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Part I: What is a Starshade and How Do We 
Model It?
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Starshade Configuration

• In-band starlight is suppressed
• Off-axis exoplanet light collected directly

• Maintains constant separation distance s along 
target star line of sight (LOS)

• Tight tolerance in lateral direction
• Starlight floods pupil plane if >1m from LOS

Limited fuel on board

On a halo orbit
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Telescope Orbit (Not Drawn to Scale)

Ecliptic (“Inertial”) Frame
(Rotation only to show structure)
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Telescope Orbit (Not Drawn to Scale)

Ecliptic (“Inertial”) Frame Rotating Frame
(Earth and Sun stationary)(Rotation only to show structure)
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Starshade in the CR3BP Frame
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Flight Modes 
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Thruster Models
Impulsive Thrust Model

• Chemical Propulsion

• Instantaneous changes in velocity 
at ti and tj

• Solved as boundary value problem 
(BVP) using collocation algorithm
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Thruster Models

Continuous Thrust Model

• Solar Electric Propulsion, Ion thruster, etc.

• Thrust can be throttled throughout trajectory

• Must add mass as state variable
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Part II: How Can We Get Quick Fuel Cost 
Estimates using Starshade Dynamics?
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Parameterizing Fuel Costs
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Parameterizing Fuel Costs

• Stars arranged by ecliptic 
longitude

• Constant slew time of 20 
days

• 3D cost matrix for multiple 
slew times

Based on Kolemen and Kasdin (2012)  “Optimization of an occulter-based extrasolar-planet-imaging mission” JGCD
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Impulsive Fuel Costs

Soto et al (2019) “Parameterizing the Search Space of Starshade Fuel Costs for Optimal Observation Schedules.” JGCD 
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Parameterizing Fuel Costs - Errors
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Impulsive Fuel Costs

• Assume constant halo 
and separation 
distance

• Before: 12 minutes to 
compute map at every 
decision step
§ 5 day time step

• Now: single map 
generated offline for 
any target list

Soto et al (2019) “Parameterizing the Search Space of Starshade Fuel Costs for Optimal Observation Schedules.” JGCD 
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Continuous Thrust Fuel Costs
• Use optimal control

• Combine dynamics with optimization 
space

• Introduce co-states (7 more) for each 
state – Lagrange multipliers

• Thruster throttle values are a function of 
states and costates

• Solve BVP with 14 boundary conditions 
instead of 6 

• ε used to vary control law
• ε=1 is minimum energy
• ε=0 is minimum fuel
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Continuous Thrust Fuel Costs

• Control law minimizes energy

• Fuel cost is directly a function of 
fuel mass used

• Fuel usage dependent on initial 
mass at start of maneuver
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Continuous Thrust Fuel Costs

• Control law minimizes energy

• Fuel cost is directly a function of 
fuel mass used

• Fuel usage dependent on initial 
mass at start of maneuver

• More time dependent, too
• Changes as telescope moves 

on halo orbit
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Part III: How Do We Schedule Observations in a 
Mission Simulator and Impose 
Realistic Mission Constraints?
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Keepout Constraints



21

Cornell University

Keepout Constraints

Soto et al (2019) “Parameterizing the Search Space of Starshade Fuel Costs for Optimal Observation Schedules.” JGCD 
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Keepout Constraints
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Cost Function

Savransky et al (2010)  “Analyzing the Designs of Planet-Finding Missions” PASP
Soto et al (2019) “Parameterizing the Search Space of Starshade Fuel Costs for Optimal Observation Schedules.” JGCD 

Minimize 
fuel use for 
all stars j

Maximize 
completeness
for each star j

Prioritize stars 
that haven’t been 
observed yet

Prioritize stars 
designated for a 
revisit
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Observation Schedule
Start

Soto et al (2019) “Parameterizing the Search Space of Starshade Fuel Costs for Optimal Observation Schedules.” JGCD 
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Mission Ensembles

Soto et al (2019) “Parameterizing the Search Space of Starshade Fuel Costs for Optimal Observation Schedules.” JGCD 
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Conclusions
• Better parameterization of fuel cost 

calculation

• Realistic mission constraints placed on 
these calculations

EXOSIMS main page:
github.com/dsavransky/EXOSIMS

Gabriel J. Soto
soto.sioslab.com

Work Funded by:
• NASA Grant No. NNG16PJ24C (SIT)
• NASA JPL Strategic University 

Research Partnership RSA No. 
1618976

• Enables faster end-to-end mission simulations

• Near Future:
• Implement continuous thrust interpolants 

in EXOSIMS
• Station-keeping model
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Backup Slides
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Starshade Configuration

• No starlight enters telescope directly
• Off-axis exoplanet light collected

• Maintains constant separation s along target 
star line of sight (LOS)

• Tight tolerance in lateral direction
• Starlight floods pupil plane if >1m from LOS
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Solar Radiation Pressure

Glassman et al (2011) “Creating optimal observation schedules for a starshade planet-finding mission” IEEE

Soto et al (2019) “Parameterizing the Search Space of Starshade Fuel Costs for Optimal Observation Schedules.” JGCD 
McIness (1999) Solar Sailing: Technology, Dynamics, and Mission Applications
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Impulsive Fuel Costs - Errors

BVP Solution
Interpolated Solution
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Parameterizing Fuel Costs - Errors
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Retargeting Trajectories

Collocation:
• Cubic polynomial
• Equal at endpoints
• Creates mesh and 

minimizes residual error
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Retargeting Trajectories
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Error Analysis
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Parameterizing Fuel Costs - Errors
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Parameterizing Fuel Costs - Errors
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Scheduler
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Scheduler
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Completeness

Garrett, D. and Savransky, D. (2016) “Analytical Formulation of the Single-Visit Completeness Joint Probability Density Function”

• Joint Probability Density 
function

• Star-planet brightness 
difference

• Star-planet projected 
separation

• Based on instrument 
parameters, integrate 
over region

• Probability that a planet 
with assumed parameters 
is observable near a star


