_signal
https://en.wikipedia.org/wiki/Microphone
https://en.wikipedia.org/wiki/Digital_camera
https://en.wikipedia.org/wiki/Digital_signal_(signal_processing)
https://en.wikipedia.org/wiki/Digital_signal_(signal_processing)
https://en.wikipedia.org/wiki/Electronic_device
https://en.wikipedia.org/wiki/Voltage
https://en.wikipedia.org/wiki/Electric_current
https://en.wikipedia.org/wiki/Two%27s_complement

3.2 Motor Connections
The motors currently used are ​75:1 Micro Metal Gearmotor HP 6V with Extended Motor
Shaft. ​These tiny brushed DC gearmotors are available in a wide range of gear
ratios—from 5:1 up to 1000:1—and with five different motors: high-power 6 V and 12 V
motors with long-life carbon brushes (HPCB), and high-power (HP), medium power
(MP), and low power (LP) 6 V motors with shorter-life precious metal brushes. The 6 V
and 12 V HPCB motors offer the same performance at their respective nominal
voltages, just with the 12 V motor drawing half the current of the 6 V motor. The 6 V
HPCB and 6 V HP motors are identical except for their brushes, which only affect the
lifetime of the motor. For more information, please check the MEL file in Google drive
and follow the website link of this motor. This motor has 2 wires for voltage input, 2
wires for PWM input and 2 wires for encoder output. The following connections are
made to set up each motors and motor drive:

● PWM Signal
○ To Motor Drive

● Encoder Signal
○ Green and Yellow to Teensy Pins

● Black and Blue to 5V breadboard
○ Black Positive
○ Blue Negative

● Motor 3: M3 Port on Drive: White and Orange from Left to right
● Motor 4: M1 Port on Drive: Red and Orange from Left to right
● Motor 1: M4 Port on Drive: White and Red from Left to right
● Motor 2: M2 Port on Drive: White and Red from Left to right
● Voltage inlet: from 5V breadboard

3.3 Fan Connections
The choices of fans are developed throughout the year and the final version is Powerfun
EDF 50mm 11 Blades Ducted Fan with RC Brushless Motor 4900KV with ESC
40A(2~4S). ​2~4S SKYWALKER HOBBYWING high voltage version ESC can take up to
40A and Burst current(≤10s) can be up to 50A. Output is 5V/3A and battery type can be
Lipo/NiMH. This fan supports 2S,3S,4S Lipo or 5~12cells NiMH. However, each fan will
draw 500W power under full throttle and in total 1kW power is required from the facility.
This leads to the demand of new transformers and tether that can safely pass that much
amount of power under 12V. The connections of fans and ESCs are shown below:

24

● Power and PWM
○ Black to ESC Top
○ Red to ESC Bot
○ Blue to ESC middle

● ESC Power
○ To 12V from teather

● 3 continuous beep indicates that TCP are ready to be connected

3.4 Eddy Current Sensor Connections
Eddy Current Sensor is a product from Lion Precision, providing high resolution
measurement for even the dirtiest environments. These advantages have made
eddy-current sensors indispensable for many machine builders, production managers,
or precision metrology applications. However, since it is super sensitive, it requires
re-calibration every year and the wire of sensors must avoid any bending. For detailed
information: ​https://www.lionprecision.com/products/eddy-current-sensors/ . It is
connected to ADC to provide digital reading to Teensy 3.5. The connections are shown
below:

● ADC 5V VDD to 5v Power
● ADC GND to GND
● ADC ADDR to GND
● ADC A0 to ECS 10V Output
● ADC SCL to Teensy SCL Pin 19
● ADC SDA to Teensy SDA Pin 18
● ECS Power to 12V tether

3.5 Other Connections
Teensy as fundamental control device connecting with all electronic devices are
connected with more than 10 wires. The detailed pin connections are shown below. And
other connections between transformers and Raspberry Pi is also shown in this section.

● Motor 3: Yellow Pin 3; Green Pin 4
● Motor 4: Green Pin 7; Yellow Pin 8
● Motor 1: Green Pin 9; Yellow PIN 10
● Motor 2: Yellow 29; Green 30
● Pin 37&38: 2 ESC White
● Pin 18&19: I2C on ADC (Eddy Current)
● Teensy powered from Pi USB port

25

https://www.lionprecision.com/products/eddy-current-sensors/

● 12V to 5V transformer connect teather and 5V breadboard
● Pi is powered from 5V breadboard

Conclusion
From the beginning of January to the end of December, this project enters stage 2 of its
process. Based on the initial design blueprint, a self-constructed prototype is built by the
project team. As a member of the control group, the main task was creating control
algorithms, simulating the result in MATLAB Simulink, and writing scripts implemented
in electronic devices. As shown in previous chapters. The simulation is pretty much
finished with possible further development. The control architecture was constructed
into 3 levels and interconnected by TCP/IP protocol and Serial communication. All
control scripts built so far are limited to open loop control.

Notice all materials covered above indicate the work student has been focused on,
which does not cover all work done by the whole team. For detailed information not
covered in this project, please refer to other students’ project reports.

26

Appendix A MATLAB Simulink Input and Output

27

28

Appendix B Hardware Pin Layout

29

30

