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1 Introduction

1.1 Motivation

The purpose of this report is to record the modeling and control system design for a single
motor remote control airplane, with the intended goal of the project being a robust and
fully autonomous system. Motivation for undertaking the project comes from a desire to
continue developing practical design skills, supplement course work on feedback and control
system design, and to establish a working proficiency with different industry design and
simulation tools.

A commercial autopilot is a necessary tool for industries planning on using Unmanned
Aerial Vehicles (UAVs) frequently. Any UAV is a highly complicated dynamical system that
takes either costly professional experience or extensive training to pilot effectively. The cost
associated with human operators may be avoided by developing a robust controller that can
regulate the UAV and ensure safety and the completion of the mission.

A commercial autopilot for small UAVs has a myriad of applications across several
industries.

• Agriculture : crop surveillance, assisted pollination

• Entertainment : multi-aircraft demonstrations, cinematography

• Land surveying and inspection

• Emergency response : search and rescue, aerial vantage point

• Security

Compared to multi-rotor platforms, fixed-wing UAVs are faster and more efficient at the
cost of maneuverability and vertical take off and landing. Thus, fixed-wing UAVs are suited
to missions that require increased range, operating time, or payload capacity. A fixed-wing
UAV was chosen in this project over a multi-rotor because of a lack of experience with
fixed-wing UAVs.

1.2 Aerodynamic Nomenclature

Roll (X) Pitch (Y) Yaw (Z)
Linear Velocity u v w

Angular Velocity p q r
Aerodynamic Force D Y L

Aerodynamic Moment l m n

2 System Model

2.1 Reference Frames and Attitude Representation

Analysis begins with defining the necessary reference frames. Each reference frames consist
of 3 unit-length orthogonal vectors and are illustrated in Figure 1.

• I = {N̂ , Ê, D̂} represents the Earth-fixed North-East-Down (NED) inertial frame. N̂
points towards magnetic north, D̂ points in the direction of gravity, and Ê points east,
parallel to the ground such that D̂ × N̂ = Ê.

3



Figure 1: The inertial, body-fixed, and wind-fixed reference frames [3]

• B = {X̂B, ŶB, ẐB} represents the body-fixed frame whose origin is located at the center
of mass of the aircraft. X̂B points out the nose, ŶB points towards the starboard wing,
and ẐB points out the belly of the aircraft.

• W = {X̂W , ŶW , ẐW } represents the wind-fixed frame whose origin is located at the
center of mass of the aircraft. X̂W points in the direction of the velocity vector of the
aircraft relative to the air, ẐW points in the plane of symmetry of the aircraft out the
belly, and ŶW points such that ẐW × X̂W = ŶW .

A 3-2-1 Euler angle sequence is used to represent the attitude of B with respect to I
(Figure 2 ). The transition is defined by

1. . . . a rotation about D̂ by ψ (yaw)

2. . . . a rotation about Ê’ by θ (pitch) where Ê has been rotated by ψ to produce Ê’

3. . . . and a rotation about N̂” by φ (roll) where N̂ has been rotated by ψ and θ
appropriately.
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Figure 2: A transformation from the inertial frame to the body-fixed frame [15].

To transition between W and B, two additional angles are defined (Figure 3 ) [8]. The
angle of attack α is the angle between X̂B and X̂W projected onto the vertical plane of sym-
metry of the aircraft while the sideslip angle β is the angle between X̂B and X̂W projected
onto the horizontal plane of symmetry. The aircraft points along X̂B, but moves along X̂W .
A set of Euler angles (µ, γ, χ) represents the attitude of W with respect to I.

Figure 3: A transformation between the wind frame and the body frame [9].
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2.2 Equations of Motion

The translational dynamics are given by a linear momentum balance in the body-fixed
frame [10]. The equation includes the velocity vector ~VB, the sum of the aerodynamic forces∑ ~FB,Aero, the mass m, a rotation matrix RI→B, the gravity vector in the inertial frame
~gI , and the skew-symmetric matrix ω̃B.

∂~VB
∂t

=

∑ ~FB,Aero
m

+RI→B · ~gI − ω̃B~VB

ω̃B =

 0 −ωZ ωY
ωZ 0 −ωX
−ωY ωX 0


The rotational dynamics are given by an angular momentum balance in the body-fixed

frame [10]. The equation includes the angular velocity vector ~ωB, the moment of inertia IB,

and the sum of the moments due to aerodynamics
∑ ~MB,Aero. The off-diagonal components

of IB are assumed to be ≈ 0 because of the symmetry of the aircraft.

∂~ωB
∂t

= I−1B (
∑

~MB,Aero − ω̃BIB~ωB)

IB =

 Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz


2.3 Aerodynamic Coefficients and Stability Derivatives

To solve for the complicated effects of aerodynamics, a popular approach in the literature
is to define a non-dimensional coefficient that relates the total force on an object to the
density of the fluid ρ, an appropriate reference area A, the velocity of the fluid V , and the
coefficient CAero itself [1].

FAero = C × 1

2
ρAV 2

The total moment due to aerodynamics can be expressed in similar terms with the inclusion
of an additional reference length l.

MAero = Cl × 1

2
ρAV 2

CAero can vary with the speed, viscosity, flow direction, and object size, among other pa-
rameters. To simplify the expression for CAero, two critical assumptions are made.

First, CAero is assumed to be a function of only the angle of attack α and control surface
deflection δ. Under this assumption, CAero can be expressed as a Taylor Series expansion to
help provide critical insight into the second assumption. In the second assumption, α and
δ are assumed to be small. Under this assumption, the higher order terms in CAero(α, δ)
become sufficiently small to ignore.

CAero ≈ CAero(α, δ)

CAero(α, δ) = f(c)+f ′(c)(x−c)+
f ′′(c)

2!
(x−c)2+

f ′′′(c)

3!
(x−c)3+ ... =

∞∑
k=0

1

k!
f (k)(x)(x−c)k
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CAero(α, δ) ≈ C0(δ) + Cαα

Since these assumptions are only valid near the operating point for which CAero(α, δ) was
calculated, stability derivatives are introduced to describe the change in CAero when there
is a change in a flight condition parameter such as airspeed or angular velocity. In this
system, the stability derivatives analyzed are those that relate the angular velocity to the
moment about each axis (denoted by Cab for axis a and angular rate b).∑ ~FB,Aero and

∑ ~MB,Aero incorporate the appropriate aerodynamic coefficients and sta-
bility derivatives. In the equations below, δe and δr represent the elevator and rudder de-
flection, A represents the wing planform, qdyn = 1

2ρV
2 represents the dynamic pressure, b

and c represent the span and chord of the wing, Clp and Clr represent the roll damping due
to roll and yaw rate, Cmq

represents the pitch damping due to pitch rate, and Cnp
and Cnr

represent the yaw damping due to roll and yaw rate.

Fx,Aero = FDrag + Fthrottle = CD(α, δe)A · qdyn + Fthrottle

Fy,Aero = FSide = CY (β, δr)A · qdyn
Fz,Aero = FLift = CL(α, δe)A · qdyn

Mx,Aero = (Cl(β, δr) +
b

2V
(Clpp+ Clrr))A · qdyn

My,Aero = (Cm(α, δe) +
c

2V
Cmq

q)A · qdyn

Mz,Aero = (Cn(β, δr) +
bp

2V
(Cnp

p+ Cnr
r))A · qdyn

2.4 Throttle Model

A simple model of the throttle control input provides thrust for the aircraft. The relationship
between percent throttle input and thrust is roughly linear.

Fthrottle ≈ Cthrottleδt, δt ∈ [0, 1]

2.5 Longitudinal and Lateral Dynamics

The aircraft’s 5 open-loop modes of motion can be classified as either longitudinal (3 Degrees
of Freedom, motion along X̂B and ẐB, rotation about ŶB) or lateral (3 Degrees of Freedom,
motion along ŶB, rotation about X̂B and ẐB) [12].

1. Short Period Mode (Longitudinal, Second Order) is characterized by highly damped
pitching oscillations about the center of mass. The behavior of this mode is driven
by the stiffness of the slope of Cm(α, δe) and the value of Cmq

. The time for the
amplitude to halve is on the order of 1-2 seconds.

2. Phugoid Mode (Longitudinal, Second Order) is slower decaying mode of the two lon-
gitudinal modes, characterized by a lightly damped exchange between gravitational
potential and kinetic energy at constant α. It usually takes 10 times as long as the
short period mode for the amplitude to decay by half. As a result, the phugoid mode
dominates the aircraft’s longitudinal trajectory.

7



3. Dutch Roll Mode (Lateral, Second Order) is a lightly damped exchange between roll
and yaw oscillations, offset in phase by 90◦. The time for the amplitude to halve is
on the order of the short period mode. The time constant of the Dutch roll mode is
similar to that of the short period mode.

4. Spiral Mode (Lateral, First Order) is characterized by a slow spiralling dive initiated
by a small yaw or heading disturbance. Although this mode is generally unstable, the
time for the amplitude to double is large enough to correct for the disturbance before
entering the dive.

5. Roll Damping Mode (Lateral, First Order) is the most heavily damped of the lateral
modes, characterized by a delay between when a roll is commanded and when the
desired roll rate is achieve. Since it is heavily damped, the time to half the amplitude
is small.

The 8 eigenvalues (6 oscillatory, 2 exponential) of the natural modes of motion define
the open-loop stability of the aircraft. Thus, the characteristics of the open-loop modes are
closely tied to how a controller is designed to achieve robust closed-loop stability.

2.6 Disturbance Model

A horizontal wind gust model was implemented to test the stability margins of the closed-
loop system. The gust is modeled as an additional source of wind in the N̂ × Ê plane with
constant heading. The magnitude of the gust is variable over time, as shown in Figure 27.

The velocity vector of the wind is rotated to the body-fixed frame and added to the
wind velocity vector due to the aircraft’s motion in the inertial frame. Thus, the aircraft
will experience a combination of a head-, tail-, and cross-wind depending on the orientation
of the aircraft and the gust’s heading.

3 Airframe Analysis and Design in Simulation

3.1 XFLR5

XFLR5, an airfoil analysis tool for low Reynolds number fluid flow, was used to estimate the
aerodynamic coefficients and stability derivatives [11]. The original airframe was designed
by the Flite Test community who offer free designs for simple foam board airplanes.
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Figure 4: The FT Simple Soarer from the Flite Test community. The version pictured is
an unpowered glider [13].

Figure 5: A CAD model of the aircraft

Using a CAD model as a guide (Figure 5 ), the camber and thickness of the airfoils
were approximated in XFLR5 (Figures 6-7 ). The aerodynamic coefficients of each air-
foil were determined separately using the Direct Airfoil Analysis tool for α ∈ [−5, 15] and
Re ∈ [3× 104, 3× 106].

An airframe mesh was defined using the Wing and Plane Design tool which closely re-
sembled the size, position, dihedreal, chord, span, mass, and orientation of the wing and
control surfaces in the CAD model (Figure 8 ). Additional point masses were included in
the aircraft to represent the battery, motor, servos, fuselage, and flight computer.
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Figure 6: CAD model of the main airfoil

Figure 7: Approximation of main airfoil in XFLR5

Figure 8: The wing, elevator, and fin models in XFLR5

Finally, an analysis was defined to solve for the total aerodynamic coefficients and sta-
bility derivatives at an operating point defined by Vair = 10m/s, ρ = 1.21m/kg3, ν =
1.5 × 10−5m2/s for a range of α ∈ [0◦, 10◦] , β ∈ [−5◦, 5◦] and for each combination of
control surface deflection [12]. Figure 9 shows the results of one such analysis.
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Figure 9: CL,CD,Cm, and CL/CD results from XFLR5

3.2 Airframe Design for Improved Longitudinal Stability

Improving open-loop stability reduces the effort the controller must exert to track a reference
command in the presence of disturbances.

Center of mass placement is crucial for longitudinal stability. There only exists a stable
equilibrium point αeq when the slope of Cm vs. α is negative (Figure 10 ). In this case,
when α increases due to disturbances, the pitching moment decreases and returns the plane
to αeq. Conversely, when α decreases, the pitching moment increases, also returning the
plane to αeq.
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Figure 10: A plot of a stable Cm vs. α. Note that Cm(αeq)=0.

Moving the center of mass forward increases the longitudinal stability of the aircraft (the
slope of Cm vs. α will steepen), but αeq will decrease. The center of mass cannot be too
far forward such that CL(αeq) ≤ 0, otherwise the plane will not produce positive lift at its
equilibrium point. If the center of mass is too far aft, the aircraft will be unstable (αeq will
be an unstable equilibrium point). A suitable position for the center of mass is 20-25% of
the chord aft of the leading edge of the main airfoil.

4 Simulink Simulations

4.1 3 DoF Plant Simulation and PID Controller Design

A set of 3 Degree of Freedom (DoF) simulations were developed to analyze the longitudi-
nal dynamics and validate the analysis methods before implementing a set of full 6 DoF
simulations. All simulations were developed in Simulink using the Aerospace Blockset and
Aerospace Toolbox to accelerate implementation [5] [6].

First, the longitudinal aerodynamic coefficients were interpolated using α and δe (Figure
11 ).
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Figure 11: Interpolating the longitudinal aerodynamic coefficients using look-up tables for
CL, CD, and Cm from XFLR5.

Next, the aerodynamic forces and moments were calculated using the dynamic pressure
at the current speed and altitude (Figure 12 ).

13



Figure 12: Calculating lift, drag, and pitching moment using the current dynamic pressure

To finish the 3 DoF model, the forces and moments were integrated in the wind axes
to determine position, orientation, and velocity for each time-step until the stop time was
reached (Figure 13 ). A non-linear second-order actuator block was used to model the
elevator dynamics. An open-loop simulation of this model is shown in Figure 14. No
disturbance model was implemented in the 3 DoF model.
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Figure 13: Integrating the equations of motion in the wind axes in the 3 DoF model

Figure 14: Open-Loop simulation of 3 DoF model.

The MATLAB Linearization Manager was used to find operating points for a glide
slope of -15◦ at zero throttle and for steady level flight (γ = 0◦) with non-zero throttle.
Each operating point is determined by specifying steady-state constraints for some states
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and solving for the unconstrained states. An operating point is used as a reference for
controllers to stabilize towards.

A Proportional-Integral-Derivative (PID) controller was implemented to stabilize the
aircraft to the operating point for steady flight [4]. It works by first calculating the error
between the current output and a desired reference.

e(t) = yref (t)− y(t)

The control input is determined by taking the weighted sum of the error, its time-integral,
and its time-derivative. Each weighting term Kp,Ki,Kd can be configured to achieve the
desired performance and stability of the closed-loop system.

u(t) = Kp ∗ e(t) +Ki

∫ t

0

e(τ)dτ +Kdė(t)

After experimenting with different PID controller designs, a cascading PID controller
that stabilizes the pitch and pitch rate controlled the aircraft with a desirable stability
margin. The goal pitch rate is decided by a P controller (Ki = 0,Kd = 0) whereas the goal
elevator deflection is decided by a PI controller (Kd = 0). Figure 15 shows the structure of
the controller in Simulink.

Figure 15: A cascading PID controller for pitch stabilization in the 3 DoF model

Figures 16-17 show the states of the aircraft tracking the operating point for steady level
flight.
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Figure 16: Using a PID controller to stabilize the 3 DoF model.

Figure 17: Control usage while using a PID controller in the 3 DoF model. Throttle input
was set to a constant.
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Figure 18: Frequency response for input disturbances in the 3 DoF model. Note that the
label says there is not closed-loop stability because there is a zero at the origin.

4.2 6 DoF Plant Simulation and Controller Design

The 6 DoF model was developed using the 3 DoF model as a reference. The lateral aero-
dynamic coefficients were interpolated separately using sideslip β and rudder deflection δr.
Again, the aerodynamic forces and moments were calculated using the dynamic pressure at
the current speed and altitude (Figure 19 ).
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Figure 19: Calculating the forces and moments in the 6 DoF model

The forces and moments were integrated in the wind axes as before, but the total air-
speed, α, and β were adjusted to account for the magnitude and direction of wind gust
disturbances (Figure 20 ).
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Figure 20: Integrating the equations of motion and adjusting α, β and total airspeed in the
6 DoF model.

The operating points from the 3 DoF model were also valid for the 6 DoF model because
they did not incorporate rolling or yawing dynamics. An open-loop simulation of this model
is shown in Figures 21-22.
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Figure 21: 6 DoF open-loop simulation of the longitudinal states.

Figure 22: Trajectory and lateral Euler angles during a 6 DoF open-loop simulation. δr =
0.2◦ to show roll and yaw dynamics.
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The 6 DoF model was also stabilized with a set of cascading PID controllers. Since
the roll and yaw dynamics are coupled, the lateral states can be stabilized using a single
cascading controller. The goal roll angle and rudder deflection are determined by separate P
controllers. The pitch controller was similar to the 3 DoF controller and works independently
of the lateral PID controller. The structure of this controller is shown in Figure 23.

Figure 23: A set of cascading PID controllers for pitch and heading stabilization.
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Figures 24-26 show the states of the aircraft tracking the operating point for steady level
flight and a 60◦ heading using the PID controller over 20s. Figures 27-29 show the same
simulation with a 4m/s(≈ 9mph) gust disturbance blowing to the West starting at t = 5s
and lasting for 5s.

Figure 24: 6 DoF closed-loop simulation of the longitudinal states using a PID controller.

Figure 25: Trajectory of the 6 DoF model and lateral Euler angles stabilized using a PID
controller.
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Figure 26: Control usage during the 6 DoF closed-loop simulation using a PID controller.

Figure 27: 6 DoF closed-loop simulation of the longitudinal states using a PID controller in
the presence of disturbances.
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Figure 28: Trajectory of the 6 DoF model and lateral Euler angles stabilized using a PID
controller in the presence of disturbances.

Figure 29: Control usage during the 6 DoF closed-loop simulation using a PID controller in
the presence of disturbances.
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Although this controller was simple to implement, it was difficult to tune as there are 3
parameters for each controller (12 in all). Additionally, there is no guarantee of optimality.
These shortcomings of the PID controller were the motivation behind developing a Linear
Quadratic Regulator (LQR) to stabilize the aircraft.

The LQR control law...
ũ = −Kx̃

minimizes the quadratic cost function...

J =

∫ ∞
0

x̃TQx̃ + ũTRũ dτ

constrained by the linearized dynamics of the system represented by...

˙̃x = Ax̃ +Bũ

ỹ = Cx̃ +Dũ

where x̃ = x − x∗ : x̃ ∈ Rn represents the deviation of the state x from its operating
point x∗, ũ = u− u∗ : ũ ∈ Rm represents the deviation of the control u from its operating
point u∗, and ỹ = y− y∗ represents the deviation of the output y from its operating point
y∗ [2] [7].

The optimal gain matrix K is found by solving for the solution S of the associated
Riccati equation...

0 = ATS + SA− SBR−1BTS +Q

K = R−1BTS

Q ∈ Rn×n is a diagonal weighting matrix where Q(i,i) relates the cost J to the ith state’s
deviation from its operating point. R ∈ Rm×m is a similar weighting matrix relating the
cost J to control usage.

Figures 30-35 show the same 6 DoF simulations as in Figures 24-29, except an LQR is
used to stabilize the states.
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Figure 30: 6 DoF closed-loop simulation of the longitudinal states using an LQR controller.

Figure 31: Trajectory of the 6 DoF model and lateral Euler angles stabilized using an LQR
controller.
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Figure 32: Control usage during the 6 DoF closed-loop simulation using an LQR controller.

Figure 33: 6 DoF closed-loop simulation of the longitudinal states using an LQR controller
in the presence of disturbances.
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Figure 34: Trajectory of the 6 DoF model and lateral Euler angles stabilized using an LQR
controller in the presence of disturbances.

Figure 35: Control usage during the 6 DoF closed-loop simulation using an LQR controller
in the presence of disturbances.
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5 Validation of Simulated Results

The results of these simulations are consistent with expectations and don’t violate assump-
tions in the analysis. For example...

• Angle of attack stays small (<10deg)

• model stays near its operating point (air density and viscosity are constant, airspeed
stays close to its operating point of 10 m/s)

The intended actuator for a physical implementation of this model is a hobby servo
connected to the control surface with a simple linkage. Data sheets for servo motors are
available and were used to model the saturation limits of the actuator [14]. The modeled
actuators have simulated saturation limits for the amount of control surface deflection and
the rate of control surface deflection.

In addition, XFLR5 solves for the frequency of the phugoid mode which can be compared
to the frequency of the phugoid in the open loop trajectory of the Simulink model [12].
Figure 36 shows the open-loop phugoid response of the 6 DoF model for 60 seconds.

Figure 36: Phugoid response of the pitch over 60s

The period of the phugoid oscillations can be extracted from the response.
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TSimulink =
51.2s− 2.31s

5
= 9.78s

fXFLR5 = 0.082Hz, TXFLR5 = 12.1s

A 2.32s difference between the simulated phugoid periods indicate that each analysis agrees
with each other.

6 Conclusion and Further Investigations

UAVs will prove to be an invaluable resource in the coming decades. This project has
encompassed the basic modeling, simulation, and design principles necessary for working
with complex industry platforms. Also, each simulation is generic enough to function with
several designs of aircraft, provided that the geometry and aerodynamic coefficients are
available. Careful planning and design went into how the simulations would fit together to
produce a design tool with fast turnover.

This undertaking has produced satisfactory results as a design project, but implementing
a physical system would incur its own set of challenges. For example, some issues are foreseen
with ...

• Estimator dynamics (sensor noise, gimbal lock from Euler angles, prediction errors,
etc.)

• Time delay from discretization and loop-time

• Violating the small α assumption

• Change in operating conditions (speed, temperature, air density, etc.)

• Non-stiff airframe/control linkages

• Non-symmetric airframe construction

• Air reaction moment from spinning a propeller will make banking one direction far
easier than banking the other

Other interesting features to implement include ...

• Aileron/flaps model

• Estimator/measurement model

• Altitude/climb rate tracking

• Position tracking (circling)

• Takeoff/landing procedure

Although a physical system was beyond the scope of a semester project, there will certainly
be further research and implementation in this field. In summary, an appreciable amount
of experience has been developed concerning the analysis of aerospace dynamics and the
design of heavier-than-air flying systems.
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