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Motivation

The most successful methods for planet-finding (so far) are indirect
detections via observations of stars.

Ground-based indirect detection techniques are limited in the size of planets
they can find.

Finding Earth-like planets will require the development of both new
observational tools and analysis techniques.

We seek to analyze the effectiveness of well-developed filtering techniques for
orbit estimation in finding extra-solar planets and constraining their orbits.

Savransky and Kasdin (Princeton University) Paper AIAA-2009-6083 12 August 2009 2 / 23



Outline

1 Background
Planet Finding
Analyzing Astrometric Data

2 System Formulation
System Model
Filter Formulation

3 Results

4 Conclusions

Savransky and Kasdin (Princeton University) Paper AIAA-2009-6083 12 August 2009 3 / 23



Known Exoplanets and Discovery Methods
http://exoplanet.eu/catalog.php

Radial Velocity and
Astrometry

◮ 332 planets in 282
systems

◮ 61 planets confirmed via
Transit photometry

Imaging
◮ 11 planets in 9 planetary

systems

Microlensing and Pulsar
Timing

◮ 15 planets in 11
planetary systems
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Figure: Semi-major axis vs. Minimum planet mass for
known exoplanets.
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Astrometry and Radial Velocity

Astrometry

Uses optical interferometry to find
angular distance between two
objects

Use set of reference stars to find
position of target star with respect
to fixed centroid

Produces target star’s position in
plane of the sky

Radial Velocity

Uses spectroscopy to find
wavelengths of target star’s emitted
light

After accounting for other effects,
remaining changes in wavelength
are attributed to doppler effect

Produces target star’s velocity along
the line of sight

Both methods require us to infer the presence of planets from motion of the
target star - ‘Stellar Wobble’
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Periodograms and Fitting

Figure: Periodogram output.
[Black and Scargle, 1982]

Figure: Orbital fit to radial velocity data.
[Butler et al., 2006]

Treat astrometry and radial velocity as data streams containing periodic signals.
Find the periodicities and fit orbits. [Sozzetti, 2005]
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An Alternate Approach

Treat astrometry and radial velocity as partial observations of an underlying
dynamical system.

System evolution is governed by known laws, but parameters are unknown

Dynamic filtering can be used to reconstruct the parameters

Advantages:

Can use exact dynamic model

No a priori assumptions about planetary system

May be possible to simultaneously fit whole system

May be possible to detect long period orbits

Possible Issues:

Sensitive to noise and initial conditions

Sensitive to nonlinearities

Model dependent
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Dynamic Filtering

Astrometric (or RV) measurements (z) at time k are a function of a state
vector (x) describing the positions of all orbiting planets, and time, with
added noise n of covariance R :

zk = f(xk , k) + n

The solution to this problem is a minimization with respect to x for N
observations of the cost function:

J =

N
∑

k=1

[zk − f(xk , k)]
T
R−1 [zk − f(xk , k)]

subject to the constraints of the physical system (i.e. Newtonian dynamics)
and any inherent constraints in the formulation of the state (i.e., quaternion
definition, eccentricity bounds, etc.).

We can re-formulate this as a recursive filter, using each observation to
update the estimate of the underlying state, and our knowledge of the
physical system to propagate the state in time.
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System Model

Figure: Schematic of an astrometric observation.

rs = r0 + rµ − rsc + rs/G

Fundamental astrometric observation is r̂s (can be decomposed into two angles)
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Choice of State

Form of state vector determines form of dynamic updates, observation, and how
easy it is to constrain states from describing non-physical orbits.

Some options:

Position and velocity: x = [r ṙ]
T

Orbital elements: x =
[

a e I ω Ω ν
]T

Quaternions: x =
[

a e ǫ1 ǫ2 ǫ3 ǫ4 ν
]T

, ǫ21 + ǫ22 + ǫ23 + ǫ24 = 1

Angular Momentum and Eccentricity vector:

x =
[

L1 L2 L3 e1 e2 E
]T

, L = r× ṙ, e = 1
µ (ṙ× L− µr̂)

Position and velocity state proved most effective.

Fitting orbits and masses simultaneously proved too difficult - split into orbital
fitting with assumed masses and line search (or Monte Carlo) for masses.

Savransky and Kasdin (Princeton University) Paper AIAA-2009-6083 12 August 2009 11 / 23



Choice of State (cont.)

Let the state vector for a system of n planets be:

X =
[

r1 ṙ1 . . . rn ṙn rs/G ṙs/G
]T

with the state estimate propagation given by

r̈j = −
∑

k 6=j

µkrk/j

|rk/j |3
j = 1, . . . , n, s/G rk/j = rk − rj
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Choice of State (cont.)

Let the state vector for a system of n planets be:

X =
[

r1 ṙ1 . . . rn ṙn rs/G ṙs/G
]T

with the state estimate propagation given by

r̈j = −
∑

k 6=j

µkrk/j

|rk/j |3
j = 1, . . . , n, s/G rk/j = rk − rj

Augment state with constant parameters to account for unknown proper motion
and stellar distance

X̄ =
[

r1 ṙ1 . . . rn ṙn rs/G ṙs/G rµ ̟
]T

̟ =
a

‖r0‖
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Extended Kalman Filter
[Crassidis and Junkins, 2004]

˙̂x(t) = f(x̂(t), t) Ṗ(t) = F(t)P(t) + P(t)FT (t) +Q

x̂0 = E [x(0)] P0 = E [(x(0)− x̂0)(x(0)− x̂0)
T ]

F(t) = ∂f
∂x

∣

∣

x̂(t)
Q(t) = E [w(t)wT (τ)]

x̂+ki = x̂−k +Kki

(

yk − h(x̂+ki−1
)−Hki (x̂

−
k − x̂+ki−1

)
)

x̂+k0 = x̂−k

Kki = P−
k H

T
ki

(

HkiP
−
k H

T
ki
+ Rk

)−1
Hki =

∂h
∂x

∣

∣

x̂+
ki

P+
ki
= (I−KkiHki )P

−
k R(t) = E [v(t)vT (τ)]

To simplify observation equation, we expand r̂s to second order in ̟:

r̂s ≈ r̂0 +̟
(

r̃µ − r̃sc + r̃s/G − (̂r0 · r̃µ)̂r0 + (̂r0 · r̃sc )̂r0 − (̂r0 · r̃s/G )̂r0
)
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Some Modifications

Position and Velocity state makes it easy to describe open orbits
◮ Introduce inequality constraints of the form DX̄ ≤ d to constrain orbital

specific energy
◮ At each time step, solve quadratic programming problem of the form

minx̃
(

x̃
T
Wx̃ − 2X̄T

Wx̃
)

s.t. Dx̃ ≤ d [Simon and Simon, 2006]

Nonlinearities in state propagation make filter very sensitive to initial
conditions

◮ Attempt to constraint initial conditions via periodograms and other coarse
analysis of data

◮ Introduce random restarts when state or covariance diverges

Covariance estimate extrapolation is potential source of problems for
nonlinear state update

◮ Evaluated particle filter-like approach
◮ Generate set of random states distributed according to current covariance

estimate with mean of current state
◮ Propagate random states and find covariance

Savransky and Kasdin (Princeton University) Paper AIAA-2009-6083 12 August 2009 14 / 23



Outline

1 Background
Planet Finding
Analyzing Astrometric Data

2 System Formulation
System Model
Filter Formulation

3 Results

4 Conclusions

Savransky and Kasdin (Princeton University) Paper AIAA-2009-6083 12 August 2009 15 / 23



Simulated Data

1 M⊙ star at 10pc

15 years of data
◮ 10 years of radial velocity data
◮ 5 years of astrometric and radial

velocity data

Data spaced to simulate spacecraft
operation constraints

Radial velocity noise of up to 1 m/s

Astrometry noise of up to 0.82 µas 0 500 1000 1500
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Integrate equations of motion with Runge-Kutta-Nyström 8-6 variable time
step scheme [Papakostas and Tsitouras, 2000]
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Single Jupiter Mass Planet with Noise
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Single Earth Mass Planet with Noise
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Single Earth Mass Planet with Noise (cont.)
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Ambiguity in Planet Mass
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Jupiter Mass Planet in multi-body system with Noise
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Conclusions

The EKF implementation can fit orbits for Earth-sized planets

The EKF implementation cannot (so far) constrain masses to better than ±
50%.

The EKF implementation cannot (so far) fit Jupiter mass and Earth mass
planets simultaneously.

The large noise magnitude is the hardest part of this problem.

Better constraints on initial conditions would significantly reduce processing
time and improve filter efficiency.

Other filter designs should be investigated.
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