Exoplanet classification probabilities from initial detections in a direct imaging mission
 Dean Keithly ${ }^{1,2}$, Dmitry Savransky ${ }^{1,2}$
 ${ }^{1}$ Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca NY

Objectives

A directly imaged exoplanet has photometric and astrometric properties $\Delta \mathrm{mag}$ and s, which can belong to many different classifications of planets. 1. If we directly imaged our solar system, could our planets be confused for one another? (can Earth and Uranus have the same the $\Delta \mathrm{mag}$ and s)
2. What do the $\Delta m a g$ vs s distributions of exoplanets classified by the Kopparapu et al. 2018 sub-populations look like?
3. Show our method of calculating exoplanet classification probability and demonstrate it works for an Earth Analog

Solar System $\Delta m a g$ vs s, $\mathrm{i}=0,10$ AU

$\Delta \mathrm{mag}$ vs s curves of Solar System with phase curves from Mallama et al. 2018 Planet properties from JPL HORIZONS, $\sigma_{\Delta m a g}=1 \%$ and $\sigma_{s}=5$ mas at 10 pc

SAG13, Classification, \& Value

Underlying SAG13 distribution implemented in Keithly et al. (submitted) overlayed by Kopparapu et al. 2018 classification grid.
We can give different reward value for detected planets of different types. Many in the science community place sole value on Earth-Like detections.

Luminosity Scaled Semi-major Axis in AU, a/ \sqrt{L}
Takeaway: By breaking exoplanet classifications into bins, we can design a mission to maximize detections of specific planet sub-types (e.g. Earth-Like)

Luminosity Scaled Planet-Star Separation, (s / \sqrt{L}) in AU

Red dot is an Earth Analog with $\Delta m a g=23, s=0.7 \mathrm{AU}$ with $\sigma_{\Delta m a g}=1 \%$ and $\sigma_{s}=5$ mas (red error bars), for a reference star at 10 pc Takeaway: Calculating $P\left(i j, \Delta \operatorname{mag}=23, s=0.7 \mathrm{AU}, \sigma_{\Delta \operatorname{mag}}=\quad\right.$ Takeaway: Calculating $P_{n}\left(i j, \Delta \operatorname{mag}=23, s=0.7 A U, \sigma_{\Delta m a g}=1 \%, \sigma_{s}=\right.$ $1 \%, \sigma_{s}=5 \mathrm{mas}$) shows Hot Super Earths to be the most likely sub- 5 mas) shows Warm Super Earths to be the most likely sub-pop (purple) pop (purple) and Warm Super Earth's the $2^{\text {nd }}$ most likely sub-pop and Hot Super Earth's the $2^{\text {nd }}$ most likely sub-pop
Takeaway: We can calculate the probability a planet detected from a single image belongs to a specific sub-pop and use this for mission planning

[^0]

A B O R A T O R Y

[^0]: Acknowledgements Kopret, Savransky, Analytical Formulation of the Single-visit Completeness Joint Probability Density Méndez, et al., The Equillibrium Temperature of Planets in Elliptical Orbits, ApJ, 2017
 Kisithly, et al., Optimal Scheduling of Exooplanet Direct Imaging Single-Visit Observations of a Blind Search Sur ATIS, (submitted) Mallama, Hilton, Computing apparent planetary magnitudes for The Astronomical Almanac, Astronomy and Computing, 2018
 This work was funded by the WFIRST Science Investigation Team grant \# NNX15AB40G and the Carl Sagan Institute Travel Grant

