$C A R L S A G A N$
INSTITUTE

Solar Sail Trajectories and Orbit Phasing of Modular Spacecraft for Segmented Telescope Assembly about Sun-Earth L2

Gabriel Soto, Erik Gustafson, Dmitry Savransky, Jacob Shapiro, Dean Keithly

2019 AAS/AIAA Astrodynamics Specialist Conference
Paper Number: AAS 19-774
15 ${ }^{\text {th }}$ August 2019

Motivation

- LUVOIR and future space telescopes require bigger primary mirrors
- Easier to segment the mirrors
- Manufacturing costs reduced if fabricated in bulk
- $>15 \mathrm{~m}$ mirror required to observe main sequence turnoff point past the local group ${ }^{1}$
- 31m primary mirror, needs 840 mirrors 2

${ }_{31}$ neter Telescope

Mission Concept

Modular spacecraft start on Earth orbits with mirror as payload.

Solar sails unfurl and propel the mirrors to L2.

Spacecraft are assembled on a Lissajous orbit.

Mission Concept

Dynamical Model

CR3BP equations of motion

$$
\left.\dot{\mathbf{x}}=\mathbf{f}(\boldsymbol{t}, \mathbf{x}, \mathbf{u})=\left[\begin{array}{cc}
\dot{x} & \dot{x} \\
\dot{y} & \dot{y} \\
\dot{z} & \dot{z} \\
2 \dot{y}+\frac{\partial \Omega}{\partial x}+\mathbf{a}_{S} \cdot \hat{\mathbf{x}} \\
-2 \dot{\boldsymbol{x}}+\frac{\partial \Omega}{\partial y} & +\mathbf{a}_{S} \cdot \hat{\mathbf{y}} \\
\frac{\partial \Omega}{\partial z}+\mathbf{a}
\end{array}\right]_{S} \cdot \hat{\mathbf{z}} \quad\right]
$$

Effective potential and relative distances:

$$
\begin{aligned}
\Omega(x, y, z) & =\frac{1}{2}\left(x^{2}+y^{2}\right)+\frac{1-\mu}{r_{1}}+\frac{\mu}{r_{2}} \\
r_{1} & =\sqrt{(\mu+x)^{2}+y^{2}+z^{2}} \\
r_{2} & =\sqrt{(1-\mu-x)^{2}+y^{2}+z^{2}}
\end{aligned}
$$

Dynamical Model

Solar Sail acceleration term ${ }^{2}$

$$
\mathbf{a}_{S}=\beta \frac{1-\mu}{r_{1}^{2}}\left(\hat{\mathbf{r}}_{1} \cdot \hat{\mathbf{n}}\right)^{2} \hat{\mathbf{n}}
$$

Solar Sail performance factor

$$
\begin{aligned}
& \beta=\frac{L_{\odot}}{2 \pi G M_{\odot} \sigma}=\frac{\sigma^{*}}{\sigma} \\
& \sigma=\frac{m_{T}}{A_{s}}=\frac{m_{p}+m_{s}}{A_{s}}=\frac{m_{p}}{A_{s}}+\sigma_{s}
\end{aligned}
$$

Final Orbit - Lissajous

- Found through 2-step differential correction process ${ }^{3}$
- 177-day period, about SunEarth L2 ecliptic

Invariant Manifold Analysis

- State transition matrix found for periodic orbit
- Vertical Lyapunov

$$
\boldsymbol{\Phi}\left(T, t_{0}\right)\left\{\begin{array}{l}
\lambda_{1}>1 \\
\lambda_{2}=\frac{1}{\lambda_{1}} \\
\lambda_{3}=\lambda_{4}=1 \\
\lambda_{5}=\bar{\lambda}_{6},\left|\lambda_{5}\right|=1 .
\end{array}\right.
$$

Point on Vertical Lyapunov

$$
\mathbf{x}_{0}^{\mathcal{U}}\left(\mathbf{x}_{0}^{P}\right)=\underline{\mathbf{x}_{0}^{P}}+\epsilon \underline{\mathbf{Y}^{\mathcal{U}}\left(\mathbf{x}_{0}^{P}\right)}
$$

Invariant Manifold Analysis

Earth Escape Trajectories

- Energy maximization control law ${ }^{5}$ in rotating frame

${ }^{5}$ Coverstone, "Technique for Escape from Geosynchronous Transfer Orbit Using a Solar Sail," JGCD, 2003

Transfer to the Manifold

Transfer to the Manifold

- Convert "best" velocity costates to angles

$$
{ }^{\mathcal{S}} \hat{\boldsymbol{\lambda}}_{v}=\left[\begin{array}{l}
\lambda_{4, \mathcal{S}} \\
\lambda_{5, \mathcal{S}} \\
\lambda_{6, \mathcal{S}}
\end{array}\right]=\left[\begin{array}{c}
\cos \bar{\alpha} \\
\sin \bar{\alpha} \cos \bar{\delta} \\
\sin \bar{\alpha} \sin \bar{\delta}
\end{array}\right]
$$

- Solve a multiple shooting problem ${ }^{6}$ with $\mathrm{N}=10$ segments

- Start with large β and decrease after each convergent optimization
- scipy.minimize with SLSQP method

Transfer to the Lissajous

Launch Analysis

Design Reference Mission

Designing the Sail

$$
\begin{aligned}
\beta & =\frac{L_{\odot}}{2 \pi G M_{\odot} \sigma}=\frac{\sigma^{*}}{\sigma} \\
\sigma & =\frac{m_{T}}{A_{s}}=\frac{m_{p}+m_{s}}{A_{s}}=\frac{m_{p}}{A_{s}}+\sigma_{s}
\end{aligned}
$$

Full Trajectories from Earth to L2

Full Trajectories from Earth to L2

Rendezvous

Docking

(a)

(b)

(d)

(f)

Conclusions

- Simulate future launch schedules using 2016-2018 launch data
- 840 modules launched within 6-7 years
- All injected into Lissajous within 11 years
- Developed tools to simulate full mission from Earth to L2 Lissajous orbits
- Uses standard Python packages including numpy and scipy
- Design tools for selecting sail parameters coupled with Earth escape times
- Close encounters (within 1000 km) occur when spacecraft are n periods apart
- Solar sail rendezvous takes, on average, about 2 days

CARLSAGAN
INSTITUTE

Solar Sail Trajectories and Orbit Phasing of Modular Spacecraft for Segmented Telescope Assembly about Sun-Earth L2

Gabriel Soto, Erik Gustafson, Dmitry Savransky, Jacob Shapiro, Dean Keithly Paper Number: AAS 19-774
$15^{\text {th }}$ August 2019
This work was supported by NIAC Grant 80NSSC18K0869.
My website: soto.sioslab.com

Backup Slides

Observe Main Sequence Turnoff Point

- Observability of main sequence turnoff at different telescope scales
- SNR = 5
- 100 hours of integration time
- V and I bands
- Captures the local group
- 31 m telescope would effectively be sensitive throughout the entire observable universe.

From: LUVOIR Interim Report¹.
Figure by T. Brown.

Invariant Manifold Analysis

- Differential Correction

$$
\begin{aligned}
\dot{\mathbf{\Phi}}\left(t, t_{0}\right) & =\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}} \boldsymbol{\Phi}\left(t, t_{0}\right) \\
\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}} & =\left[\begin{array}{cc}
\mathbf{0}_{3 \times 3} & \mathbf{I}_{3 \times 3} \\
-\mathcal{U} & 2 \Delta
\end{array}\right]
\end{aligned}
$$

- Monodromy Matrix

$$
\boldsymbol{\Phi}\left(T, t_{0}\right)\left\{\begin{array}{l}
\lambda_{1}>1 \\
\lambda_{2}=\frac{1}{\lambda_{1}} \\
\lambda_{3}=\lambda_{4}=1 \\
\lambda_{5}=\bar{\lambda}_{6},\left|\lambda_{5}\right|=1
\end{array}\right.
$$

$$
\Delta=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \mathcal{U}=\left[\begin{array}{ccc}
\Omega_{x x} & \Omega_{x y} & \Omega_{x z} \\
\Omega_{y x} & \Omega_{y y} & \Omega_{y z} \\
\Omega_{z x} & \Omega_{z y} & \Omega_{z z}
\end{array}\right]
$$

$$
\mathbf{x}_{0}^{\mathcal{U}}\left(\mathbf{x}_{0}^{P}\right)=\underline{\mathbf{x}_{0}^{P}}+\epsilon \underline{\mathbf{Y}^{\mathcal{U}}\left(\mathbf{x}_{0}^{P}\right)}
$$

Orbit Phasing

Full Trajectories in the Inertial Frame

