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Fortunately, we 
know of a lot!

3,869 
confirmed 
exoplanets!
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WFIRST CGI 
Needs Targets!
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Well, maybe a 
few…

56 currently 
known 
exoplanets that 
are potentially 
visible to 
WFIRST CGI
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WFIRST CGI 
Needs Targets!
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And, it’s 
reflected light

So we really 
care more 
about radii than 
masses, but 
these are all RV 
& Imaging 
detections
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Doesn’t 
mean 
you’ll 
see it
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Just Because You Know Something is There…
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Clouds Make Huge Differences

See: Batalha et al. (2018) "Color Classification of Extrasolar Giant Planets: Prospects and Cautions."
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And RV Planets Have Unknown Inclinations
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Putting it All Together
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GJ 849 b on JD 2461585.66
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How It’s Done
Pick best 
orbital fits 

Calculate 
Additional 
Properties

+

We first determine the effectiveness of the classification
algorithms by using the k-fold8 cross validation9 method
(Kohavi 1995). In this method, for each algorithm we: (1)
randomly separated the original sample into k equal groups, (2)
keep one of the groups as the validation data for testing, while
the other remaining groups are used as the training data, and (3)

compute the mean predictive accuracy given the training and
validation set. These three steps are then repeated k times so
that each group is used at least once as the validation data. In
this analysis we also ensure that the same random seed is used
to split the data into identical groups each time an algorithm is
evaluated. We test our cross validation routine with values of k
k from k=10–100.
We briefly describe each of the algorithms as they relate to

the problem of directly imaged planets, with further technical

Figure 3. Representative albedo spectra showing the 10 different parent-star distances, the 6 different metallicities, and the 6 different bandpasses explored. The top
panel shows the cases for a single metallicity (1×solar) with all available distances from host star. The bottom panel show cases for a system with a parent-star
separation of 5 au, with all available metallicities. Main point: temperature dictates the main opacity source (Rayleigh and alkali dominate as temperature increases,
and CH4 and H2O dominate as temperature decreases). Metallicity dictates the total overall opacity of the atmosphere (atmosphere becomes darker for higher metal
content).

Figure 4. Representative albedo spectra showing the effect of varying cloud
profiles for a 1×solar composition planet located 5 au from a Sun-like star
(gravity=25 m s−2). Our cloud profiles are varied by increasing values of fsed,
the sedimentation efficiency. Main point: (1) large fsedʼs create vertically thin,
optically thin clouds and vice versa, (2) Clouds increase atmospheric brightness
toward 1 μm.

Figure 5. Representative albedo spectra showing the effect of phase when
clouds are also present. All models are for a 1×solar Jupiter-analogue located
5 au from a Sun-like star with a cloud profile with fsed=3. Main point: higher
phase (from full phase=0) observations decrease the overall brightness of the
directly imaged planet.

8 sklearn.model_selection.KFold()
9 sklearn.model_selection.cross_val_score()
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The Astronomical Journal, 156:158 (12pp), 2018 October Batalha et al.

Batalha et al. (2018) 
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• https://plandb.sioslab.com
• https://github.com/dsavransky/plandb.sioslab.com
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100% of the Code and Data I’ve shown here is 
available for public use

https://plandb.sioslab.com/
https://github.com/dsavransky/plandb.sioslab.com

