

Fuel Cost Heuristics for Starshade Retargeting Slew Maneuvers (126.04)

Gabriel J. Soto, Dmitry Savransky, Daniel Garrett, Dean Keithly, Christian Delacroix

> 235th Meeting of the American Astronomical Society Honolulu, Hawai'i 5th January 2020

Funded by NASA Grant No. NNG16PJ24C (SIT) and NASA JPL Strategic University Research Partnership RSA No. 1618976 Cornell University

Part I: What is a Starshade and How Do We Model It?

Starshade Configuration

- In-band starlight is suppressed
 - Off-axis exoplanet light collected directly
- Maintains constant separation distance s along target star line of sight (LOS)
- Tight tolerance in lateral direction
 - Starlight floods pupil plane if >1m from LOS

Telescope Orbit (Not Drawn to Scale)

Ecliptic ("Inertial") Frame

(Rotation only to show structure)

Telescope Orbit (Not Drawn to Scale)

Time Elapsed: 0.00 days

Time Elapsed: 0.00 days

Ecliptic ("Inertial") Frame (Rotation only to show structure) Rotating Frame (Earth and Sun stationary)

Starshade in the CR3BP Frame

$$\begin{split} \ddot{x} - 2\dot{y} &= \frac{\partial\Omega}{\partial x} + \mathbf{f}_{SRP} \cdot \hat{\mathbf{x}} & \Omega(x, y, z) = \frac{1}{2}(x^2 + y^2) + \frac{1 - \mu}{r_1} + \frac{\mu}{r_2}, \\ \ddot{y} + 2\dot{x} &= \frac{\partial\Omega}{\partial y} + \mathbf{f}_{SRP} \cdot \hat{\mathbf{y}} & r_1 = \sqrt{(\mu - x)^2 + y^2 + z^2}, \\ \ddot{z} &= \frac{\partial\Omega}{\partial z} + \mathbf{f}_{SRP} \cdot \hat{\mathbf{z}} & r_2 = \sqrt{(1 - \mu - x)^2 + y^2 + z^2} \end{split}$$

Impulsive Thrust Model

- Chemical Propulsion
- Instantaneous changes in velocity at t_i and t_j
- Solved as boundary value problem (BVP) using collocation algorithm

$$\Delta m = m_0 (1 - e^{-\frac{\Delta v}{g_0 I_{sp}}})$$

Thruster Models

Continuous Thrust Model

- Solar Electric Propulsion, Ion thruster, etc.
- Thrust can be throttled throughout trajectory
- Must add mass as state variable

Part II: How Can We Get Quick Fuel Cost Estimates using Starshade Dynamics?

Parameterizing Fuel Costs

$$\Delta v = f(i, j, \Delta t, t_0, T_{halo}, s)$$

(s/m)

2

Parameterizing Fuel Costs

- Stars arranged by ecliptic longitude
- Constant slew time of 20 days
- 3D cost matrix for multiple slew times

Impulsive Fuel Costs

Soto et al (2019) "Parameterizing the Search Space of Starshade Fuel Costs for Optimal Observation Schedules." JGCD

Parameterizing Fuel Costs - Errors

2v (m/s)

Impulsive Fuel Costs

- Assume constant halo and separation distance
- Before: 12 minutes to compute map at every decision step
 - 5 day time step
- Now: single map generated offline for any target list

Continuous Thrust Fuel Costs

- Use optimal control
 - Combine dynamics with optimization space
 - Introduce co-states (7 more) for each state – Lagrange multipliers
- Thruster throttle values are a function of states and costates
- Solve BVP with 14 boundary conditions instead of 6
- ε used to vary control law
 - ε=1 is minimum energy
 - ε=0 is minimum fuel

Continuous Thrust Fuel Costs

- Control law minimizes energy
- Fuel cost is directly a function of fuel mass used
- Fuel usage dependent on initial mass at start of maneuver

Continuous Thrust Fuel Costs

- Control law minimizes energy
- Fuel cost is directly a function of fuel mass used
- Fuel usage dependent on initial mass at start of maneuver
- More time dependent, too
 - Changes as telescope moves on halo orbit

Part III: How Do We Schedule Observations in a Mission Simulator and Impose Realistic Mission Constraints?

Keepout Constraints

Keepout Constraints

Keepout Constraints

Cost Function

Savransky et al (2010) "Analyzing the Designs of Planet-Finding Missions" *PASP* Soto et al (2019) "Parameterizing the Search Space of Starshade Fuel Costs for Optimal Observation Schedules." *JGCD*

Observation Schedule

Soto et al (2019) "Parameterizing the Search Space of Starshade Fuel Costs for Optimal Observation Schedules." JGCD

Mission Ensembles

25

Soto et al (2019) "Parameterizing the Search Space of Starshade Fuel Costs for Optimal Observation Schedules." JGCD

Conclusions

- Better parameterization of fuel cost calculation
- Realistic mission constraints placed on these calculations

- Enables faster end-to-end mission simulations
- Near Future:
 - Implement continuous thrust interpolants
 in EXOSIMS
 - Station-keeping model

EXOSIMS main page:

github.com/dsavransky/EXOSIMS

Work Funded by:

- NASA Grant No. NNG16PJ24C (SIT)
- NASA JPL Strategic University Research Partnership RSA No. 1618976

Gabriel J. Soto soto.sioslab.com

26

Cornell University

Backup Slides

Starshade Configuration

- No starlight enters telescope directly
 - Off-axis exoplanet light collected
- Maintains constant separation s along target star line of sight (LOS)
- Tight tolerance in lateral direction
 - Starlight floods pupil plane if >1m from LOS

Solar Radiation Pressure

Glassman et al (2011) "Creating optimal observation schedules for a starshade planet-finding mission" *IEEE* McIness (1999) *Solar Sailing: Technology, Dynamics, and Mission Applications* Soto et al (2019) "Parameterizing the Search Space of Starshade Fuel Costs for Optimal Observation Schedules." *JGCD*

Impulsive Fuel Costs - Errors

Parameterizing Fuel Costs - Errors

Retargeting Trajectories

Collocation:

- Cubic polynomial
- Equal at endpoints
- Creates mesh and minimizes residual error

Retargeting Trajectories

Error Analysis

Parameterizing Fuel Costs - Errors

$\Delta v_{INT} = f(\Delta t, t_0)|_{\psi_0}$

 $\Delta v_{BVP} = f(\psi, \Delta t, t_0)$ $\Delta v_{INT} = f(\psi, \Delta t, t_0)$

Cornell University

Scheduler

Cornell University

Completeness

- Joint Probability Density function
 - Star-planet brightness difference
 - Star-planet projected separation
- Based on instrument parameters, integrate over region
- Probability that a planet with assumed parameters is observable near a star

Garrett, D. and Savransky, D. (2016) "Analytical Formulation of the Single-Visit Completeness Joint Probability Density Function"