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In the search for exoplanets, many methods have proven fruitful. All involve

careful observation of the host star and complex post-processing algorithms to

identify if any planets are part of the system. One methodology that has shown

promise, yet currently yields relatively few results, is direct imaging.

The first part of this dissertation showcases the development of a novel tech-

nique to identify planets in post-processing of direct imaging data. It leverages

the common spatial pattern filtering algorithm in combination with a forward

modeled matched filter. I compare the algorithm to other leading techniques.

The second part develops the tools and software for generalizing this ap-

proach to many different datasets. This allows for systematic, large-scale sta-

tistical analyses of the CSP method applied to a variety of stars and injected

data. I present results for multiple sets of observations and show how the new

technique can be expected to perform.

Finally other avenues of image processing are explored both for use in a new

type of filter and for the development of advanced self-assembling telescopes in

space.
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CHAPTER 1

INTRODUCTION

1.1 Dissertation Overview

While this work exists to support several disparate projects, all of it is united

by a common theme: using modern mathematical and computational tools to

assist image processing for space exploration. The overarching problem that

links each project is the search for the faintest, most elusive signals in imag-

ing. To take pictures of planets orbiting other stars, we need the best technol-

ogy at every level of the endeavor: designing instrumentation, collecting data,

and processing the results. At each stage, we need to leverage cutting edge

methodology. This is precisely what has been done for the work covered in this

dissertation.

The remainder of Chapter 1 discusses some of the necessary background

information for the work in the succeeding chapters. It establishes important

techniques, definitions, and mathematical concepts.

Chapter 2 develops a new algorithm for post-processing of direct imaging

data, with the express goal of extracting planet signals. I present the application

of Common Spatial Pattern filtering to the detection of point sources in high-

contrast astronomical images. The data is pre-processed in two different ways:

one copy of the data set keeps the point source in the same spatial location over

many images through time, while a second copy of the dataset moves the point

source azimuthally through the image as in Angular Differential Imaging. The

differences between these two datasets are exploited via Common Spatial Pat-
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tern filtering, highlighting the point source. I develop a forward model for this

new process, which is then used to predict the result of applying this method to

data with a point source at a particular spatial location. I validate the forward

model numerically and use the prediction as template in a matched filter with

the actual CSP modes. I present results for multiple sets of observational data

and show that the new CSP Forward Model Matched Filter performs well in

terms of Signal-to-Noise ratio and planet signal recovery.

Given that common spatial pattern forward model matched filters have been

shown to be an effective method for detection of point sources in specific exam-

ples of high-contrast astronomical images, Chapter 3 develops tools and soft-

ware for generalizing this approach to many different datasets. Furthermore,

the software is compatible with the same input/output architecture as pyKLIP,

a software package for analyzing exoplanet data in python with Principal Com-

ponent Analysis. This allows for systematic, large-scale statistical analyses of

the CSP method applied to a variety of stars and injected data. I present results

for multiple sets of observational data and show how CSP FMMF performs in

terms of SNR.

Chapter 4 examines the optical design of a large space observatory. Space

observatories have many advantages over ground-based telescopes. However,

constructing and launching large space telescopes remains a significant chal-

lenge. A solution to this problem lies in autonomous, in-space assembly. To

benefit from efficiencies of scale and mass production, a modular telescope as-

sembled in space can be constructed from identical mirror segments. These

identical segments must then be deformed to an appropriate shape in space.

This work examines the optical feasibility of such a project, using a 31-meter
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Ritchey-Chrétien telescope composed of about 1,000 1-m mirrors as a case study.

In particular, this chapter examines the shape of the telescope optics through

Zernike decomposition and computes the physical optics propagation of such a

system to analyze the resultant PSF with simulation in Zemax OpticStudio.

Chapter 5 examines a novel approach to using image processing as part of

the measurement for a non-Gaussian filter. I present a portion of this larger

project to use imaging as an update for state-variables. I develop the necessary

models to express the camera state and show the effects of deformation, as well

as the propagation of a SIFT algorithm as part of the measurement function. I

also show that the resultant data from this model is non-Gaussian and requires

a unique filter.

In Chapter 6, I summarize the entire dissertation and acknowledge the fu-

ture work necessary to each of these projects.

The Appendix contains Table 1, which summarizes the common notation

and symbols in Chapter 1, Chapter 2, and Chapter 3.

1.2 Direct Imaging

There are a variety of techniques used to find exoplanets. To date, the planets

discovered are shown in Figure 1.1.

As pictured, direct imaging occupies a unique portion of the phase space:

large, bright planets far from their host star. Capturing more of this data by

discovering more planets would give humanity a better picture of our universal

environment, and perhaps more insight into the formation of our home solar

3



Figure 1.1: Plot of all currently known exoplanets[1]. Direct Imaging is shown
in blue circles, and stands unique from other members of the population.

system and planets. It places our knowledge into context.

Direct imaging of exoplanets requires a combination of high-contrast instru-

mentation, adaptive optics (AO), and advanced data processing techniques. De-

spite continued advances in all of these areas, extracting the planet signal from

a set of images remains incredibly challenging. A multitude of noise sources

can be found within high contrast astronomical images, including bright, spa-

tially correlated noise called speckles [22, 18]. Speckles are a result of internal

refraction errors within the telescope, and (for ground-based imaging) residu-

als from AO corrections of the atmosphere. They are nearly unavoidable and

are particularly troublesome because they can strongly resemble the planet sig-

nals of interest. Even after post-processing, target signal fluxes are often of the

same order of magnitude as the residual noise, making unbiased planet signal
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extraction very challenging.

Fortunately, speckles and planet signals behave differently across the spec-

tral and spatial domains. This key difference has given rise to the method of

speckle subtraction. Speckle subtraction from one observation primarily re-

lies on two methods of observing: Angular Differential Imaging (ADI) [14] and

Spectral Differential Imaging (SDI) [22]. ADI is accomplished by allowing the

telescope to rotate relative to the sky by switching off the derotator on ground-

based telescopes or by rolling space observatories about the line of sight. This

ensures that the desired target signal moves azimuthally from image to image

over time. Meanwhile, sources of noise from within the telescope optics, namely

speckle noise, remain fixed in the telescope frame. This only allows for tem-

poral evolution of speckles rather than changes caused by the rotation of the

telescope.

SDI exploits the fact that speckles are correlated across a spectral band such

that the speckle pattern scales linearly with wavelength. This is in direct con-

trast to the planet signal, which exhibits no spatial scaling with wavelength,

although its flux may vary across the band. By employing an Integral Field

Spectrograph (IFS), we can simultaneously obtain images at a variety of wave-

lengths and use this information to our advantage.

Both of these observing strategies (ADI and SDI) that induce spatial diver-

sity between signal and noise allow for development of a speckle noise model

that ideally does not include the planet signal. Upon subtracting this model of

the noise from the science images, what remains is the planet signal. A com-

mon method for building the model of the speckle noise is based on Principal

Component Analysis (PCA) [23].
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1.3 Principal Component Analysis and Common Spatial Pat-

tern Filtering

Principal Component Analysis is the foundation of techniques like Karhunen-

Loève Image Processing (KLIP) [32]. The Karhunen-Loève decomposition is the

most information-compact representation of a dataset; it reproduces the data in

a new, orthogonal basis in which the modes that contain the most information

possible are organized in descending order.

Common Spatial Pattern Filtering (CSP) [3] and Principal Component Anal-

ysis are both examples from a class of algorithms known as Blind Source Sepa-

ration (BSS). Ultimately, both PCA and CSP are both linear, least-squares algo-

rithms.

Principal Component Analysis is a technique generally used for dimension-

ality reduction. It finds the dimensions of highest variance in a data set and

uses those as a basis set to reproduce the data. In the context of direct imag-

ing, these highest-variance dimensions correspond to the most informational-

compact modes. The highest information mode is the most similar mode to the

data set. When computed from a set of images that does not include the tar-

get image, the weighted combination of every PCA mode is the least-squares

approximation of the target image based on a linear combination of the images

in the reference set. The principal components w of a dataset X are defined by

solving

arg max
w

∥∥∥XT w
∥∥∥2

s.t. ‖w‖ = 1 . (1.1)

The maximizing values of w are equal to the eigenvectors of the covariance of
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X. Because the eigenvalues are associated with the variance of the dataset along

their associated eigenvector w, the eigenvectors associated with largest eigen-

values are the msot prominent modes from the dataset. These more prominent

modes contain more information about the dataset.

Common Spatial Pattern filtering is defined by a maximization that is very

similar to PCA’s Equation (1.1), except that it is formulated as a comparison

between two different sets of data

arg max
w

∥∥∥XT
1 w

∥∥∥2∥∥∥XT
2 w

∥∥∥2 s.t. ‖w‖ = 1 . (1.2)

This is remarkably similar to PCA; if X2 is the identity matrix (or a multiple

thereof), then the expression reduces to PCA exactly. However, the two meth-

ods are conceptually different. In PCA, the w vectors are the directions of maxi-

mum variance in one set of data. Conversely, in CSP, the w vectors maximize the

difference between two datasets X1 and X2 [7]. To find the w values that satisfy

Equation (1.2), we must rewrite it in a form that is more easily evaluated. We

first do this by finding the covariance matrices for the two datasets as in Equa-

tion (2.1). We sum the two covariance matrices to form a composite covariance

matrix, which we then decompose into eigenvalues and eigenvectors

C+ = C1 + C2 = UΓUT . (1.3)

Here, U is a unitary matrix of the eigenvectors of C+, and Γ is the diagonal

matrix of eigenvalues. The decomposition can be used to construct a whitening

matrix, P

P = Γ−1/2UT . (1.4)

Throughout this paper, the square root operator as applied to matrices will only

be used for purely diagonal matrices. This implies that the root of the matrix

7



is also a diagonal matrix of the square roots of the diagonal elements of the

original matrix. This operator is not defined (in this work) for non-diagonal

matrices. If the whitening matrix is applied to each covariance matrix,

C̄n = PCnPT , (1.5)

where n represents either dataset 1 or 2. Then, the sum of the whitened, normal-

ized covariance matrices must be the identity matrix

C̄1 + C̄2 = I . (1.6)

The whitened data can be used to reformulate Equation (1.2). Given that the

sum whitened covariance matrices must be the identity matrix, as
∥∥∥X̄T

1 w
∥∥∥2

in-

creases,
∥∥∥X̄T

2 w
∥∥∥2

must simultaneously decrease. Thus, Equation (1.2) is equiva-

lent to

arg max
w

∥∥∥X̄T
1 w

∥∥∥2
s.t. wT (C̄1 + C̄2)w = I (1.7)

Using Lagrange multipliers to solve Equation (1.7), and noting that C̄T
1 = C̄1, the

optimization reduces to an eigenvalue problem

L (w, φ) = wT X̄1X̄T
1 w − φ[wT

(
C̄1 + C̄2

)
w − I] (1.8)

δL
δw

= C̄1w + C̄T
1 w − 2φw = 0 (1.9)

C̄1w = φw . (1.10)

Thus, the eigenvectors of the whitened covariance matrix from the first dataset

are the directions that maximize the difference between X1 and X2.
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CHAPTER 2

THE ORIGINAL COMMON SPATIAL PATTERN FILTERING FORWARD

MODEL MATCHED FILTER ALGORITHM FOR DIRECT IMAGING

DETECTION

Common spatial pattern processing represents a new class of direct imagin-

ing algorithms. It offers a unique approach to planet signal extraction: rather

than subtracting away the speckle noise from images, the planetary signal itself

can be directly modelled.

In this chapter, I present one particular methodology to use CSP as a direct

imaging reduction tool and specific examples of applications of this technique.

The real data and injected signal used as test cases is described in §2.1, as well

as the details concerning images as data structures. Our specific algorithm that

uses CSP for direct imaging signal extraction is elaborated on in §2.2. The ef-

fects of the CSP process on a point source is examined in §2.3, which develops

the forward model for CSP and discusses its accuracy and implications for tun-

ing parameters. I discuss using the Forward Model Matched Filter (FMMF) in

§2.4. Finally, I compare the CSP FMMF results with that obtained from a cur-

rent KLIP reduction in §2.5. Throughout this chapter, bold symbols refer to

matrices and capital boldface will distinguish two-dimensional matrices from

one-dimensional vectors, which will be shown in lower case font.

9



This chapter is primarily based on work published in [30].

2.1 Data Sources and Structure

2.1.1 Images as Data

An observing sequence is assumed to be a set of N images corresponding to indi-

vidual observations of the same target star over a short span of time. Each image

is a spatio-spectral data cube like those generated by the Gemini Planet Imager

data reduction pipeline [19]. Each data cube consists of a set of 2D images in

different wavelengths, all captured at the same time. Moving from slice to slice

is equivalent to looking at the same spatial data in a different wavelength. Each

image (datacube slice) from the full set of datacubes encodes a unique combina-

tion of time and wavelength and therefore a different realization of background

noise and different spatial location of the target planet signal, if one is present.

We can write each of the N images, each containing P pixels, as a column

vector. The specific vectorization does not matter as long as the scheme to vec-

torize the images is applied consistently to each image. Ensuring the vectoriza-

tion technique is consistent from image to image guarantees that data from the

same spatial locations of the image are represented in the same location in each

corresponding vector. For this analysis, each column of the image is appended

to the bottom of the previous column, from left to right within an image. A

simple example is shown in Figure 2.1.

Any given vector-mean subtracted image is denoted i, of dimension P × 1.

A collection of images can be represented as an N × P dataset X, where X ,
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Figure 2.1: An example of vectorizing a 2D image into a column vector. In this
example, columns are appended vertically from left-to-right.

[i1 i2 i3 ... iN]T . Thus, the image-to-image sample covariance of the dataset

is given by

C =
XXT

P − 1
. (2.1)

2.1.2 Data Source and Synthetic Planet Signal Injection

To gather and test real data, observing sequences were selected from the GPI

Exoplanet Survey (GPIES)[11]. Specifically, I selected the November 2015 ob-

servation of β Pic b [35] and the August 2017 non-detection observation of HD

14706. This allows for one set of real science data with a known exoplanet signal

and another with no known exoplanet as contrasting examples. Both data sets

were truncated to the central 75×75 pixels to expedite computations. Addition-

ally, the known signal falls within this image region.

In addition to the original data, we can also inject a known planet signal into

the images to be used for analysis and comparison. To recreate a valid plan-

etary Point Spread Function (PSF), we must examine both wavelength depen-

dence and spatial structure. In our injections, planet spectra are selected from

atmospheric models developed by [27]. In particular, we have used an L-Type
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model.

To develop an appropriate spatial model of the planet PSF, we turn to in-

formation already contained in the science images. The GPIES data has four

scaled representations of the unblocked stellar PSF in that particular image,

called satellite spots [31, 15]. These four satellite spots are median combined to

act as a model for the injected planetary PSF in each image. This spatial model

is scaled by the spectra at each wavelength. It can be seen in Figure 2.2 that the

spatial model deviates significantly from an idealized 2D Gaussian.
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Figure 2.2: Detail and full view of injected planet data at one slice. The planet
signal used is based on the satellite spots of the original data, and is non-
Gaussian.

The injected planets cannot be seen in the raw data of either β Pic data or the

HD 14706 data across multiple different image scaling laws, as shown in Figure

2.3.

The planet injected into the β Pic dataset has a relative flux of 1.7 × 10−4

relative to the total background flux of the entire 75 × 75 stamp. This value is a

cumulative sum from all slices of every datacube. The actual planet, β Pic b, can

be very faintly seen on the left of the squared scaling law. The fact that this can
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Figure 2.3: Top row: β Pic. Bottom row: HD14706. Left column: single image
example. Middle column: linear scaling law. Right column: squared scaling
law. The planet signal has been injected into both datasets, and is not visible to
the naked eye regardless of scaling law.

be seen, but the injected planet cannot shows that the injected planet is injected

at a lower raw SNR than β Pic b. Similarly, the relative flux of the planet in the

HD 14706 data is 1.8 × 10−4.

2.2 CSP Methodology

In this section, I discuss our particular methodology for using CSP to analyze

the direct imaging data. As KLIP is a particular implementation of PCA on

imaging data, this method too is simply one possible use of CSP to detect ex-

oplanets. I believe that other methodologies and other selections of X1 and X2

could be useful approaches to identifying exoplanets.

In the case of direct imaging, we begin by subdividing the data by wave-
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length. At each individual wavelength we have a sequence of images at dif-

fering parallactic angles. We conduct CSP independently on the set of images

corresponding to each wavelength. While the CSP process can operate using

all the images in a dataset (number of wavelength × number of timesteps), the

error in the forward model used has quadratic growth with the number of im-

ages, as shown in §2.3.3. Since a forward model matched filter will yield the best

results, as it does with KLIP [24], we must modify our dataset used for CSP to

reflect the Forward Model results. A natural way to limit the number of images

used in the algorithm is to subdivide by wavelength, evaluate the process for

each subdivided set, and sum each of the separate results together. Given the

simplified problem (only accounting for changes in wavelength), we can create

the two CSP datasets, X1 and X2 as follows.

The X1 Dataset: In this dataset, the planet signal, if one exists, is distributed

spatially from image to image. This relies primarily on ADI. Due to Angular

Differential Imaging, at each time step, the planet signal will be slightly dis-

placed azimuthally about the line of sight. For one given wavelength, we select

all the images corresponding to different times in the dataset.

The X2 Dataset: This dataset uses the same images as those in X1. However,

here we wish to create a substantial difference from X1 that somehow relates

to the planet signal. This difference ensures that the information of the planet

signal is a component within the projection matrix formed by the vectors w. To

accomplish this, we design the preprocessing of the dataset opposite that of X1:

the planet signal is in the same spatial location in every image. We must derotate

each image by the parallactic angle of the time to the north-up position.

If we are to conduct CSP with all of the collected images at once, the two
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datasets can be modified to include multiple wavelengths as well. For every

wavelength image at a single timestep, the planet signal is in the same spatial

location. For X1, we would use the wavelength information to distribute the

signal radially along the image. If we choose a reference image wavelength, λ0,

typically in the middle of the wavelength range, we can scale the size of all of

the images to this value by λ0/λi. At wavelengths larger than the reference, the

planet signal moves closer to the parent star, and the at smaller wavelengths, it

will be moved out closer to the edge of the image. Adding wavelength images to

the X2 datatset requires no modifications, as the planet signal is already spatially

co-located.

Once the two datasets are created, we step through the CSP process as out-

lined in §1.3. After finding the w vectors that solve the eigenvalue problem

posed in Equation (1.10), we can use these to build a new projection matrix

Z = Φ−1/2WT PX1 . (2.2)

Here,Φ represents the diagonal matrix of eigenvalues of C̄1 and W is the matrix

of its eigenvectors. P is the whitening matrix as defined in Equation (1.4). This

makes Z an N×P matrix where the rows represent the modes of X̄1 in decreasing

order of information content.

To find the signal of an injected planet, we compare the actual modes of

Z with modes predicted by a forward model that includes a planet signal. If

the predicted and actual modes do not align (the matched filter doesn’t yield

a strong result), then there is not likely to be an astrophysical signal at that

particular location. Importantly, not all modes of Z are used; we limit the modes

used for the matched filter to an optimal set of K modes, associated with both

high- and low-valued eigenvalues. It is in these modes that the planet signal
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itself is prominent, as shown in §2.3.4. bf This methodology is different from

KLIP. In KLIP, the first K modes are used for subtraction of the noise from the

image. In this CSP technique, we used primarily the end modes directly as well

as other modes distributed throughout. These modes most highly contain the

planet signal itself.

2.3 Forward Modeling

2.3.1 Overview

Recall that PCA is the maximally information-compact dimensionality reduc-

tion. If an observing dataset is treated with this technique and a target image is

projected onto these modes, the first eigenvectors contains most of the structure

in the image. In direct imaging, these modes can include a wind pattern from

ground-based telescopes and many of the static components of speckles. Un-

fortunately, the speckles are only quasi-static throughout an observation. How-

ever, the planet signal has been designed to move from image to image. Speckle

information is therefore more likely to be contained in the higher-information

modes than the planet signal despite some slight time variation. By subtracting

away these modes of information from different target images, what remains is

the planet signal, if it exists. Nonetheless, the planet signal can be significantly

altered by this process. It has been shown that the planet signal undergoes over-

subtraction and self-subtraction [21]. Over-subtraction is the result of fitting the

astrophysical signal with the speckle data, causing subtraction and distortion.

Self-subtraction is the phenomenon where the signal subtracts itself as it moves
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due to ADI and SDI.

These effects on the target planet signal due to KLIP warranted further study.

These effects were examined rigorously by [21] by propagating a point source

model through the complete KLIP process. The forward model provides an

accurate prediction of the result of KLIP on a planet source, should it exist. In

turn, this prediction can be used as a template in a matched filter to scan through

completed KLIP reductions and find matches to the predicted planetary signals.

The forward model therefore further helps distinguish the planet signal from

speckle residuals [24]. Much of the CSP forward modeling in §2.3.2 is based on

the work done on the KLIP Forward Model in [21].

2.3.2 Developing the Model

In developing the forward model, we assume that it can be conducted across

both ADI and SDI simultaneously. In practice, however, we limit the analysis

to ADI. This reflects the decision to limit the number of images per forward

model calculation made in §2.2. Nonetheless, the forward model development

presented here is representative of a general case.

Following the formalism developed in [21], we let each image value at a time

t, wavelength λ, and spatial location x be represented as

iλ,t(x) = sλ,t
( x
λ

)
+ εRθt [aλ(x)] . (2.3)

where s is the speckle noise and a is the planet signal. To align these two com-

ponents at the same spatial location, the speckle noise is scaled by wavelength

while the planet signal must be rotated by a rotation matrix R, which is a func-

tion of the parallactic angle θ at time t. The ε multiplier represents the contrast
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ratio of the planet relative to the hypothetical off-axis star. As the planet is typi-

cally quite faint compared to the background in any given image, ε is treated as

a small quantity throughout. These definitions are consistent with changes to

an image induced both by ADI and SDI.

The sets of images can then be transformed into two datasets for CSP, as

described in §2.2. After applying initial CSP transformations to the images, the

equations representing the two datasets are

i1λ,t(x) = iλ,t
(
x
λ

λ0

)
= sλ,t

(
x
λ0

)
+ εRθt

[
aλ

(
x
λ

λ0

)]
(2.4)

i2λ,t(x) = R−θt

[
iλ,t(x)

]
= R−θt

[
sλ,t

( x
λ

)]
+ εaλ(x) . (2.5)

For notation purposes, we simplify many of these transformations to be repre-

sented with subscripts: we let sn be speckle data from an image transformed to

match a particular dataset, and an correspond to the transformed planet signal

data. The images belonging to each dataset can then be written as

i1λ,t = s1 + εa1

i2λ,t = s2 + εa2 .

(2.6)

Combining each of the individual vectors into matrices, and taking their

transposes gives the expression for both transformed datasets

X1(x) = S1 + εA1

X2(x) = S2 + εA2 ,

(2.7)

where the capital letters correspond to matrices of which the rows are vector-

ized images (the lowercase counterparts). This is consistent with the previous

definition of a dataset X as an N × P matrix consisting of rows of images. The

covariances of these matrices are thus

C1 =
1

P − 1

(
S1ST

1 + ε(A1ST
1 ) + ε(S1AT

1 ) + ε2(A1AT
1 )

)
= CS 1S 1 + εCAS 1 + O(ε2) (2.8)
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C2 =
1

P − 1

(
S2ST

2 + ε(A2ST
2 ) + ε(S2AT

2 ) + ε2(A2AT
2 )

)
= CS 2S 2 + εCAS 2 + O(ε2) . (2.9)

At this point, assuming that the flux of the target signal is very small relative

to the rest of the flux in the image, we can disregard terms of order ε2. If ε were

to be large enough that this assumption becomes unreasonable, then significant

post-processing would no longer be necessary—the signal would be visible in

the raw data. By defining

CS nS n ,
1

P − 1

(
SnST

n

)
CAS n ,

1
P − 1

(
AnST

n + SnAT
n

)
,

(2.10)

we can now rewrite the composite covariance matrix and its eigenvalue decom-

position as

C+ = C1 + C2

= CS 1S 1 + CS 2S 2 + ε(CAS 1 + CAS 2)

= UΓUT .

(2.11)

This decomposition is important because we wish to find an expression for the

whitening matrix P in order to find the whitened composite covariance matrix

as in Equation (1.5). To determine expressions for U and Γ, we assume that there

is a component corresponding to the background noise, and a perturbation to

those values caused by the signal. We assume the following definitions

Γk , Λk + εδΛk (2.12)

uk , vk + εδvk (2.13)

Γkuk , (CS 1S 1 + CS 2S 2 + εCAS )uk (2.14)

Λkvk , (CS 1S 1 + CS 2S 2)vk , (2.15)

where CAS is equal to CAS 1 + CAS 2 . Here, uk and Γk are respectively the individ-

ual eigenvectors and eigenvalues of the whole system, whereas vk and Λk are
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the eigenvectors and eigenvalues of the unperturbed system. U, Γ, V, and Λ are

their matrix counterparts, respectively. The values associated with the unper-

turbed system, as well as the models for the noise and the planet PSFs are all

quantities known a priori.

We also note that the perturbations to the eigenvectors can be expressed in

terms of a sum of the eigenvectors

δvk =

N∑
p=1

ck,pvp . (2.16)

Here, ck,p is simply a coefficient for the linear combination of all eignevctors p

to create the perturbation to eigenvector k. This can be done because the co-

variance matrix C+ is positive definite, thus each of the eigenvectors is linearly

independent and form a complete basis set. The perturbations can thus be ex-

pressed in this basis set.

With this information, we can rewrite Equation (2.14) as

(CS 1S 1 + CS 2S 2 + εCAS )(vk + εδvk) = (Λk + εδΛk)(vk + εδvk) (2.17)

Isolating first order terms of epsilon yields

(
CS 1S 1 + CS 2S 2

)
δvk + CAS vk = δΛkvk + Λkδvk . (2.18)

Using the identities from Equation (2.15) and Equation (2.16), we can simplify

to

CAS vk +

N∑
p=1

ck,pΛpvp = δΛkvk + Λk

N∑
p=1

ck,pvp . (2.19)

Equation (2.19) can be solved to find expressions for δvk and ck,p. We know that

the eigenvectors V form an orthonormal basis, so that vT
k vp = 1 for k = p, and

zero otherwise. Using this information, we left multiply Equation (2.19) by vT
k ,

20



causing multiple terms to evaluate to 0 or 1, and leaving

δΛk = vT
k CAS vk . (2.20)

Alternatively, we can left-multiply the same equation by vT
p , specifically where

p , k to generate the equation for ck,p,

ck,p =
vT

p CAS vk

Λk − Λp
. (2.21)

Now, we have complete expressions for Γk and uk. We can then find C̄1 as

C̄1 = Γ−1/2UT C1UΓ−1/2

= (Λ + εδΛ)−1/2(V + εδV)T (CS 1S 1 + εCAS 1)(V + εδV)(Λ + εδΛ)−1/2 .

(2.22)

The next step is to group terms by powers of ε, and to then drop higher

order terms. This is a straightforward process, excluding the (Λ + εδΛ)−1/2 term.

Given that ε is very small, we can substitute the binomial series expansion of this

expression. Furthermore, since each of the matrices is a real diagonal matrix,

this expansion is well defined as:

(Λ + εδΛ)−1/2 ≈ Λ−1/2 −
1
2
εΛ−3/2δΛ , (2.23)

where we have once again dropped all higher order terms in ε.

If we take C̄1 to be the sum of components associated with the speckle noise,

and others associated with perturbations due to the planet signal,

C̄1 = C̄S + εC̄A (2.24)

then

C̄S = Λ−1/2VT CS 1S 1VΛ
−1/2 (2.25)

and

C̄A = Γ−1/2(VT CS 1S 1δV + δVT CS 1S 1V + UT CAS U)Γ−1/2

−
1
2
Λ−1/2VT CS 1S 1VΛ

−3/2δΛ −
1
2
Λ−3/2δΛVT CS 1S 1VΛ

−1/2 .

(2.26)
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We now have an expression for C̄1 in terms of the unperturbed data, the csp

reduction of the unperturbed data, and our model of the planet signal. These are

all terms we can pre-calculate. We must now evaluate the eigenvalue problem

posed in Equation (1.10) using these terms. Again, we assume that the quan-

tity we wish to decompose, C̄1, has eigenvalues and eigenvectors composed of

unperturbed components and a perturbation due to the planet signal

Φk , Ωk + εδΩk (2.27)

wk , yk + εδyk (2.28)

C̄1wk = (C̄S + εC̄A)wk , Φkwk (2.29)

C̄S yk , Ωkyk . (2.30)

Once again, Φk and wk are the individual eigenvalues and eigenvectors of

the whole system, whereas Ωk and yk are the eigenvalues and eigenvectors of the

unperturbed system. Φ, W,Ω, and Y are their matrix counterparts, respectively.

We can use the same methods here to find δΩk and δyk that were used to

generate Equation (2.20) and Equation (2.21). This results in

δΩk = yT
k C̄Ayk (2.31)

δyk =

N∑
p=1

yT
p C̄Ayk

Ωk −Ωp
yp . (2.32)

These perturbations can be used to find the complete equations for the eigen-

value decomposition of C̄1. We can now use these terms to find the new CSP

projection matrix

Z = Φ−1/2WT PX1

= Φ−1/2WTΓ−1/2UT X1 .

(2.33)
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We replace W, Φ, Γ, and U with the known noise CSP reduction plus perturba-

tions. After this, we separate like terms such that Z is also a sum of the known

reduction and its perturbations

Z = Zs + εδZ . (2.34)

After separating like terms, and again using the binomial expansion for certain

terms, the two components of Z can be written as

Zs = Ω−1/2WTΛ−1/2VT S1 (2.35)

δZ = Ω−1/2YTΛ−1/2VT A1︸                   ︷︷                   ︸
Model Interaction with Speckle Components

+Ω−1/2YTΛ−1/2δVT S1 −
1
2
Ω−1/2YTΛ−3/2δΛVT S1︸                                                         ︷︷                                                         ︸

Effect on Composite Covariance Eigen Decomposition

+Ω−1/2δYTΛ−1/2VT S1 −
1
2
Ω−3/2δΩYTΛ−1/2VT S1︸                                                         ︷︷                                                         ︸

Effect on Whitened X1 Covariance Eigen Decomposition

.

(2.36)

This is the first-order accurate model of the impact the planet signal has on

the CSP modes, δZ.

2.3.3 Model Results

Model Accuracy

The methods described in §2.2 yield results for the β pic data set shown in Fig-

ure 2.4. This is the sum of the final two modes of Z, calculated using one wave-

length. An injected planet can be faintly seen at pixel location [55,51] and the

known exoplanet is shown at [23,32]. Additionally, many residual speckles are
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Figure 2.4: This is the sum of the final two modes of the CSP reduction of the
β Pic dataset at a wavelength of 1,587.1 nm. The known planet signal is circled
on the left, and the injected planet is seen more faintly on the right. Similar
speckle noise throughout the image indicates a need for summation of multiple
wavelengths and a matched filter approach to increase SNR.

present that can be construed as false positives. Upon addition of similar results

at each wavelength, the signals would appear at a higher signal-to-noise ratio.

Nonetheless, background speckles would still be present. This necessitates the

use of a matched filter between the forward model results of δZ, and the cal-

culated Z from the CSP reduction. This approach only works, however, if the

forward model itself is accurate. A quantitative analysis of the errors associated

with the forward model is discussed in this section.

We use two metrics to determine the accuracy of the forward model. The first

is a comparison between the estimated value of Z from the forward model, and

the values from evaluating the CSP process. To do so, we calculate the percent
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error of the estimated matrix compared to the value of the known matrix

% error =
Z(i, j),CS P − Z(i, j),FM

Z(i, j),CS P
100% (2.37)

for every entry (i, j) in the matrix. The FM subscript indicates a forward model

result, and the CS P subscript similarly identifies the CSP reduction result. An

evaluation of all the errors in Z for the HD 14706 dataset is shown in Figure

2.5. The errors appear to be roughly normally distributed in log(%error). In the
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Figure 2.5: Analysis of error in the forward model of the projection matrix, Z,
compared to its true value. Many errors are small, and those that are very high
likely correspond to entries in the matrix that have very low absolute values.

Z matrix, many entries are very small values. Thus a slight absolute error can

yield very large relative errors, which is shown in Figure 2.5. However, the im-

portant components of our analysis are the elements of Z that are not inherently

small. While some entries of Z may have high individual errors, their very small

absolute values will likely not propagate towards the actual signal. Thus, it is a

much more relevant analysis to determine the difference between the FM signal

and the CSP evaluation in an area of interest - surrounding the planet signal. A

25



comparison of the final mode of both CSP and the forward model is shown in

Figure 2.6. The values for entries in the modes centered around the target signal

are directly compared. In these images, it can clearly be seen that there is signif-
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Figure 2.6: The forward model results compared to the CSP results. Top row:
horizontal cut. Bottom row: vertical cut. Left column: CSP result. Middle
column: forward model result. Right column: pixel comparison. The forward
model very accurately resembles the actual CSP results. The difference between
the two in terms of pixel value is shown with the dotted black line on the right
y-axis.

icant overlap between the true CSP result and the predictive forward model. By

both metrics, the median of Z error and the comparison in signals, the forward

model appears to perform well. Furthermore, we can describe the normalized

maximum likelihood estimation computed on the above window between the

forward model and the actual planet signal as

F =

∑121
i=1 yixi∑121
i=1 x2

i

, (2.38)

where x is the CSP results and y is the forward model prediction. Thus, the

26



photometric error introduced by the forward model can be described as

|F − 1| (2.39)

which evaluates to 0.0020 for the data shown in Figure 2.6 across the whole

image. This is a strong indicator that the forward model predicts the behavior

very well. Nonetheless, a true test of its usefulness will be when it is used as a

matched filter on a known signal, as demonstrated in §2.4.

Image Number Error

One key result is that the forward model scales very poorly with the number of

images. The photometric error in Z rises drastically, shown in Figure 2.7.
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Figure 2.7: Forward Model error as a function of number of images. As the
number of images used to calculate the forward model increases, the photomet-
ric error of the forward model as described in Equation (2.39) increases linearly.

The data suggests that the error grows with the number of images. This in-
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crease in error is due to the accumulation of small errors in an increasing num-

ber of small eigenvalues. These eigenvalues correspond to the low-information

modes. Any given image from an observing sequence bears resemblance to

and shares some information with the other images from the full dataset. Thus,

adding an image to a dataset does not add a full image’s worth of information

to the dataset. As the number of images increase, the total number of modes

needed to express the information does not increase linearly. This results in an

increasing fraction of very small eigenvalues as more images from the same ob-

servation are used in a dataset. In turn, these small numbers are subtracted and

used in denominators as in Equation (2.21) and Equation (2.36). Furthermore,

these small errors are a direct result of truncating to a first order model.

We can solve the issue of scaling error by simply using fewer images in the

CSP process. We still span the entire image space by conducting the CSP process

multiple times and summing the result, without the drawback of accumulated

error.

2.3.4 Informing Mode Selections

Another useful result of the forward model is its ability to help guide our deci-

sions in tuning the parameters of the CSP reduction. Namely, the model helps

us select which modes to use in the matched filter of Z. To do so, we can directly

examine the modes from δZ and Z. For the smallest wavelength in the β Pic data

(1,494.6 nm), every mode from δZ is shown in Figure 2.8.

The planet signal can be seen in the bottom right quadrant of nearly every

image. It is often displaced to various locations that span the azimuthal rotation
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Figure 2.8: Each of the modes of δZ. While the signal can be seen in most modes,
it is isolated from other speckle effects in the final modes.

from ADI. The movement of the signal from the injected location is particularly

indicative of the need for a forward model matched filter for CSP. Using it, we

can achieve a significantly more accurate astrometric result for the location of

the planet.
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Furthermore, the planet signal is mostly accompanied by other sources of

noise in the data. It is only in the final modes (32-37), that the planet signal is

mostly isolated from other sources of noise. However, the planet signal is also

very strong in the first few modes, and prevalent in others as well. This suggests

that there is an optimal set of modes to combine, but it is not limited to simply

the last set of modes (or the first set, for that matter). The actual modes used

will vary from system to system.

2.4 Matched Filter

Having derived a model for the planet from the satellite spots, we can compute

a forward model for the planet signal at any location in the image. We accom-

plish this by representing a given image i as i = i − εa + εa, where i − εa is the

model for speckles (s in Equation (2.3)). We do this at every spatial location in

a set of images. We then compute the forward model at every location, pro-

viding estimates in terms of Zs and δZ for every possible target signal location.

Whichever of the modes of δZ matches best (as evaluated via a matched filter)

with the corresponding CSP reduction modes of Z is the most likely location of

the planet.

The template used for the matched filter at spatial position x is a 21 × 21

stamp of pixels centered at x within mode δzk based on the forward model from

a signal injection centered at x. This is matched with the corresponding 21 × 21

stamp from the mode zk.

We calculate the matched filter result at x by computing a cross-correlation.

We multiply each pixel p in the forward model stamp with the corresponding
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pixel in actual reduction. We sum the products for each pixel location to get

the matched filter result at a single pixel. We repeat this for every spatial loca-

tion x. This process generates a matched filter map for each of the modes for

a given CSP reduction. By adding each of these maps, we retrieve the signal

for one CSP processing. Recall that we conduct CSP for each wavelength inde-

pendently. Thus, we further stack each result from independent wavelengths,

improving the signal-to-noise ratio (SNR) of the result. The sum ŝ for a dataset

with l different wavelengths and K different modes used

ŝ(x) =

λl∑
λ=λ1

K∑
k=1

441∑
p=1

pFMλ,k pCS Pλ,k (2.40)

represents the final image with which to evaluate for exoplanets.

The final step is to determine which modes are used to evaluate with a

matched filter. The goal is to use an optimal set of modes for SNR recov-

ery, knowing that the optimal set of modes is not always exclusively the low-

eigenvalue modes. However, given that the final modes are uniformly good for

this process, we begin by automatically including the last mode. For our pur-

poses, the signal to noise ratio is defined as the matched filter result of a single

pixel location divided by the variance of the the matched filter result for every

spatial location in an annulus around the star that intersects the target signal.

The known target signals are masked out of this calculation. Mathematically,

we define

S NR =
ŝ(x) − µ(x)

σ(x)
, (2.41)

where µ(x) is the mean of the annulus for the pixel at x and the σ(x) is the

standard deviation of that annulus. The signal estimate and noise values are all

taken after convolution with the matched filter.
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If the dataset contains n timesteps, it will also contain n modes. This final

nth mode begins as our analysis image. We proceed by adding the n − 1 mode

as well. If the SNR at a given pixel location improves, we set the new analysis

image to be the sum of the modes n and n − 1. Otherwise, we keep the analysis

image as just mode n. This process repeats with subsequently higher and higher

eigenvalue modes, adding them to the analysis image if and only if the SNR of

the selected spatial location increases. In each calculation of SNR, the values for

the mean and standard deviation of the noise as well as the signal estimate is

recomputed iteratively, based on the included modes.

When this process is completed, we have the optimal SNR combination for

that location. This process, starting with just mode n, must be replicated for

every pixel. This results in a different optimal image for every single spatial

location. Essentially, we create an image significance map, full with the peak

SNR of every single pixel. This is shown in Figure 2.9 for both images.
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Figure 2.9: This shows the optimal SNR map for every pixel in both data sets.
The left image is the β Pic data, and the right is the HD 14706 data. In both
datasets, the planet locations have the highest SNR. However, the method of
maximizing SNR can also increase the rate of false positives, as the HD 14706
data shows an increase in SNR for the correlated, speckle noise as well.
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For computational efficiency, we do not in practice compute the forward

model for every possible signal location. Instead, we compute a base forward

model for one single location. We can then rotate and scale this model to each

new location. Rotation is computed based on azimuthal location, and the tem-

plate is scaled linearly based on the distance from star’s center to the injected

signals’ spatial location in the image. This method demonstrates its efficacy by

correctly identifying the β Pic b known exoplanet, despite its differences in an-

gular separation and azimuthal location.

2.5 Results

To examine the performance of the CSP FMMF algorithm, we must evaluate its

results in the context of the rest of the field. For direct imaging post-processing,

a recent advance in the state of the field is KLIP-FMMF. Thus, I have analyzed

the two datasets described in §2.1.2 with both CSP-FMMF and KLIP-FMMF.

The latter was completed using the FMMF module from pyKLIP, a collection of

codes used as an implementation of the KLIP algorithm [36].

Both results, for both datasets, are shown together in Figure 2.10. In the β Pic

data, the injected planet can be seen at on the right, and the known exoplanet is

visible on the left of the image. The signal injected into HD 14706 data can be

found on the right as well. In these reductions, every wavelength was treated

with K = 2 modes. In these CSP-FMMF results, a border with a width equal to

half of the stamp size (in this case, 10 pixels) is not evaluated as the template

would go beyond the edge of the data otherwise.

Comparing the results, the background speckles of the CSP-FMMF are much
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Figure 2.10: Top: CSP FMMF Reduction. Bottom: PCA FMMF Reduction. Left:
β Pic data. Right: HD 14706 data. Each image is shown in a linear scaling law.
All images clearly show the injected planet signal, and the left images show β
Pic b. CSP-FMMF recovers the signal at slightly higher SNR, and much worse
astrometric error. Background noise (leading to more false positives) are also
more present in the CSP-FMMF data.

less uniform than from pyKLIP, but the signals appear much stronger; the quan-

tification of this difference is the SNR.

In quantitatively comparing to previously existing methods, two essential

metrics are important: signal recovery (while minimizing false positives) and

astrometric biasing. Signal recovery can be defined by the SNR, whereas astro-

metric biasing is the ability to accurately determine the location of the planet
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and is characterized by the error from the true location. The SNR results for the

three known planets are summarized in Table 2.1. The CSP-FMMF result shows

SNR
CSP KLIP

HD 14706 Injected 6.90 10.65
β Pic Injected 14.47 13.05

β Pic b 11.79 9.64

Table 2.1: Comparison between KLIP and CSP Processing. The CSP results
shown are from the optimal analysis for the injected planet in both images.

a higher SNR for both planets in the β Pic data, but not in the HD 14706 data.

A note of caution here is that the KLIP-FMMF algorithm was designed and

tuned for detections of planets dimmer than β Pic b. This is a primary reason

for the low SNR of that detection in this case. Further study is warranted with

a wider range of planet signals. Furthermore, none of the distributions of noise

in the annuli around the planet signals in any image, for CSP or KLIP, are Gaus-

sian. This tells us the variance in the noise, by itself, is not sufficient to describe

the noise distribution. This indicates that the SNR metric is not perfectly appro-

priate for either distribution. However, all six annuli have noise distributions

that belong the the Pearson Type IV distribution [17]. Each of the Pearson dis-

tributions uses 4 moments to describe a distribution - skewness and kurtosis in

addition to the mean and standard deviation from a Gaussian description. In

each of the six annuli, the sample skewness (β1) and kurtosis (β2) both fall in the

Type IV region of differing Pearson distribution types. This is purely based on

the classification system for Pearson distributions on the β1 − β2 phase space [2].

These Type IV distributions typically have fatter tails than standard Gaussian

distributions, which indicates that SNR as a metric is too lenient in terms of a

simple probability estimate that the observation is a part of the noise. For anal-

ysis, however, I retain the convenient, common practice of using exclusively
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the standard deviations to compute the SNR. I nonetheless caution the reader

against a straightforward interpretation of these SNR values.

I also note that the CSP-FMMF results also have much stronger false posi-

tives than the KLIP-FMMF results. This is particularly evident in the HD 14706

data. Typically, this false alarm rate would be analyzed with a Receiver Oper-

ating Characteristic [4]; however, in these 4 images the planet signals are all at

significantly higher SNR than any potential false positives, rendering this par-

ticular analysis unhelpful.

In regards to the astrometric biasing, the centroids of the KLIP-FMMF re-

sultant spots are within sub-pixel accuracy to the known location of the two

injected planets. Meanwhile, the CSP-FMMF results deviate from the known

location by more than a pixel. In the δZ modes of CSP-FMMF, the planet signal

appears in a variety of locations along the azimuthal motion caused by ADI.

The location of the signal per mode, however, is not directly related to the par-

allactic angle. For example, two signals that are initially injected at differing

locations may show the planet signal in the final mode in the same spatial lo-

cation, assuming that that location is part of the motion of both signals through

time. Thus, the recovery of the location of a signal with CSP-FMMF is much

more difficult. Other methods, like KLIP-BKA are a superior technique in this

regard [35].

2.6 Conclusion

In this chapter, I have shown a new method to be used for planetary signal

extraction from direct imaging data of exoplanets based on the algorithm for
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Common Spatial Pattern filtering to detect differences between to datasets. Fur-

thermore, I have developed forward model that can predict the effects of CSP

on a point source in data. This forward model has been used as a template for

a matched filter with a blind CSP reduction to create a significance map. This

map can be used to determine whether a planet exists at a specific location.

Nonetheless, this work demonstrates that Common Spatial Pattern filtering

is an effective planetary signal extraction technique and, rather than subtracting

away speckles from science images, it represents a way to directly model planet

signals in the data.
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CHAPTER 3

DATA ANALYSIS OF THE CSPFMMF ALGORITHM

In Chapter 2, common spatial pattern filtering with a forward model

matched filter was shown to be effective at identifying planets. This technique

directly models the planet signal rather than modellng the noise and subtract-

ing it away, as in other popular techniques. This chapter introduces a more

robust and refined version of that algorithm, particularly in relation to comput-

ing across an entire image and for analyzing varied datasets. This algorithm is

released in its entirety in a code base to be used in tandem with pyKLIP [36]. I

use this software to investigate the proper parameters and ways to use this al-

gorithm. With these tools, we have analyzed a large portion of GPIES [11] data,

with injected planet signals. Finally, I show the resultant statistical analyses that

can quantify the performance of this new algorithm.

To illustrate some results initially, I have provided some end products for

two common astrophysical signals, shown in Figure 3.1s. The planet signals are

all readily visible.

3.1 Common Spatial Pattern Filtering Forward Model Matched

Filter

3.1.1 Algorithmic Updates

The algorithm itself has undergone many improvements from the processes de-

scribed in Chapter 2. These updates accomplish the goals of:
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Figure 3.1: Examples of well-known directly imaged exoplanets. Beta Pictorus
b is on the left, and two of the companions to HR 8799 are shown on the right.

• scaling for full-sized datasets instead of smaller images

• easy integration with pyKLIP codebase

• robustness and precision improvements

• computational efficiency.

These changes are both to the code structure and the mathematical founda-

tion of the algorithm. The primary structural improvements are:

• being rewritten in Python

• parallelization

• reliance on pyKLIP

• removing the ’best SNR Matching’ phase for computational efficiency.

Additionally, the direct algorithmic changes are:

• segmenting each image into annuli
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• applying a threshold for the matched filter template

• treating each end result with an SNR map.

Subsections

In many cases, including when using standard GPIES data, an entire image can-

not be treated at once. The matrices involved in the CSP process all scale geo-

metrically with the number of pixels used per image. As this number increases,

computational requirements and time to completion skyrocket. A simple solu-

tion is to subdivide the images.

Noise regimes are assumed to be constant in annuli of equal separation in

a given observation. Furthermore, the expected motion of the planet signal is

in an arc of equal separation. Several annuli of equal width make for natural

divisions of an image. The pyKLIP software subdivides each image similarly,

with additional segmentations of the ring into into arcs. This is done to further

reduce the size of each section. Unfortunately, this is not a viable solution with

CSPFMMF, due to fundamental differences in the algorithms. The CSPFMMF

process relies on the signal being spatially diverse, unlike KLIP, which derotates

the signal to a single spatial location. Thus, our signals are dispersed over an

arc, exemplified in Figure 3.2.

Without knowing where a signal may appear a priori, we cannot set limits

on the edges of such a segment. Thus, they must span the entire annulus.

The software as written allows for any number of annuli, but for the pur-

poses of this chapter, 4 segments were used for all analyses.
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Figure 3.2: The signal is dispersed in an arc that follows the spatial motion of
the planet during observation. This was found as a prediction with the forward
model.

Thresholding

While the signal itself is readily visible in most modes, like that shown in Fig-

ure 3.2, a lot of noise remains in the rest of the section. If we were to blindly

match this to the corresponding CSP mode, the chance of this noise correlating

with some from that mode could dilute the recovered FMMF result. A sample

equivalent CSP-reduced mode is shown in Figure 3.3.

Figure 3.3: CSP mode from second annular ring. No planets are visible, but the
annulus still contains correlated noise
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The challenge, then, is to isolate the planet signal in the FMMF mode. This

is done by thresholding the template developed from the forward model. All

pixel locations are set to 0 if they don’t reach the threshold. The value is set as

n standard deviations from the median value for all pixels in the data set. The

median was chosen such that the planet signals do not bias the noise statistics.

The example from Figure 3.2 is shown along with its thresholded version in

Figure 3.4.

Figure 3.4: The full forward model predicted template, and version with a 5-
sigma threshold.

As pictured, the threshold primarily works to set the majority of the noise

to zero, while preserving the signal. The threshold can be set to any multiples

of standard deviations from the median. As the threshold value increases, the

noise in the segment decreases. However, this could potentially come at a sac-

rifice: more of the signal itself is lost.

Significance Mapping

After setting segments and applying a threshold to the template from the for-

ward model, the matched filter can be computed. This is done across all wave-
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lengths and a set number of modes. Afterwards, segmnents are combined and

each map is summed together. An example of a summed result can be seen in

Figure 3.5. This is injected at contrast of 5 × 10−5, which is why it is so readily

visible.

Figure 3.5: Wavelength-summed FMMF map for HD 3888. Each subsection is
independent of others. Inner rings are much harder to see.

Due to the segmented processing, each annulus is entirely independent of

the others. As can easily be seen, the inner rings are significantly darker than

their outer counterparts. This is partially due to the increased impact of coronal

noise on rings closer to the inner working angle. However, their proximity is not

the only contributing factor. Should that effect be entirely nullified, the inner

rings would remain darker. This is thought to be due to the differing areas

used for matched filters. Even after thresholding, signals at larger separations

sweep out a larger area, leading to an overall stronger signal. This area cannot

be known a priori, and thus the difference cannot be compensated for.

This doesn’t mean that the rings cannot be compared, nor that inner data

is less valuable; each ring simply must be treated independently. Within the

environment of one segment, the ratio between signal and noise is appropriately

scaled, as seen in Figure 3.6, which is the second segment from Figure 3.5.
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Figure 3.6: The second segment of a CSP result, with 3 identifiable signals.

The planet signals in this ring, when viewed alone, are easily identified. To

view an entire dataset on the same scale, one comparison that can be made is

a signal-noise map, where each pixel is compared to others at the same separa-

tion. The equation for SNR is

S NR =
s − µ
σ

, (3.1)

where s is the signal strength, µ is the mean noise in the annulus, and sigma

the standard deviation of that noise. The particular noise region is set to be an

annulus with width twice the Full-Width Half-Max (FWHM) of the instrument

PSF. This noise annulus is also bounded by segment borders. Other injection

sites are masked out as well. This scheme is shown in Figure 3.7.

The result of applying this strategy to the same dataset can be seen in Figure

3.8. The signals in the inner rings are much more prominently shown, and the

resultant map can be compared across separation.
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Figure 3.7: SNR Masking. In this example, the SNR is calculated for the point
at the center of the red circle, and noise is calculated using every pixel in the
yellow region. Note that the planet injection site on the right has been masked
out as well.

Figure 3.8: Left: Raw CSPFMMF result. Right: SNR Map. When using an SNR
map, the entire region is visible. Inner rings are still fainter because they are
closer to noise generated by the star.
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3.2 Observations and Data Reduction

3.2.1 Observations

A large number of statistics from real, scientific data is necessary to truly de-

velop a good picture of the performance of this algorithm, This is accomplished

by injecting planet signals into many, many observations. All original datasets

come from the GPIES campaign. However, this observing campaign targeted

many different stars and objects in the sky. In order to compare like to like, I

set limits on the types of observations to include in analysis. Each observation

must:

• be a GPIES target

• have been observed with an H-band filter

• have between 30 and 45 images

• have an average integration time per image between 59 and 60 seconds

• not have observing errors (marked bad)

• not contain any debris or dust disks to bias noise measurement

In all, this led to a group of 337 different observations.

3.2.2 Injected Planets

In addition to the science data from each observation, I have injected known,

fake planet signals into each image to be used for analysis and comparison.
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To use a valid planetary Point Spread Function (PSF), we recreate behavior

from both wavelength dependence and spatial structure. The particular L-Type

model planet spectra used were selected from atmospheric models developed

by Didier Saumon [27].

The science images contain the information to develop an accurate spatial

model for each planet signal. Each GPIES image has four scaled representations

of the unblocked stellar PSF, called satellite spots [31, 15]. The model of the

planetary signal is created via a median combination of each of the four spots.

The wavelength of each image scales the spatial model.

To demonstrate the injected pattern, one dataset was injected with planets

far too bright for ordinary analysis. This dataset was just used for illustrative

purposes, as in Figure 3.9.

Figure 3.9: Highly exaggerated version for illustration purposes. This is the
pattern of injected planets. The square limits on the actual injected planet are
also visible.
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Normally, the planet signals are significantly dimmer. For analysis, each ob-

servation was reduced three times. Each reduction was done with planets that

were injected at a different contrast: 5×10−5, 5×10−6, and 5×10−7. This allows for

comparison across different strength signals. The contrasts were selected such

that the brightest were always visible, the middle strength sometimes visible,

and the weakest were very difficult to detect.

3.3 Global Parameter Selection

CSPFFMF uses a combination of parameters to process the data. Two of these

variables influence the result significantly: the number of modes to keep and

the threshold for the matched filter template. In this section, I examine how to

optimally select the value of these parameters from a variety of combinations.

One particularly useful example would come from an observation with excel-

lent seeing conditions, such as the first observation of C Eri [13]. From this

observation, I have examined the resultant SNR of injected planets at two sep-

arations: one midway through the viewing window, and another closer to the

outer working angle.

This singular analysis represents an optimum for 2 injections in a dataset.

The larger trends, however, must be quantified at more separations. The peaks

from 3 sample datasets across all separations are shown in Figure 3.11. The

same samples of modes kept and thresholds set as in Figure 3.10.

As can be seen, the most common is a threshold of 5 standard deviations

from the mean and 10 modes kept. However, this alone is not overwhelming

evidence that these selections are superior. One option to combat this partic-
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Figure 3.10: Resultant SNRs for two injections with a variety of initial param-
eters. The highest SNR for the first injection is 14.9 with a 3 threshold and 5
modes used. The highest SNR for the second injection is 29.2 with an 8 thresh-
old and 15 modes used.

ular problem is to simply calculate the result at each possible combination of

parameters, and then to take the peak SNR at each pixel location for the given

SNR. This strategy was compared to just the 10 modes and 5 threshold strategy

for a subset of 35 stars from the dataset. The Receiver Operating Characteristic

(ROC) curve is shown for both strategies in Figure 3.12. The exact process for

developing these ROC curves is discussed in §3.5.1.

In the long run, the Maximal SNR from all slices captures more of the true

planets. However, this is not particularly useful. In real-world use of this al-

gorithm, we only wish to operate in the region of reasonably high SNRs - 5

and above, for example. In this region, shown in more detail by the zoomed-in

graph, the single slice metric performs much better. It identifies more planets

with fewer false positives. This is likely because the maximum SNR increases

the strength of the noise as well as the signal, increasing the number of false
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Figure 3.11: Plots of the best combination of parameters for three example ob-
servations (C Eri, HR 4372, and HR 7012).

positives. Thus, it is more advantageous to use just one set of parameters. This

tactic is also less computationally expensive as well. This was done for the re-

maining datasets beyond the initial 35 used for testing.

3.4 Circumstellar Disk Use

One other potential use of this algorithm is to examine circumstellar disks. As a

brief example to assess performance, I put an observation HD 4796 through the

CSPFMMF process. The resultant SNR map is shown in Figure 3.13.

Clearly, the algorithm identifies and pulls out the disk. Any individual point
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Figure 3.12: ROC curves comparing using a select set of parameters (10 modes
kept and a threshold of 5) against picking the highest SNR point from every
combination of parameters. The single selection metric captures fewer true pos-
itives in the long run, but performs better in the region we are interested in:
above 5 SNR.

Figure 3.13: The HR 4796a disk is readily visible.

on the disk has the same spatial disparity from image to image in the observa-

tion sequence as a point source at that location. The entire disk can be thought of

as a collection of point sources. However, the description used for a point source

in the forward model assumes the region surrounding the signal drops to the

noise floor rather than continuing as an extended source. This likely results in

a sub-optimal representation of extended sources, and is not the intended pur-

pose of the CSPFMMF algorithm.

51



3.5 Results

3.5.1 Receiver Operating Characteristic

In general, an ROC curve is a measure comparing true positive rate to the false

positive rate, parameterized by some threshold [4]. In this case, that threshold

is an SNR such that every location above that SNR is considered a detection.

As the threshold lowers, more and more points are viewed as detections. Some

of these are actually planet locations, where many others are simply false posi-

tives. The rate for true positives is determined by the number of true detections

divided by the number of known planets injected into the data.

Whenever any signal is detected, the surrounding resolution element is

masked out from the image and the threshold is lowered, whether or not the

signal was a true positive. Thus, the total number of false positives is approxi-

mately the number of resolution elements in an image multiplied by the number

of images used. The false positive rate is the number of false positives detected

divided by the total number of false positives. In general, the closer a curve gets

to 100 percent true positives and 0 percent false positives, the better the perfor-

mance of the tested algorithm. The ROC curves for each of the three injection

strengths are shown in Figure 3.14.

As expected, the 5 × 10−5 performs well, as it is an extremely strong signal.

Likewise, 5 × 10−7 performs incredibly poorly. The true measure of the efficacy

of the algorithm comes when examining the 5 × 10−6. This result shows a very

small false positive rate before an SNR of 5, and a relatively high true positive

rate. This shows that CSPFMMF is a very robust algorithm.
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Figure 3.14: Receiver Operating Characteristic curve for all processed data sets.

3.5.2 Separation-Contrast Maps

While the ROC curve is adept at determining the efficacy of the algorithm, a

different analysis helps predict what it is that the algorithm might detect. In

this section, I develop separation-contrast maps with SNR contours to make

those predictions.

Looking at all observations, we can compare the calculated SNR and injected

contrast for a target at a given separation. Two of these plots are shown in Figure

3.15.

As expected, the SNR increases when the planet is brighter. From this, we

can infer trend lines at that particular separation. This tells us the SNR we can

reasonably expect for a given speration and contrast. This trendline is computed

using all of the datapoints with a linear least-squares regression.
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Figure 3.15: A comparison of the SNR and injected contrast for all observations
for two given separations.

What is also important to note is that each observation of a target may have

a differing number of image; for our purposes, this was between 30 and 45.

This corresponds directly with integration time, as each image was taken over

the course of about a minute. Given that SNR is generally proportional to the

square root of integration time, the datasets were normalized by that amount.

Specifically, the SNR for a given datapoint was divided by the square root of the

number of images from its original dataset and then multiplied by the square

root of the average observation time of all targets in the set.

To determine if this was a valid tactic, the R2 value of each regression line

was computed both for the raw and normalized data. Figure 3.16 shows the

two values as they change with separation.

Data so close to the inner working angle is predictably unreliable in both

cases. However, the linear trend becomes more and more reliable the farther

in separation a target planet is. The variation from a true linear relationship

can be explained at least in part by differences in seeing, telescope conditions,

and target star properties. Furthermore, the normalized data performs about
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Figure 3.16: Correlation coefficient vs separation.

the same as the raw data within a small margin of error across the entire field of

view.

Knowing that this is a valid tactic, we can then use the data to predict what

SNR a target will appear at for a given contrast and separation, assuming an

average integration time. This is shown in Figure 3.17.

As expected, larger contrasts are required for greater resultant SNRs, and

planets are more visible at larger separations.

3.6 Conclusion

In this chapter, I have improved the CSPFMMF algorithm to detect planets from

direct imaging data. This was done by parallelizing the code in Python to work

with pyKLIP, alongside algorithmic updates like segmented images, thresholds
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on matched-filter templates, and SNR maps. Furthermore, I have shown that

selecting one set of optimal parameters will outperform blindly picking the best

from a muiltitude of parameter sets. Finally, I have analyzed the performance

of the algorithm with ROC curves and separation-contrast maps. These have

shown CSPFMMF to be a robust algorithm adept at identifying planets with

predictable results.

This code will be made publicly available as part of the pyKLIP distribution

[36].
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CHAPTER 4

OPTICAL DESIGN OF A LARGE, SEGMENTED SPACE TELESCOPE

As the field of space science is maturing, it requires bigger and bigger tele-

scopes, free from the constraints of Earth and its atmosphere. This allows for

observing at a higher resolution, with no atmospheric disturbances, and with

longer observing blocks. An orbiting telescope is not limited to night observ-

ing, but instead by its specific orbital parameters, which are often more forgiv-

ing. By collecting more light, fainter objects and those farther away are more

readily observable. These are just a few of the myriad reasons to use large space

telescopes. In particular as it relates to finding faint signals like those of exo-

planets.

However, large space observatories have their own set of drawbacks.

They’re expensive, they can’t be built easily on site by people, they likely must

be delivered in many launch vehicles, and servicing the observatories is very

difficult.

In an attempt to solve some of these issues while maintaining the advantages

of the large space observatory, we have created a first order approximation of a

design reference mission for a telescope of this sort: segmented with hundreds

of mirrors and assembled autonomously in space [28]. The size of our telescope

in comparison to other space telescopes is shown in Figure 4.1

This chapter will primarily address the optical components of this design. It

covers the overview of the mission, the requirements driving the shape of the

mirrors, segmentation, and the best method of approximating the desired shape

of the mirrors. Finally, we model the proposed system in Zemax OpticStudio,
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Figure 4.1: To-scale size comparison between the proposed telescope, the Hub-
ble Space Telescope, the James Webb Space Telescope and the Large Ultravi-
olet/Optical/Infrared surveyor, which is one of the largest aperture mission
concept currently in development [6, 16]

.

and use that model for physical optics propagation to measure and examine

optical properties like the wavefront and the resultant point spread function.

This chapter is primarily based on my previous NIAC work from[28] and [29].

4.1 Mission Concept and Architecture

Everything in this design flows from a core tenet: identical, mass-produced mir-

rors launch independently and self-assemble in space. Each mirror is a part of

an identical spacecraft module. Each module is a self-contained spacecraft, and

is propelled by a solar sail for navigation from earth to the L2 Lagrange point.

There, the spacecraft will be placed on a Lissajous parking orbit. The quasi-

periodic nature of the parking orbit allows for the the modules to get into close

proximity to each other fairly regularly, which will lead to docking maneuvers.
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These are described in Figure 4.2.

Figure 4.2: Displays docking of independent modules. (a) Spacecraft divert to
an intercept trajectory with another module or sub assembly. (b) The sails at-
tach via hook-and-loop material on the sails. (c-d) Reaction wheels trigger a
moment of inertia and bring the spacecraft closer together, while the connection
on the sails provides support. (e) Controllable electromagnets align the space-
craft properly. (f) The spacecraft interlock with mechanical apparati, and the
sails of one spacecraft are released such that they are no longer hard-linked.

The sails will form a conglomerate with the other sails. Together, they act as a

sun shade during telescope operation. Each of the modules will continue to join

others until a vast primary mirror is formed. Afterwards, the primary mirror

assembly will be joined by independent spacecraft: the secondary mirror and

the instrument package. The craft is shown in Figure 4.3.

This methodology ensures that we can counteract some of the drawbacks of

large space telescopes. The mirrors can be mass produced, increasing efficiency

and lowering costs. Furthermore, the small size of a single module means they

can be launched either as a set of primary payloads, or as payloads of opportu-

nity, lessening the launch costs. Furthermore, if each mirror is identical, a single

point of failure on one module does not spell failure for the entire mission. In-
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Figure 4.3: The combined telescope, with an assembled primary, a separate sec-
ondary, and the sun-shield of solar sails.

dividual modules can be relaunched and replace any faulty ones.

The optical design of the telescope is driven by the new challenges that arise

from this concept of operations: autonomous self assembly in space of identical

mirror segments on independent spacecraft. We address each of these chal-

lenges in turn, and show a complete analysis of the point spread function of the

resultant design. The general workflow of this portion of the project occurred

in 5 steps:

1. Select telescope parameters

2. Design ideal primary shape

3. Decompose each segment shape into Zernike modes

4. Model the whole system

5. Simulate the system point spread function (PSF)

The last two steps are completed in Zemax OpticStudio, a commercial optical

propagation software package.
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4.2 Requirements

There are several driving factors that influence the design of the telescope and

mirror shape.

• Identical mirrors. Because each mirror may be in any location in the ar-

ray, they cannot be made to a prescribed shape. This also greatly reduces

manufacturing costs by relying on mass production.

• Feasible actuation scheme. Once in place, each mirror must then conform

to a desired shape to create the primary mirror. This will require a control

scheme with set actuators. However, the actuator design must be reliable

and employ known technology. Specifically, we will be re-implementing

the actuator design for the James Webb Space Telescope (JWST) [33].

• Static wavefront error < 9.5 nm root-mean-square (RMS) error. This num-

ber is adopted from the LUVOIR interim report [6], which states their

static wavefront error is ¡38 nm RMS. Given that our mission targets a

larger LUVOIR architecture, we adopt this number with a factor of safety

of 4.

• Focused point spread function (PSF). This will be validated quantitatively

with the Strehl ratio.

4.3 Telescope Design

After a careful review of the designs of both current space telescopes, including

Hubble [8] and JWST [20], and plans for giant, ground-based telescopes, such as
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the Thirty Meter Telescope [26], a Ritchey-Chrètien Cassegrain design was se-

lected. This particular design, with two hyperbolic mirrors, removes coma and

spherical aberrations better than a standard parabolic Cassegrain. These com-

parisons to similar telescopes and our design goals have lead to the selection of

the following parameters:

• Primary Aperture d = 31m

• Primary focal length FP of f /2

• Distance from primary to secondary D = 0.9FP

• Total effective focal length F of f /5.6

Figure 4.4: Side view of extended focus, with dimension labels.

While the size of the primary mirror is set by the mission concept, we also

wish to keep the secondary mirror to within approximately 3 m in diameter,

such that it could be manufactured as a monolithic structure. Following the

examples of the aforementioned telescopes, which place the secondary mirror at

approximately 90% of the primary focal distance, places strict limits on the focal

length of our system. These two requirements of secondary size and position

translate to a maximum f /2 system. In comparison, the TMT telescope is f /1.
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At exactly 90% of the distance to an f /2 focal point, the secondary mirror is 3.06

m in diameter, meeting the sizing goal. The image plane is placed at 2d behind

the primary mirror. The complete optical path is shown in Figure 4.4.

Figure 4.5: A sample ray trace of the full telescope design, including a folded
focus behind the primary mirror.

The intent is that the beam path will be folded within the instrument pack-

age. However, as the instrument package was not the focus of this phase of

research, and the specific folding of this path has no impact on determining the

feasibility of constructing the primary mirror in space, no detailed analysis was

carried out on the instrument package itself. A sample folded focus, that has

not been analyzed in detail nor optimized, is shown in Figure 4.5

Using the above parameters, we can evaluate the equations that determine

the shape of the mirrors:

• Primary Radius of Curvature

R1 =
DF

F − B
(4.1)
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• Primary Conic Constant

K1 = −1 −
2B

M3D
(4.2)

• Secondary Radius of Curvature

R2 =
2DB

F − B − D
(4.3)

• Secondary Conic Constant

K2 = −1 −
2

(M − 1)3

[
M

(
2M − 1) +

B
D

)]
(4.4)

• Magnification

M =
F − B

D
(4.5)

These equations describe the radius of curvature at the center of each mirror,

and the conic constant for each mirror in a perfect system. Evaluating these

equations yields the results in Table 4.1.

Table 4.1: Table of values defining the shape of the primary and secondary mir-
rors

Radius of Curvature (m) Conic Constant
Primary 124 -1.000615

Secondary 13.0888888889 -1.241808

The final design produces a primary mirror that is relatively flat, with a large

radius of curvature. It also has a nearly parabolic shape, with a conic constant

just less than -1. These parameters ensure that segmentation, discussed in Sec-

tion 4.4, will be a reasonable endeavor. In contrast, the secondary mirror has a

much more pronounced curve and is highly hyperbolic, strengthening the case

for manufacturing the secondary as a monolithic mirror.

Using these results, we can describe the shape of a given mirror with

z =
R +

√
R2 − (K + 1)r2

K + 1
. (4.6)
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Figure 4.6: Analysis from Zemax of the point spread function of the ideal mirror
in log scale. A central, circular region is shown with a uniform value of one,
surrounded by concentric rings of diminishing strength, as expected.

where r is the radial distance from the center of each mirror in the xy plane. This

design, with all parameters, was modeled and analyzed in Zemax OpticStudio,

assuming perfect, monolithic mirrors in both cases. The resultant point spread

function from this system, shown in Figure 4.6, verifies that the system performs

ideally.

4.4 Segmentation

Next, the ideal primary shape was decomposed into hexagonal segments sized

1-m flat-to-flat. This sizing lies within the bounds of the design phase space,

which was predetermined by other portions of the mission. This was selected

as the point design for optical analysis.
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Figure 4.7: A side view of two adjacent mirrors. They are spaced sufficiently far
such that the arcs drawn by the farthest point in worst-case scenario tilt do not
intercept each other. This determines the gap spacing.

Gap Sizes

The first step is to determine the spacing of the mirrors, placing them as close as

possible to each other while guaranteeing that the segments do not impact one

another when tip/tilt corrections are applied to generate the final mirror shape.

The gap between the mirror segments was calculated purely from the mirror

geometry, assuming that each mirror had the worst case tip/tilt applied relative

to its neighbor. As seen in the Figure 4.7, the footprint for each mirror’s possible

position is carved out by the arc with a radius from the center of the surface of a

mirror (the point of rotation) to the bottom corner of the mirror. Thus, the worst

case scenario for gap size necessary would be described by

0.52 + t2 =

(
0.5 +

g
2

)2
(4.7)

where g represents the full gap between the two mirrors. The thickness of the

mirror, t was calculated by scaling the thickness of the James Webb mirrors

based on the mirror diameter of the two designs. This process results in a re-

quired gap size of 6 mm.
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Center Gap and Edges

Ideally, the primary mirror would have a perfectly circular aperture. However,

because of the segmentation and the telescope design, it would have two signif-

icant deviations from the ideal circular shape: near the center and at the edge of

the aperture.

Because of the Cassegrain design, light must be allowed to pass through the

primary to reach the image plane. If all mirrors are the same size, the only

solution is to eliminate rings of mirrors near the center. We have calculated

the most extreme point where the beam would cross a complete primary, and

exclude the segments it intercepts and all mirrors interior.

The edge of the aperture as well will no longer resemble a perfect circle.

Along the hexagonal spokes of the primary, targeting a diameter of 31 m is ac-

complished by placing 15 segments on all sides of a central hex (had the cen-

tral hex not been removed). However, to more closely approximate a circular

aperture, more segments are included beyond the hexagonal pattern in between

these spokes. We continue to add more layers beyond 15, eliminating mirrors

as needed. The criteria we used was to continue adding segments as long as at

least approximately 2/3 of the area of each hexagon is inside the 31-m diameter,

leading to the final design shown in Figure 4.8.

4.4.1 Mirror Modal Decomposition

In most segmented telescopes, each mirror is polished to a specified shape cor-

responding to its given location in the array. However, our design requires that
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Figure 4.8: A scheme for segmentation and placement of individual mirrors on
the primary assembly. Seven central mirror segments are missing (one exactly
center and the surrounding ring of 6). A dotted red line show a 31 meter di-
ameter circle. Each mirror is numbered in a clockwise spiral pattern, ending at
mirror 840. The size scale is in meters

the segments are randomly placed into the array via docking on the Lissajous

orbit. We cannot know beforehand what location each mirror will ultimately be

placed in. Thus, each mirror must initially be identical prior to self-assembly.

To transform each to the desired shape, we must first identify the differences

between that ideal shape, and the stock, flat shape.

We accomplish this by decomposing each mirror into Zernike polynomi-

als. These polynomials are a standard set of two-dimensional functions that

together form an orthogonal basis on the unit circle. Generally, the Zernike

polynomials are defined by
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Zm
n (ρ, θ) = Rm

n (ρ)cos(mθ)

Z−m
n (ρ, θ) = Rm

n (ρ)sin(mθ)

Rm
n =

n−m
2∑

k=0

(−1)k(n − k)!

k!
(

n+m
2 − k

)
!
(

n−m
2 − k

)
!
ρn−2k

(4.8)

where ρ, θ are the polar coordinates defined on the unit circle, and n,m are non-

negative integers. Each polynomial is normalized such that∫ 2π

0

∫ 1

0
Zm

n
2ρdρdθ = π. (4.9)

We modified this slightly, to conform to the hexagonal mirrors: each point

within the domain but outside the hexagonal surface is set to zero. The poly-

nomials themselves are shown in their original, circular domains in Figure 4.9.

Figure 4.9: The first 10 Zernike modes. Each is a two dimensional polynomial
in the unit circle, and orthogonal to the others.

The ideal shape of each mirror segment was decomposed into Zernike

modes by least-squares fitting to the polynomial functions. The weights of the
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least-squares fit corresponds to the intensity of each mode in the desired shape.

The weights of the first five modes for every mirror are shown in Figure 4.10.
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Figure 4.10: The weights of the Zernike modes for each mirror segment. As
the distance of the mirror from the center of the assembly increases, the piston
mode, maximum angle (tip and tilt), and defocus increase. These modes have
the highest impact on the mirror shape.

Most prominent is the piston mode (the primary driver of the hyperbolic

shape of the mirror). The next most prominent modes are the tip and tilt of

each mirror. Each of these first three modes is easy to correct for by using the

established technology of a Stewart Platform as part of each spacecraft module,

providing six degrees of freedom. The next highest mode is the defocus mode,

corresponding to a perfectly symmetric spherical curvature error. This is simi-

larly easy to correct for, using the same technology as tested on the JWST: a strut

to induce curvature on a mirror segment [33]. Beyond these major modes, other

Zernikes are less readily corrected for. Likely, this would require a separate ar-

ray of many different actuators on the back-plate of the mirror, and would be

inefficient for the differing needs of the mirrors across the primary.
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Thus, based on the major modes of the decomposition, and the correspond-

ing fact that these modes have already-tested and proven technology, we limit

our reconstruction to the first four Zernike modes: piston, tip, tilt, and defocus.

This model will be referred to as the “fully reconstructed model” henceforth.

Furthermore, we can examine the defocus mode more carefully - the associated

radius of curvature change is marginal across all mirrors, as shown in Figure

4.11. This similarity allows for another method to ease the shape requirements.
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Figure 4.11: The radius of curvature for each mirror segment generated from its
defocus mode. All are slightly larger than 124 m, and the difference between
the largest and smallest curvatures is approximately 0.0011 m.

All of the mirrors can be manufactured to the mean curvature of each of the

mirrors, as opposed to a flat surface. Using all mirrors set to a mean curvature

does not dramatically reduce the quality of the optical system, as will be shown

through the analysis in §4.5. The model that specified only a mean defocus to

every mirror, in addition to piston, tip, and tilt, will be referred to as the “mean

defocus model.”
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Figure 4.12: RMS errors for both the fully reconstructed model and the mean
defocus model. Both are within 3 nm RMS, meeting requirements.

4.5 Analysis

4.5.1 Mirror RMS Error

The ideal model of every mirror from the hyperbolic equations of a Ritchey-

Chrétian telescope is known, as is the reconstructed shape of each mirror using

exclusively piston, tip, tilt, and a specified mean defocus. In comparing the two,

we can determine the error associated with both the fully reconstructed model

and the mean defocus model. The RMS of each mirror for each model is shown

in Figure 4.12. Figure 4.13 also shows specific examples of the residuals for two

mirrors, taken from the fully reconstructed model. In particular, these demon-

strate that the remaining error corresponds to the next-order modes, astigma-

tism, which we expect. We have explicitly not corrected for terms beyond astig-

matism. The more central mirror has a much lower residual than the outer

mirror, also meeting expectations.

At a maximum RMS error of about 2.5 nm, both of the models meet the
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Figure 4.13: Left: Inner mirror, with low residual errors. Right: Outer mirror,
with more significant errors. Both mirrors have errors that resemble astigma-
tism modes.

requirement set in §4.2. Treating the entire primary as one mirror yields an RMS

of 0.971 nm. This is less than 10% of the error budget for the whole assembly.

4.5.2 Zemax OpticStudio Model

The subsequent analysis of the optical design was completed in Zemax Op-

ticstudio. An option in this software allows specifications of mirror shapes

through Zernike weights, fitting our needs perfectly. The model shown in Fig-

ure 4.5 was generated in this software. Importantly, it can calculate diffraction

effects, which is particularly relevant considering the gaps in the primary mirror

(illustrated in Figure 4.14).

Figure 4.14: A zoomed-in view of the Zemax OpticStudio model of the primary
mirror assembly showing the 6 mm gaps between each mirror segment.
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Figure 4.15: The wavefront error as determined by the Zemax OpticStudio
Model of the mean defocus model. The wavelength used is 550 nm.

Additionally, by examining the wavefront directly in the Zemax model, we

can confirm our calculations for the RMS of the telescope. The wavefront error

on the image plane, shown in Figure 4.15, verifies our previous results.

An additional analysis is necessary to determine and quantify the effects of

the gaps and segmentation compared to effects from reconstruction of the mir-

ror shape. To do so, we created two models: one with the ideal primary mirror

shape, with the hexagonal geometry and gaps overlaid, and another model with

each segment reconstructed based entirely on the first four Zernike weights for

that mirror.

4.5.3 PSF and Spot Diagram

The Huygens Point Spread Function, which accounts for diffraction in non-

sequential components, was calculated in OpticStudio for both the ideal and
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Figure 4.16: Left: PSF from the model with perfect mirror shape and gaps.
Right: PSF from model with both reconstructed mirror shapes and gaps. There
is strong agreement between the two models.

reconstructed models, as shown in Figure 4.16, demonstrating excellent agree-

ment. The ideal mirror, with gaps, represents the best achievable PSF given this

setup. As the surface figure improves on each segment, the fully reconstructed

model will approach greater similarity with the ideal model. In both models,

the core PSF is very clearly visible, as is the expected hexagonal structure as a

result of segmentation.

In addition to a qualitative, visual analysis, we have computed the Strehl

ratio of the reconstructed PSF. This ratio is calculated via comparing the peak

intensity of the reconstructed PSF compared to the peak intensity of the com-

pletely non-diffracted, ideal PSF (previously shown in Figure 4.6). The com-

puted Strehl ratio was 0.9986, which is exceedingly high. We expect this num-

ber to decrease with both manufacturing and alignment errors, which have not

been analyzed in the scope of this paper.

We additionally sought to characterize off-axis point sources, and so multi-

ple fields were added about 10 resolution elements away from the center of the

image. The resulting spot diagram of all field points is shown in Figure 4.17.
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Figure 4.17: Spot diagram of the true, segmented primary model. This includes

1 axial field, and 8 other fields offset by approximately 10
λ

d
. The black circle

in each field is the size of one resolution element. In each case, the diffraction
of the spot is approximately the size of the circle. Off-axis fields have a slight
displacement towards the center of the image plane compared to their true lo-
cation.

These results indicate that simply using a Stewart platform for piston, tip,

and tilt for each mirror, coupled with a mirror-ground curvature and a curva-

ture strut, will sufficiently meet the needs of the optical design for this telescope

in ideal situations. These ideal situations include neither manufacturing nor

alignment error. Actuators and active control will still be necessary for distor-

tions in the mirrors and to correct for mid-spatial frequency wavefront errors.
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4.6 Conclusion

In order to conduct more and more accurate space science, the need for large

space observatories is paramount. However, accomplishing such a task brings

a new set of challenges. We propose an architecture for a self-assembling, mod-

ular space telescope. In this design, each of the mirrors must be manufactured

identically, creating a unique optical design problem.

In addressing this issue, and designing the telescope, we initially sought to

compare to similar, modern designs: TMT, Hubble, LUVOIR, etc. In doing so,

we selected to analyze a 31-m f /5.6 Ritchey-Chrétian Cassegrain telescope. To

achieve the desired shape for every mirror in the primary array, each mirror was

decomposed into Zernike modes. The first four modes correspond directly to

the actuator design for the mirrors of the JWST. Thus we limited the reconstruc-

tion to piston, tip, tilt, and defocus.

Modeling this system in Zemax Opticstudio allowed us to conduct an analy-

sis on the performance of the telescope. This showed strong agreement between

the PSF of this model and the ideal system, slight off-axis abberations, very low

RMS errors on each mirror and the telescope as a whole, and a high Strehl ratio.

This indicates that within the constraints of this model (perfect alignment, per-

fect manufacturing, no specified instrument package, and no need for dynamic

wavefront control), the optical design of such a telescope is feasible. Thus, we

believe this design and approach of such an observatory warrants further ex-

ploration.
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CHAPTER 5

DETECTING STATE VARIABLES WITH AN IMAGE MEASUREMENT

FUNCTION

Detecting exoplanets not only requires great telescopes and advanced data

reduction algorithms, but also sophisticated methodology for actually collect-

ing data. Instead of using image processing as an end of itself (Chapter 2 and

Chapter 3) or as a tool for design (Chapter 4), this chapter examines the filtering

component of signal detection, by way of a portion of a currently unpublished

project. Here, image processing is used as an essential intermediate step for a

novel filter.

5.1 Overview

5.1.1 Project Goals

The objective of the larger project is to create a new, autonomous on-orbit cal-

ibration scheme for a constellation of imaging satellites. Any given primary

satellite will use its own imagery for cross-calibration with other satellites,

rather than dedicated measurements. This will enable continuous calibration

and measurement simultaneously.

This is accomplished by implementing a filter whose state is a full descriptor

of satellite dynamics and the camera state. The satellites will all share feature

sets from their image and state estimates. The given state is
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x = [q r c]T, (5.1)

where q is the set of quaternions relating the orientation from the camera

frame to the Earth Centered Inertial Frame, r is the position vector of the camera

relative to the Earth center of mass, and c is the camera model. The camera

model, which we are interested in for this chapter, can be expanded to

c = [ f c1 c2 c3]T . (5.2)

This is the vector of focus and camera distortion parameters. These, along

with the rest of the state, will be used to develop the imaging measurement

function. The outputs of this function are SIFT keypoint information, discussed

in detail in §5.2.

5.1.2 Camera Parameters

For testing the measurement function, several parameters for a camera model

were necessary to define. These are summarized in Table 5.1. These values

either came from other portions of the project, or were modelled after the Dove

spacecraft [25].

Note that the detector size in pixels and ρ are both significantly smaller than

expected, to help with computational purposes for this early demonstration.
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Symbol Value
Distance from camera aperture to observation target u 200 km

Camera focal length f 50 cm (nominal)
Distance from mirror plane to image plane s 50 cm

Camera aperture A 0.55 m
Detector size - 200 × 200

Pixel-physical units conversion ρ 1000 pixel/m

Table 5.1: Camera parameters used for examples.

5.1.3 Data Sources

The ultimate goal is to take a ground-truth state of the world and distort it

through the camera parameters defined by the state. The difficulty lies in deter-

mining a ground-truth model for each image. In the final use case, the proposal

is that the constellation of satellites constantly updates and modifies a consen-

sus version of what each image ’originally’ looks like.

For early testing purposes, we are using data from LANDSAT 8 Analysis

Ready Data [5] as a ground-truth model for input into the image measurement

function. Each image conveniently comes with GPS information for each corner

of the image. A sample image from this dataset, to be used and manipulated

through testing, is shown in Figure 5.1.

5.2 SIFT

The Scale-Invariant Feature Transform (SIFT) algorithm [10] is used to identify

specific features (keypoints) in digital images. As the name suggests, the iden-

tification of features ideally remains constant. The prepackaged software [9]

provides a list of each keypoint with location information and a descriptor. The
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Figure 5.1: Sample image from LANDSAT 8 Analysis Ready Data, situated
above the New York Finger Lakes.

location information consists of 4 parts: row, column, scale, and orientation. The

descriptor is a 128-long unit vector. The measure of similarity in descriptors is

the tool used to match keypoints from differing images despite different loca-

tion data. A sample set of images with matched keypoints is shown in Figure

5.2.

5.3 Camera Model

5.3.1 Defocus

The change in an image due to defocus can reasonably be modelled with a Gaus-

sian blur kernel [12]. Furthermore, the standard deviation of the Gaussian can
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Figure 5.2: Example of detecting and matching SIFT points from two images of
the same scene. The bottom row is a rotated and scaled version of the top row.

be described as

σG =
σ
√

2
, (5.3)

where

σ = ρ
f s

2N

(
1
f
−

1
u
−

1
s

)
. (5.4)

Here, N is the f-number, described by f
A . An example of this defocus model

using a portion of the a the sample LANDSAT image is shown in Figure 5.3. In

this example, the focal length is offset from the image plane by 2.5mm.

5.3.2 Distortion Model

For initial feasibility, we are using a symmetric radial distortion model for the

camera [34]:

r2 = r1

(
1 + r1c1 + r1 + c2r1

2 + . . .
)

(5.5)

We are using three coefficients in our model. As an example of this model,
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Figure 5.3: Left: Sample Image. Right: Gaussian blurred sample image based
on an offset focal length of 2.5 mm.

an undistorted image is shown in Figure 5.4, and different types of possible

distortions are shown in Figure 5.5.

Figure 5.4: Undistorted sample image.

.

Depending on the signs of the coefficients (all positive, negative, or mixed),

the resultant distortion can take different forms. The pincushion distortion

present in the leftmost image is difficult to see, but most evident in the corners,
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Figure 5.5: Demonstration of the variable types of symmetric radial distortions
possible with this model. Left: Pincushion, Middle: Barrel, Right: Mustache

where rivers have been displaced from their original locations.

5.4 Measurement Function

The measurement function uses an input of a ground-truth model of the world

(LANDSAT images in testing) and the state variables to predict what the de-

tected imaged will look like. The steps are:

1. Input original image

2. Find boundaries of camera FOV

3. Homogeneous coordinate transform to square detector pixels

4. Apply gaussian blurring

5. Appply camera distortion model

6. Identify SIFT points

The portion not discussed thus far is the homogeneous transform of coor-

dinates to the new image (going from step 2 to step 3). This is completed by

beginning with four points p1 − p4 as the corners of the camera field of view in

terms of image coordinates from the original image. The goal is to transform
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these locations to a new grid that is the dimension of the detector (npix × npix)

such that p1 maps to (1, 1), p2 maps to (npix, 1), p3 maps to (npix, npix), and p4

maps to (1, npix). To do so, let

A∗ =


p1x p2x p3x

p1y p2y p3y

1 1 1



−1 
p4x

p4y

1

 (5.6)

A =


A∗1 p1x A∗2 p2x A∗3 p3x

A∗1 p1y A∗2 p2y A∗3 p3y

A∗1 A∗2 A∗3

 . (5.7)

Similarly,

B∗ =


1 npix npix

1 1 npix

1 1 1



−1 
1

npix

1

 (5.8)

B =


B∗1 B∗2npix B∗3npix

B∗1 B∗2 B∗3npix

B∗1 B∗2 B∗3

 (5.9)

Let C = BA−1. Now, any coordinates (x, y, 1) can be mapped to the new posi-

tion in the destination image (x′, y′, z′) via
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
x′

y′

z′

 = C


x

y

1

 . (5.10)

The final destination in the new image (x′′, y′′) is normalized by

x′′ =
x′

z′
(5.11)

y′′ =
y′

z′
. (5.12)

The new data on the destination image are fit to a grid with a bicubic inter-

polant. An example of this step, alongside each of the other steps in the entire

measurement function process, is shown in Figure 5.6.

5.5 Non-Gaussianity of Measurements

The larger process necessitates the ability to use sigma points in the filter to

propagate forward that state information and its uncertainty. These sigma

points are determined by the noise distribution of the resultant measurement

functions. Thus, it is essential to determine if the distributions of noise on the

image measurement function is Gaussian.

This was completed by calculating the entire measurement function results

(locations and keypoint descriptors) for a single image 500 times with Gaussian

noise on the input state vector. The results for one keypoint, circled in red in

Figure 5.7, were measured and used for test of Gaussianity. The resultant distri-

butions are shown in Figure 5.8 and Figure 5.9.
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Figure 5.6: Each step in the process of computing the measurement function.

In each graph, the distributions are decidedly non-Gaussian. Of particular

interest is the distribution of the similarity between keypoint descriptors. In

each result, the descriptor was compared via dot product to the undisturbed

result. Because each descriptor is a unit vector in length, this distribution has

a maximum value of 1, and thus is inherently skewed to the left. The values

describing the first four moments of each distribution are shown in Table 5.2
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Figure 5.7: Highlighting the particular sift point used for comparison.

Mean Standard Deviation Skewness Kurtosis
Row Location 42.2 0.73 -0.007 2.416

Column Location 145.1 0.69 -0.048 2.50
Orientation 0.418 0.005 -.506 2.80

Scale 6.39 0.05 -0.041 2.80
Descriptor Similarity 0.994 3.5 ×10−4 -.094 3.67

Table 5.2: Values of the first four moments of the distributions for a single key-
point.

5.6 Conclusions

In this chapter, we have shown how image processing using modern methods

can be vital as an intermediate step towards a novel type of filter. This was done

with modern satellite data, distorted with a specific model for the camera, and

processed using a recent computer-vision algorithm to identify keypoints in the

images. Furthermore, we have shown that the resultant measurement function

data is non-Gaussian. This indicates that for a filter to be more successful, it

must employ a 4-moment model of uncertainty and noise.
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Figure 5.8: The distributions of the 4 location parameters. Each is non-Gaussian.

Certainly, there is much to do in this portion of the project before larger re-

sults are attainable, but this has laid the groundwork necessary for future work

on the program.
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Figure 5.9: The distribution of SIFT Keypoint Similarity.
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CHAPTER 6

CONCLUSION

Directly imaging exoplanets requires excellent technology: the very best tele-

scopes employing sophisticated techniques during observation leading to com-

plex, multi-faceted data analysis algorithms. This endeavor is clearly challeng-

ing, yet could yield a new understanding of planets in our universe as more

and more are discovered. This dissertation is directly in service of that goal. I

have leveraged modern mathematical and computational techniques for image

processing in the service of a variety of projects, beginning with post-processing

exoplanet direct imaging data.

In Chapter 2 and Chapter 3, I have developed a novel technique for extract-

ing planet signals from high-contrast direct imaging data. This was done by

developing a Common Spatial Pattern technique and applying a matched filter

to the results with a forward model developed from mathematical first prin-

cipals as a template. I have shown the accuracy of this forward model, and

demonstrated its effectiveness. The algorithm identifies planets with efficacy

comparable to other state-of-the-art methods. CSPFMMF represents an entirely

new tool available for anyone in the direct imaging scientific community to use.

After an update to the model in Python, I was able to test the method over

a large variety of real stellar targets. I have shown that the the ideal way to

use this new tool is to select a specific set of modes to keep and to set a specific

threshold for the matched filter template. By using this set of parameters, I have

shown with an ROC curve that the useful region of this method (approximately

a 10−6 contrast) has a particularly high detection rate before identifying many

false positives. Finally, I have correlated the detection SNR with a given planet’s
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flux contrast and angular separation from the host star. These results indicate

that CSPFMMF is a robust, predictable algorithm that will be a useful analysis

for direct imaging scientists.

Before post-processing can even take place, we must make stellar observa-

tions, and those observations should be made using the most sophisticated tech-

nology available. An imaginative concept to create a self-assembling 31-meter

space telescope serves that end. Using a massive aperture in the least atmo-

spherically noisy environment enhances our ability to detect the faintest signals,

like exoplanets. The work in Chapter 4 shows this approach. Here, modern soft-

ware for optical propagation and resultant PSF analysis were used to inform the

design of mirrors for a such a telescope. I leveraged Zernike decomposition and

optical theory to design a mirror shape that leads to high fidelity images while

adhering to physical limitations of hardware. This has shown that such an enor-

mous project as the proposed telescope may be optically feasible.

The last examined piece of the space imaging puzzle comes from the actual

collection of data. Currently, calibration images, state estimation, and science

images are mostly all treated independently. The work in Chapter 5 looked to

change that. I employed image processing as a vital step to a novel filtering al-

gorithm. I examined how models of cameras and distortion can lead to accurate

predictions of non-Gaussian image features in a complex model. This lays the

groundwork and establishes the necessity of a 4-moment model of uncertainty

propagation in a filter that uses SIFT points as part of the measurement function

that can determine state elements of the telescope from live science images.

Each of these projects, though disparate in nature, fall under the umbrella of

space image processing. They serve the goal of developing our technology and
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techniques to best detect small, faint signals throughout our universe. Image

processing has been used at the start of an engineering project to influence the

design of a telescope, as an intermediate step in a new type of filter, and in

post-processing of complex direct imaging datasets. This dissertation represents

several small steps to a future where we can more easily take pictures of Earth-

analogs throughout our galaxy.
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Appendix: Summary of Mathematical Notation

We present a table here summarizing each of the various notations and symbols

used throughout §1 and §2. As a general note, bold values indicate matrices and

vectors. With the set of bold symbols, upper case differentiates matrices from

vectors.

Table 1: Summary of Symbols and Notation.

Symbol Dimension Description

Descriptions of Data and Transformations

N 1 × 1 number of images in a dataset

P 1 × 1 number of pixels within an image

λ 1 × 1 wavelength of an image

λ0 1 × 1 reference wavelength

ε 1 × 1 scaling of target signal compared to noise

x 1 × 1 spatial position within an image

t 1 × 1 time image was taken

i P × 1 vector-mean subtracted image

t P × 1 specific, target image

X N × P dataset containing images as row vectors

C N × N image-to-image covariance matrix of a given dataset

sλ,t P × 1 speckle noise in a specific image

S1 N × P matrix of transposed s vectors in dataset 1

S2 N × P matrix of transposed s vectors in dataset 2

aλ P × 1 planet signal model in a specific wavelength

sn P × 1 single image speckle data in dataset n

an P × 1 single image astrophysical signal model in dataset n
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Continuation of Table 1

Symbol Dimension Description

A1 N × P matrix of transposed a vectors in dataset 1

A2 N × P matrix of transposed a vectors in dataset 2

i1λ,t P × 1 image in dataset 1 after transformations

i2λ,t P × 1 image in dataset 2 after transformations

X1 N × P dataset with spatially distributed target signals

X2 N × P dataset with spatially overlapping target signals

θt 1 × 1 parallactic angle of an image associated with time t

Rθt - operator indicating rotation of the argument by θ

CSP and Forward Model Terms

I - identity matrix: pure diagonal matrix of ones

w N × 1 vector multiplier in PCA and CSP

C1 N × N sample image covariance matrix of X1

C2 N × N sample image covariance matrix of X2

C+ N × N composite covariance Matrix, sum of C1 and C2

X̄n N × P whitened dataset n

C̄n N × N whitened covariance matrix from dataset n

uk N × 1 eigenvector k of C+

U N × N eigenvector matrix of C+

Γk 1 × 1 eigenvalue k of C+

Γ N × N pure diagonal matrix of eigenvalues of C+

P N × N whitening matrix of C+

φ 1 × 1 lagrange multiplier

Φk 1 × 1 eigenvalue k of C̄1

Φ N × N pure diagonal matrix of eigenvalues of C̄1
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Continuation of Table 1

Symbol Dimension Description

wk N × 1 eigenvector k of C̄1

W N × N eigenvector matrix of C̄1

Z N × P projection matrix used to find planet signal

K 1 × 1 number of modes of Z used

zk K × P row K of Z, a single mode

δzk K × P row K of δZ, a single perturbation mode

ŝ P × 1 planet signal estimate

CS nS n N × N simplification of 1
P−1

(
SnST

n

)
CAS n N × N simplification of 1

P−1

(
AnST

n + SnAT
n

)
Λk 1 × 1 eigenvalue k of CS 1S 1 + CS 2S 2

Λ N × N pure diagonal matrix of eigenvalues of CS 1S 1 + CS 2S 2

vk N × 1 eigenvector k of CS 1S 1 + CS 2S 2

V N × N eigenvector matrix of CS 1S 1 + CS 2S 2

C̄S N × N the component of C̄1 due to speckle noise

C̄A N × N the component of C̄1 due to perturbations

Ωk 1 × 1 eigenvalue k of C̄S

Ω N × N pure diagonal matrix of eigenvalues of C̄S

yk N × 1 eigenvector k of C̄S

Y N × N eigenvector matrix of C̄S

Zs K × P the component of ZK due to speckle noise

δZ K × P the component of ZK due to perturbations

Z(i, j),CS P 1 × 1 actual element of Z generated by CSP

Z(i, j),FM 1 × 1 predicted element of Z generated by the Forward model

l 1 × 1 number of wavelengths in a data cube

96



Continuation of Table 1

Symbol Dimension Description

pCS Pλ,k 1 × 1 mode Zk pixel value from CSP

pFMλ,k 1 × 1 mode δZkpixel value from FM
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