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1 Abstract

Satellite state estimation is critical to the success of any space mission. In an imaging mission, a
concern is the calibration of the onboard camera in order to take the clearest possible images. In
order to solve these problems simultaneously and autonomously, we augment our spacecraft state
to include information about both the dynamics of the satellite and the parameters of its camera.
Through the use of an Unscented Kalman Filter (UKF), the images taken by the camera, the GPS,
and attitude sensor measurements can be synthesized with the predicted dynamics of all states
to produce estimates of both the dynamics and the current camera parameters. Two important
aspects of this system are the orbit propagation model used to define the truth state and predict
the satellite’s motion and the measurement function used to predict the image observations from
state data. We take two different approaches to creating a measurement function: a least squares
approach and a neural network. We test the performance of each measurement function on a test set
of data. We found that though both models gave nearly zero mean predictions, excluding specific
data from the training data led to biased errors. Therefore, a more complicated model would likely
be needed for beneficial UKF performance.
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6 Introduction

CubeSats and CubeSat constellations have become increasingly popular in the aerospace industry.
In order to model the satellite’s operations, its dynamic state is defined as a vector with its position,
velocity, orientation, and angular rate. Similarly, for the satellite’s camera, we designate a set of
4 parameters that define the camera’s state. For effective operation, a satellite needs a strong
estimate of both the dynamic and camera states. A filter can be used to synthesize known satellite
dynamics with measurements made by sensors in order to generate estimates of all satellite states.
Generally, this is done only for the dynamics states with measurements from GPS and attitude
sensors. By augmenting the dynamics states with the camera states, the satellite could use the
images taken of the ground in the measurement function in order to more accurately estimate both
the camera parameters as well as the other satellite states like position and attitude.

We have generated two elements of this filter that are necessary for its operation and develop-
ment. The first is the dynamics model that predicts the position and attitude of a low earth orbit
(LEO) CubeSat. Variations of this model are used to define the true trajectory of the satellite as
well as the time update prediction step in the filter itself. The second is a measurement model for
the imaging observations that predicts observations of the camera given different position, attitude,
and camera parameter states.

7 Literature Review

In the realm of nonlinear estimation, there are three major types of filters used: Extended Kalman
Filters (EKF), Unscented Kalman Filters (UKF), and Particle Filters (PF). EKFs maintain simple
update rules that make use of the original Kalman Filter (KF) equations. However, they rely on
Jacobians of the dynamics and measurement which can lead to significant errors if the function
is highly nonlinear [1]. In order to avoid errors that come from linearizing a function, Julier and
Uhlmann developed the UKF which approximates the probability distribution at each time with
a small set of sigma points [1]. The distribution of measurements and the distribution of states
at the next time step are found by applying the nonlinear measurement and dynamics functions
respectively to the sigma points. The UKF maintains similar computational complexity as the EKF
while the filter can also be extended to include higher probability moments like skew and kurtosis
[2]. PFs are a Monte-carlo method that approximates the state distribution by a random set of
particles [3]. The computational complexity of PFs increases with the size of the particle set, so
there is a trade off between computational time and accuracy of the distribution approximation.

There has been work done in the intersection of dynamic filtering and feature extraction by
Monica and Nigel [4] and by Velastin and Xu [5]. The former work makes use of a background
subtraction algorithm in combination with a KF to track a moving object in a sequence of video
frames. The latter work uses an EKF in combination with a Hough transform for feature extraction
to create a more robust feature extraction algorithm.
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8 Methodology

8.1 Unscented Kalman Filter (UKF)

Due to the fact that the UKF can be augmented to account for higher order probability moments,
the UKF was chosen to be explored for this system.

The UKF itself uses the nonlinear measurement and propagation functions of the system in
order to develop its estimate. Here, our state consisted of both dynamic states (position, velocity,
attitude) as well as camera states. In order to use the UKF, measurement functions for both the
dynamic states and the camera states had to be generated to convert the current state to the
expected measurement. One assumption of the UKF is that the measurement function has a Gaus-
sian error distribution with zero mean error, which is an important constraint for our measurement
function. For the dynamic states, the position, velocity and attitude were directly measured. For
the imaging states, the measurements were feature-sets extracted from images of the ground. The
feature-sets were generated using a scale invariant feature transform algorithm.

8.2 Scale Invariant Feature Transform (SIFT)

The SIFT algorithm extracts features, known as keypoints, from an image. These features are
located at local maxima or minima of the image. A keypoint is uniquely identified by a descriptor,
which is a 128 dimensional unit norm vector that contains information about the gradient around
the keypoint. Each keypoint also has a scale, orientation, and sub-pixel position. As the name of
SIFT suggests, the keypoints it finds are independent of translation, rotation, and scale of the image.
The distance between two keypoints is equal to the Euclidean distance between their descriptors,
and the dot product between two descriptors measures their similarity. Therefore, we can test to
see if the same keypoint exists in multiple images by running SIFT on both images and examining
the similarity between the two sets of keypoints to look for matches. This functionality allows for
the development of a measurement model that relates features in different distorted version of the
same original image.

8.3 Measurement Function

In order to predict the features from the satellite’s state, we first had to isolate a single, primary
feature, from all available features. The process for doing so is elaborated in section 9.2.1. Using this
one to one relation between states and measurements, a general function was created to intelligently
convert any state to a predicted measurement. Given that this function was highly nonlinear and
difficult to define, two general methods were pursued to generate this function. Both methods used
a training set to tune the function itself. These approaches were batch least squares and a neural
network.

8.3.1 Neural Network

Neural networks are a way of finding a functional mapping between an input set X and an output
set Y through the use of a large number of learnable parameters. Neural networks contain several
different layers each with some number of neurons. In a fully connected layer, the value at each
neuron is a linear function of the values at the neurons of the previous layer. This relationship is
given in equation 1
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Figure 1: A diagram of the spacecraft Body frame (red), global frame (blue), and orbit local frame
(green) for satellite dynamics [7]

Yl,i “
ÿ

j

WijYl´1,j `Bij (1)

where Yl,i is neuron value i in layer l, Wij is the weight from Yl´1,j to Yl,i and Bij is the bias term
between these two neurons.

Training the neural network consists of two steps: forward propagation and backward propaga-
tion. In forward propagation, the output of the neural network is computed for some input and the
current set of weights and biases. By comparing the output of the network with the true output,
the network calculates a loss function. Then, in backward propagation, the network computes the
gradient of the loss function with respect to all the weights and bias terms and uses that result to
update the weights and biases as to minimize the loss function.

8.4 Satellite Orbit Dynamics

The filtering system requires a model of the spacecraft’s dynamics for two reasons. The first is to
use as the dynamics update in the time update step of the filter itself. The second is to use as the
truth model in order to simulate the filter.

The simulated spacecraft travels in LEO with a low inclination, a similar orbit to that of the
International Space Station. The dynamics of a rotating satellite in orbit follow equations 2 and 3
with geometry shown in figure 1

I
d2

dt2
rG{O `

µ

||rG{O||3
rG{O “ uG ` fG (2)

G d

dt
pIG ¨ IωBq “ MG ` τG (3)
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where in equation 2, rG{O is the vector pointing from the center of the earth to the satellite, µ is the
gravitational constant of earth, uG is the force provided by the satellite’s attitude determination
and control system (ADCS) and fG is the external force on the satellite. In equation 3, IG is the
moment of inertia matrix of the spacecraft about its center of mass, IωB is the angular velocity
of the spacecraft, MG is the torque provided by the spacecraft ADCS and τG is the disturbance
torques.

The most significant disturbance sources for a LEO satellite are Earth’s non-spherical gravi-
tational perturbations, atmospheric drag, and point-mass gravity from the moon and sun. Non-
spherical gravity from earth is described by the potential in equation 4

Upr, θ, φq “
8
ÿ

l“2

l
ÿ

m“0

ˆ

RC

r

˙l

Pml pcosφq ˆ pCml cos pmθq ` Sml sin pmθqq (4)

where RC is the radius of earth, r, θ, and φ are the range, azimuth, and zenith of the spacecraft,
Pml are the associated Legendre polynomials and Cml and Sml are coefficients of Earth’s potential
model.

The only significant torque disturbance was the 1st order torque of the gravity gradient from
Earth described by equation 5.

M
p1q
G “ µ

3

||rG{O||
en ˆ IG ¨ en (5)

9 Experimental Details

9.1 Dynamics Model Implementation

The dynamics model propagates an initial satellite state of the form
“

rG{O
IvG{O

IωB BqA‰T

where IvG{O is the velocity of the spacecraft in the inertial frame and BqA is the quaternion between
the B and A coordinate frames. B is the body frame that travels with the spacecraft. A is the
frame fixed at the spacecraft’s origin with et pointing tangent to the orbit, er pointing anti-parallel
to the radius vector, and ez aligned with to the orbit’s momentum vector. The initial time for
propagation is given as a Julian date in order to specify the positions of the Moon and Sun relative
to the Earth. A time vector for the range of time simulated is also specified.

These arguments are passed to the ode113 [9] propagator in MATLAB which propagates the
state over the specified time span using the natural dynamics and including all relevant perturba-
tions.

9.1.1 Earth Gravity

The first perturbation calculated is Earth’s non-spherical gravity. The general potential shown in
equation 4 was approximated with coefficients up to 8th order [10]. The gravitational acceleration
is the negative gradient of the potential. Due to the number of terms in the calculation, we chose to
take advantage of MATLAB’s symbolic toolbox. By formulating the potential in symbolic form and
converting to Cartesian coordinates, the gradient could be taken symbolically and converted to a
MATLAB function. This took a significant amount of time for MATLAB to execute but produced
a function that could be executed quickly. The position also had to be converted to Earth centered
Earth fixed (ECEF) from Earth Centered Inertial (ECI) when passed into this function because
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the gravitational potential is inherent to the Earth’s shape and therefore only applies in the Earth
fixed frame. This conversion is shown in equation 6

rECEF “ RzpθGMST qr
ECI (6)

where Rz represents the right handed rotation matrix about the z axis and θGMST is the angle
between Greenwich Mean Meridian and the vernal equinox. The gravitational acceleration is then
converted back to ECI for state propagation.

9.1.2 Atmospheric Drag

The next significant perturbation implemented in the model was drag. The drag force in equation
7 is dependent on the atmospheric density ρ.

D “
1

2
CDρV

2S (7)

where CD is the coefficient of drag, V is the magnitude of the spacecraft velocity with respect to
the atmosphere, and S is the area of the spacecraft. The atmosphere itself behaves unpredictably
but can be approximated with equations 8 [11].

T “ 900` 2.5ˆ pF10.7 ´ 70q ` 1.5Ap

m “ 27´ 0.012ˆ ph´ 200q

H “ T {m

ρ “ 6ˆ 10´10 ˆ e´ph´175q{H

(8)

where h is the altitude of the spacecraft in kilometers, F10.7 and Ap [12] are time varying properties
of the atmosphere, and ρ is atmospheric density in kilogram per kilometer cubed. These properties
are unknown ahead of time, making them a source of process noise for the model itself.

9.1.3 Solar and Lunar Gravity

The gravitational acceleration of the Sun and Moon were implemented using a lookup table with
information pulled from the NASA Horizons website [15] for accurate positional data of both
celestial bodies. The positions were chosen using a linear interpolation function to match the
position to the current Julian date. This process was advantageous because it didn’t require
propagating extra bodies and was more accurate than any real time propagation.

9.1.4 Attitude Update Step

The derivative of the rotation rate comes from combining Euler’s equation with the torque MG

from equation 5 to create equation 9

„B d

dt
IωB “ IG´1

`

MG ´
IωB ˆ IGIωB˘



B
(9)

The update to the quaternion is slightly more complicated. It first requires finding the rotation
rate of B in A as in equation 10 [8].
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“AωB‰
B “

“IωB‰
B ´

“IωA‰
B

“AωB‰
B “

“IωB‰
B ´

BCA

»

—

–

0
0

||vˆr||
||r||2

fi

ffi

fl

A

(10)

Using equation 10, B 9qA can be calculated as in equation 11.

B 9qA
“

1

2

»

—

—

–

q4 ´q3 q2
q3 q4 ´q1
´q2 q1 q4
´q1 ´q2 ´q3

fi

ffi

ffi

fl

“AωB‰
B (11)

By combining the results of equations 10 and 11 with the sum of all disturbance accelerations,
the full derivative state vector could be calculated for every step. This allowed the state to be
propagated properly through time.

9.1.5 Measurements

For this satellite, we used the measurements from a GPS and star tracker with sensor noise distri-
butions modeled by the Sentinel M-Code GPS Receiver [13] and the NST Nano Star Tracker [14].
The GPS measured position and velocity with a Gaussian noise distribution equal in all directions.
The noise distributions of the star tracker are two Gaussians. One is the error in the accuracy of
the angle about the boresight axis, θ̃boresight. The other is the error angle normal to the boresight
axis, θ̃normal. The rotation from the actual attitude to the measured attitude was a combination of
two rotations. The first was a rotation about the boresight axis, the z axis for this spacecraft, by
the θ̃boresight. The second rotation was about a random vector, n, in the b1 ´ b2 plane by θ̃normal.
These successive rotations are represented by the DCM in equation 12.

BMCB “ Rn̂pθ̃normalqRzpθ̃boresightq (12)

where BM is the measured body frame.

9.2 Imaging Measurement Function

9.2.1 Process of Generating Data

The process of generating the image data used for creating the measurement model can be separated
into several major steps outlined below.

First, a trajectory was generated with a semimajor axis of 400 km, 20 degree inclination, and
an eccentricity of 0.01. Positions were sampled at a rate of 100 per orbit over 3 orbits. After
converting these positions to Latitude-Longitude-Altitude, we queried the USGS EarthExplorer
API for image data [16]. Specifically, we used Landsat 8 Level 1 data for a rectangular region of
side length 0.2 degrees Latitude and 0.2 degrees Longitude centered around each of the trajectory
points. One important assumption that was made in order to use the positions to query data was
that the angle of incidence between the vector from the camera to the Earth’s surface has a zero
angle of incidence.
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Once we established a library of raw images, we applied a sequence of transformations and
distortions to each image. First, we selected a 300 by 300 pixel region in the image centered pixel
location pXp, Ypq with the equation for Xp given by equation 13

Xp “ Sx
θ ´Bθ2
Bθ1 ´Bθ2

(13)

where Sx is the pixel width of the image, θ is the longitude coordinate of the spacecraft position,
Bθ1 is the left longitude bound on the image, and Bθ2 is the right longitude bound on the image.
An equivalent calculation is used to find Yp using the latitude coordinate of the spacecraft position
and the latitude image bounds.

We went with this approach as a first pass to get data, but in the future using a tool like USGS
ISIS [17] would enable a higher fidelity transformation between the 3D space and the image plane.
Once the viewpoints are selected, we remap them to a 200 by 200 pixel region using homogeneous
coordinates. Then, we apply a Gaussian filter [18] to the image with a standard deviation that is a
function of the camera focal length f [19]. This process results in a blurred image. Then, we apply
a radial camera distortion model to the blurred image based on the three camera parameters, C1,
C2, and C3 [20]. Finally, we execute SIFT on this distorted image and record the descriptors of all
the keypoints and the position, orientation, and scale for each keypoint.

This process was repeated for each image from the original image library with a set of 1000
different sets of focal length and camera parameters. The focal lengths were chosen from a uniform
distribution between 2 and 6 mm, and the camera parameters were chosen sequentially to enforce
|C3| ą |C2| ą |C1|. Specifically, C3 was uniformly distributed between -20 and 20, C2 was uniformly
distributed between ´0.5C3 and 0.5C3, and C1 was uniformly distributed between ´0.5C2 and
0.5C2.

Once we had keypoints information for each distortion of the images associated with each
position, we filtered the keypoints so that each position had exactly one keypoint associated with
it. Without this filtering, the measurement function would need to output a variable number
of keypoints for each distortion and position combination, which would add an extra layer of
complexity. We chose one keypoint to start with since it is both a simple first attempt and accounts
for the fact that some images only had one keypoint. For each of the positions, we chose the
keypoint that occurred in the largest number different distortions for that position. To identify
which keypoints were the same among a distorted group of images based on a single position, we
used a hierarchical clustering algorithm on the keypoint descriptors using the Euclidean distance
between descriptors as the distance function [21]. Once the keypoint data is clustered, we chose the
keypoint descriptors in the largest cluster to represent that image. If multiple keypoint descriptors
from the same image and distortion were in this cluster, all but one were removed. From this
cluster, we add the spacecraft position, three radial camera distortion parameters, and the camera
focal length associated with the keypoint descriptors in the cluster to the set of inputs X . The 128
element keypoint descriptor and the keypoint X and Y position, orientation, and scale associated
with the keypoint descriptors were added to the set of outputs Y. Therefore, the set of inputs to our
measurement model, X , has a dimensionality of 7 while the set of outputs from our measurement
model, Y, has a dimensionality of 132.

13



9.2.2 Linear Imaging Measurement Model

Given the set of image states, X , and the corresponding set of the most observed features in the
imaging state, Y, one of the simplest means of generating a predictor to translate between a specific
input and its corresponding output was to generate a linear fit function. The word linear is used
lightly here because although the coefficients of the relationship between input and output are
linear, the states were initially augmented into polynomial functions who’s coefficients were learned
through a least squares fit. The process of transforming the state and finding the least squares
parameters is shown in equation 14

X ˚ “ fpX q

Θ “ YX ˚T
`

X ˚X ˚T
˘´1 (14)

where f is a transformation function, Θ is the matrix of unknown parameters such that ||ΘX ˚´Y||2
is minimized.

The figure of merit for measuring performance of different transformation functions, f , was the
means and standard deviations of the error between the predicted and true states. In the ideal
case, the mean is zero and the standard deviation is minimized. A non-zero mean represents some
bias in the measurements, a factor that would negatively effect the performance of the filter. A
large standard deviation will result in poorer filter performance but could still be handled by the
filter through the filter’s measurement covariance.

The functions chosen and compared were order 1-5 polynomials of the original state. Each term
was scaled by a prespecified maximum value of every element of the state so that the condition
number of X ˚X ˚T could be minimized for as high an order as possible. However, after order 5, the
condition number became too large for accurate results.

9.2.3 Neural Network Measurement Model

The neural network consisted of an input layer, a fully connected layer with 4000 neurons, a full
connected layer with 132 neurons, and a regression output layer. Since the input feature set only has
a size of 7, there is no need to use any kind of convolution or pooling to reduce the dimensionality
of the input. The final fully connected layer size is constrained by the fact that the output has a
dimensionality of 132, so the only decisions that can be made on the design of this network is the
size of the first fully connected layer and the possibility for adding more fully connected layers.

Since the inputs and outputs had very different scales, the inputs were shifted and scaled such
that each input had a mean of 0 and a standard deviation of 1. For the outputs, the position
outputs were the pixel location in the 200 by 200 pixel image, and the orientation was an angle
between ´π to π radians. Therefore, the keypoint positions were scaled to be between 0 and 1 by
dividing by 200 and the orientation was scaled to be between 0 and 1 by adding π and dividing by
2π. The other elements of the output were unchanged.

The order in which the training set was given to the neural network was randomized. Through
experimentation with different neural net structures and randomization of the inputs, we found
that our chosen structure was able to provide estimates of the test set that were fairly unbiased.
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Figure 2: Normalized Quaternion difference from ideal value 1 shows precision variation 1 order of
magnitude above floating point precision, verifying simulation accuracy. The relative and absolute
integration tolerances are 10´12,

9.3 Unscented Kalman Filter (UKF)

Here, the UKF total state vector was a combination of the dynamics states and the camera param-

eter states with the full form
“

rG{O
IvG{O

IωB BqA c1 c2 c3 f
‰T

.

10 Results

10.1 Dynamics Model

In order to validate the tolerance and elements of the attitude model, we check the magnitude of
the quaternion in figure 2. Theoretically, the quaternion magnitude should always be 1, so the
difference plotted in 2 gives the precision of the updates. Since the variation is on the order of
10´15, only 2 orders of magnitude above float precision, we are confident in the step size accuracy
of the results.

With no disturbances, we would expect the satellite’s position to follow a perfect ellipse. In
this case, the semimajor axis, eccentricity and inclination would all be constant. However, with the
perturbations of this model, we would expect the orbital elements to vary with time.

15



Figure 3: The variation of the orbital elements Semi-major axis, Eccentricity, and Inclination over
time due to perturbations.

Figure 3 shows the semi-major axis, eccentricity, and inclination of the satellite over one full
orbit. Each of these orbital elements change in time due to the perturbing forces of the moon, sun,
atmospheric drag and non-spherical earth.

The satellite’s energy is not conserved primarily due to the influence of drag. Figure 4 shows the
energy of the satellite as a function of time through one orbit. As expected, the energy decreases
throughout the orbit. The small oscillations within the total energy decrease are caused by the
decrease in atmospheric density as the the semi-major axis oscillates in the orbit.

Figure 4: Satellite’s total energy decreases in the presence of atmospheric drag, the moon, and
non-spherical gravity.
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The effects of the gravity gradient are displayed in figure 5 where the angle between the satellite
boresight and the radius vector is plotted over an orbit for three cases. In all three cases, the
satellite’s initial state is pointing along its boresight axis antiparrallel to the radius vector. In one
case, gravity gradient is turned off so this angle linearly increases to π an then back to 0 over
the course of the orbit. With gravity gradient turned on, the angle is shown for both a minor
axis spinner and major axis spinner. As expected, the minor axis spinner is torqued toward its
radius vector strong enough that it begins to oscillate about that vector. The major axis spinner
is unstable in this configuration and points the boresight away from radius vector even faster than
if there was no gravity gradient.

Figure 5: The angle the satellite boresight makes with its radius vector varies over the course of
an orbit. The variation of angle with time is different for the minor axis rotator and major axis
rotator as well as the case without a gravity gradient torque.

10.2 Comparison of Measurement Functions

The models were evaluated on two different training and test set combinations. The first set trained
on images from all satellite locations and a subset of distortions and tested on all satellite location
but different distortions. This test was an evaluation of the measurement model’s ability to predict
the keypoints of new distortions. The second combination was trained on all but one of the satellite
locations and a subset of distortions with testing exclusively on the satellite location excluded during
training with a mix of new and old distortions. This test evaluated the measurement model’s ability
to predict keypoints of new satellite locations with source images that the model has not seen before.

The first metric used to evaluate our models was the normalized inner product between the
true keypoint descriptor and the predicted keypoint descriptor. A plot of this metric for both
measurement models is given in figure 6 for the new distortions case. The case with a new satellite
location is given in figure 7. If the keypoint descriptors are the same, then we would expect
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Figure 6: New test distortion mean and standard deviation of the dot product between the
predicted keypoint descriptor and the true keypoint descriptor for both the linear model and neural
network. The linear model is shown as a solid line as a function of the order of terms used and the
neural net is shown as a dashed line.

the dot product between the two keypoint descriptors to be close to 1. As a result, this metric
measures the similarity between two descriptors. Both the linear model and neural network had
approximately the same performance in this metric. Higher orders of the linear model had slightly
higher, and therefore better, mean. However, higher orders of the linear model also had larger
standard deviation for this metric. The new satellite location set performed slightly better than
the new distortion set with a significantly smaller standard deviation. This trend suggests that the
spacecraft position heavily influences the training of the keypoint descriptor prediction. However,
this method only tested on a single unknown satellite location. After running a similar procedure
on more satellite locations, it became clear that the mean was heavily dependent on which satellite
location was chosen to test on, suggesting that any accuracy was not repeatable.

Figure 7: New test satellite position mean and standard deviation of the dot product between
the predicted keypoint descriptor and the true keypoint descriptor for both the linear model and
neural network. The linear model is shown as a solid line as a function of the order of terms used
and the neural net is shown as a dashed line.

The second set of metrics used to evaluate our models was the mean and standard deviation of
the error in keypoint position, scale, and orientation. Since the UKF relies on having measurement
noise with zero mean error, we want the mean error for these metrics to be close to zero. A plot of
these metrics for both measurement models for the new distortion case is given in figure 8 and for
the new satellite position case in figure 9. Focusing first on the new distortion set. In the X and Y
keypoint position, the mean position errors for the linear model are independent of the model order,
and the standard deviation of the position errors decreases with model error. The neural network
performance is similar to the linear model in the mean position error but is worse than the linear
model in standard deviation. In both keypoint scale and orientation, the neural network achieves
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Figure 8: New test distortion mean and standard deviation of the error keypoint position, scale,
and orientation for both the linear model and neural network. The linear model is shown as a solid
line as a function of the order of terms used and the neural net is shown as a dashed line. The
position error is given in pixels and the orientation error is in radians.

better performance in the mean error but worse performance in standard deviation as compared
with the linear model. Additionally, increasing the order of the linear model also improves the
keypoint scale and orientation mean error and error standard deviation. These trends suggest that
using a higher order linear model leads to overall better accuracy, and the choice between the neural
network and linear model is a trade off between better mean error and better standard deviation
of error.

The new satellite location set tells a very different story. Since this image was not seen during
training, the expected position was very far away from the truth. This difference caused a mean
error in X of between 20 and 30 pixels for the linear model and 15 pixels for the neural network.
Both approaches perform better in Y but still show significantly more error than with the new
distortion set. Errors in scale and orientation are over an order of magnitude worse in mean but
have smaller standard deviations than the new distortion set. This large difference in results when
excluding a satellite location suggests that the measurement function can become highly biased.
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Figure 9: New test satellite position mean and standard deviation of the error keypoint position,
scale, and orientation for both the linear model and neural network. The linear model is shown as
a solid line as a function of the order of terms used and the neural net is shown as a dashed line.
The position error is given in pixels and the orientation error is in radians.

11 Conclusions and Recommendations

We evaluated two methods of predicting SIFT keypoints from satellite dynamics and camera states.
While we showed that these methods had close to zero mean error when they had been trained
with all available original images, the measurement function had highly biased errors when the
testing set included satellite positions that were not in the training set. There were also a variety
of decisions made here whose influences were not explored with the final results, one of which is the
decision to only select one keypoint for each satellite position. A true exploration into prediction
of sets with variable number and variable contents would require the use of finite set statistics.

Overall, these results imply that the data set we are approximating is complex and difficult to
capture. It likely requires a combination of a more complicated measurement function and a larger
sample of data to properly represent this data mapping as a function.

12 Individual Contributions

12.1 Nathaniel Kinzly

1. Image data generation (Downloading images/distorting images/getting keypoints)
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2. Neural network measurement model

12.2 Samuel Feibel

1. Dynamics Model

2. Least-Squares Measurement Model

3. Manipulating Keypoint Output from Image Generation
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