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SOLAR SAIL TRAJECTORIES AND ORBIT PHASING OF
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In-space assembly of a segmented primary mirror is needed to produce a large
primary mirror bigger than LUVOIR, about 30m in diameter. We propose a novel
mission concept for a segmented space telescope where each identical mirror seg-
ment is placed on modular spacecraft. Individual modules are launched as pay-
loads of opportunity that self-assemble about the Sun-Earth L2 point. They use a
solar sail as a means of continuous thrust propulsion. After docking, the solar sails
are steered to overlap and create a planar sun shield for the telescope. We provide
the framework for minimizing the total mission assembly time.

INTRODUCTION

Future space telescopes will require larger primary mirrors to replicate and augment the sen-
sitivity and resolution capabilities of current space telescopes like Hubble and the future James
Webb Telescope. Manufacturing and launch costs prevent scaling up the size of not just monolithic
mirrors fabricated on Earth but also segmented mirrors assembled before launch.1 In-space assem-
bly of a segmented primary mirror is therefore needed to go beyond the ∼15 m diameter designs
currently being evaluated for the next generation of space telescopes such as the Large Ultravio-
let/Optical/Infrared Surveyor (LUVOIR) mission.2, 3 The LUVOIR interim report predicts that the
15 m design option is capable of observing the main sequence turnoff in the local group in the V and
I bands at 100 hours of integration time; a 31 m telescope could effectively perform similar obser-
vations throughout the observable universe.4 We propose a novel mission concept for a segmented
space telescope where each identical mirror segment is placed on modular spacecraft. Individual
modules are launched as payloads of opportunity that self-assemble about the Sun-Earth L2 point.
Each module uses a solar sail as a means of continuous-thrust propulsion. After docking, the solar
sails are steered to overlap and create a planar sun shield for the telescope.

We present a framework for solving for the full trajectories and minimizing total flight time
starting from Earth orbit to rendezvous on a Lissajous orbit in the circular three-body frame of the
Sun and Earth.5 The trajectories are broken up into segments:

1. Earth escape trajectory from an Earth orbit

2. Injection into and out of an invariant manifold directed towards L2
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3. Rendezvous between modules to within 1000 km for docking

To get initial conditions for the first trajectory segment, we generate a distribution of potential
Earth orbits for payloads of opportunity based on historical launch data from 2016-2018, and draw
random samples equal to the number of required launches.6 We solve the equations of motion for
this initial value problem with an energy maximization control law in the Sun-Earth rotating frame
until the Jacobi constant of an L2 manifold is reached (what we define as ”escape time”).7 We use
an ideal solar sail model in the dynamics.8 Earth escape trajectories are simulated for a range of
solar sail performance values β and produce a nearly one-to-one relationship with escape time. Sail
performance is also quantified by the size and mass of the sail and spacecraft; we create contours of
escape times over the sail parameters and use them as a design tool to determine final mirror sizes
and required sail masses to minimize total mission assembly time. The second trajectory segment
is achieved by branching off the Earth escape trajectories and targeting the closest point of the
invariant manifold. Optimal control theory is used to find minimum time trajectories to target the
manifold under the constraints of the equations of motion.8 A multiple shooting algorithm is used
after integration of the state and costate equations of motion to converge onto the manifold.9 TThese
shooting methods are conducted starting with large solar sail performance values that are decreased
(after each convergence) until the desired levels are achieved. The same process is conducted to
inject the spacecraft from the manifold to the desired L2 orbit. We will also present full mission
simulations from Earth orbit to L2 for a subset of the total number of modules.

Finally, the rendezvous segment is solved within an L2 quasi-periodic orbit. A Lissajous orbit
is chosen since its path nearly intersects itself multiple times as it revolves around L2; modules
inserted at different locations on the Lissajous encounter one another depending on orientation on
the Lissajous and clump together to form the final primary mirror. Rendezvous between individual
modules are simulated by placing two modules on different parts of a Lissajous orbit about L2 and
maneuvering one module towards another (assumed to be on the nominal orbit) using solar sail
propulsion. The modules will have a relative distance of 1000 km with minimal relative velocities
to facilitate docking maneuvers. These trajectories are solved using a multiple shooting strategy.9

TRAJECTORY OF A SINGLE SPACECRAFT

Dynamic Model of a Solar Sail

The trajectory design is framed within the Circular Three Body equations of motion between the
Sun and the Earth.5 The two primaries are assumed to be on circular orbits about their mutual center
of mass. A frameR—with orthogonal unit vectors x̂, ŷ, ẑ, Cartesian coordinates (x, y, z), and origin
O at the barycenter of the primary masses—is defined to rotate with the two primaries relative to
an inertial frame I with unit vectors î, ĵ, k̂, as shown in Figure 1. Non-dimensional units are used
for distance and time as stated in Ref. 5. The reduced mass fraction µ is defined as the smaller
primary mass scaled by the mass sum. The differential equations for each of the state variables are
therefore

ẋ = f(t,x) =

[
ṙ
v̇

]
=



ẋ
ẏ
ż

2ẏ + ∂Ω
∂x

−2ẋ+ ∂Ω
∂y

∂Ω
∂z


(1)
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where Ω is an effective potential term in the rotating frame dependent only on spatial coordinates:

Ω(x, y, z) =
1

2
(x2 + y2) +

1− µ
r1

+
µ

r2
. (2)

The terms r1 and r2 are the distances from each respective primary to the third object defined as

r1 =
√

(µ+ x)2 + y2 + z2 (3)

r2 =
√

(1− µ− x)2 + y2 + z2 . (4)

An energy integral of motion, the Jacobi integral, is

C = −(ẋ2 + ẏ2 + ż2)− 2Ω (5)

which is a function of the position and velocity coordinates in the rotating frame.

Earth

Sun

L2

Figure 1. Isometric view of the rotating frame including definition of clock and pitch
angles for a solar sail relative to the S-frame axes.

Each modular spacecraft is propelled by a solar sail in order to rendezvous and dock into the large
segmented primary mirror. We assume a square, ideal solar sail model where the solar radiation
pressure force is perfectly reflected from the surface of the sail.8, 10 The acceleration due to the
radiation pressure force on the solar sail is given by

aS = β
1− µ
r2

1

(r̂1 · n̂)2n̂ (6)

in canonical units. As shown in Figure 1, r̂1 is the position vector from the first primary to the
spacecraft and n̂ is a unit vector normal to the solar sail. We express the components of n̂ in an
auxiliary S frame:

ŝ1 = r̂1 (7)

ŝ2 =
ẑ× ŝ1

|ẑ× ŝ1|
(8)

ŝ3 = ŝ1 × ŝ2 (9)
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where ẑ is the unit vector perpendicular to the Earth and Sun’s orbit as defined in the R frame. In
this new S frame, the components of n̂ are represented as

n̂ =

 cos (α)
sin (α) cos (δ)
sin (α) sin (δ)

 (10)

where α and δ are spherical angles representing the pitch and clock of the solar sail attitude. With
this definition, the solar sail acceleration is rewritten as

aS = β
1− µ
r2

1

cos2(α)n̂ (11)

The parameter β is a non-dimensional number that represents the sail performance. It is defined as

β =
L�

2πGM�σ
=
σ∗

σ
(12)

where σ is the total areal loading factor of the spacecraft and σ∗ a critical loading factor defined by
L�, the solar luminosity at 1 AU, and M�.8 For our design study, the total spacecraft mass mT is
split into a payload mass and a solar sail mass: the latter constitutes the sail and all the structures
needed to pack and unfurl the sail, the former represents all other subsystems including the structure
and mirror payload. The total sail loading factor then becomes

σ =
mT

As
=
mp +ms

As
=
mp

As
+ σs (13)

where mp is the payload mass, ms is the sail and sail structure combined mass, As is the area of the
square sail, and σs is defined as the sail density.

The solar radiation pressure acceleration can be expressed as an additional acceleration on the
original Circular Three Body equations of motion as follows:

ẋ = f(t,x,u) =



ẋ
ẏ
ż

2ẏ + ∂Ω
∂x + aS · x̂

−2ẋ+ ∂Ω
∂y + aS · ŷ

∂Ω
∂z + aS · ẑ


(14)

where u is the vector of input variables
[
α δ

]T . The equations can be integrated forward or
backwards in time for a given set of input variables; we now select initial and final conditions, then
try to identify the control history of the pitch and clock angles that lead to our desired trajectories.

Parking Orbit for Mirror Assembly

A parking orbit is required to assemble the multitude of spacecraft into a ∼31 m primary mirror.
The geometries of quasi-periodic orbits about the Lagrange points, specifically L2, benefit this
assembly: individual spacecraft, injected into different portions of these orbits, are likely to come
into close proximity over time. We chose the Lissajous orbit, a quasi-periodic bifurcation of a fully
periodic Vertical Lyapunov orbit, as the parking orbit for the mirror assembly.
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We calculate periodic and quasi-periodic orbits in the C3BP equations of motion in Eq. (1) using
an iterative differential control algorithm. Differential control refines initial conditions to a desired
reference trajectory using the state transition matrix of the system dynamics. For the initial condi-
tions, we use a first-order approximation of the C3BP equations of motion that geometrically traces
a Lissajous-type trajectory. The state transition matrix maps the difference in state vectors between
the current trajectory and a desired trajectory as follows

δx1 = Φ(t1, t0)δx0 (15)

where δx0 and δx1 are the differences at times t0 and t1 respectively. The state transition matrix is
the solution to the variational differential equations

Φ̇(t, t0) =
∂f(x)

∂x
Φ(t, t0). (16)

The Jacobian in Equation (16) is

∂f(x)

∂x
=

[
03×3 I3×3

−U 2∆

]
(17)

where I3×3 is a 3 by 3 identity matrix,

∆ =

 0 1 0
−1 0 0
0 0 0

 , (18)

and

U =

Ωxx Ωxy Ωxz

Ωyx Ωyy Ωyz

Ωzx Ωzy Ωzz

 , (19)

the Hessian of the effective potential energy term in Equation (2). To obtain the state transition
matrix, we must therefore simultaneously solve 36 additional differential equations.

The quasi-periodic Lissajous orbits were found using a two-step differential correction process
given in Reference 11. The first order linear approximation of the Lissajous is used as an initial
guess and iterated until convergence. The two-step process divides the full trajectory into segments
and, using differential correction, iteratively connects them in position space and then in velocity
space until convergence. The final Lissajous orbit is shown in Figure 2.

Invariant Manifold from Earth to L2

Transfers to the Sun-Earth L2 are facilitated by targeting an invariant manifold of a periodic
orbit. They can extend to near Earth orbit and, once a spacecraft is injected into a manifold, the
natural dynamical flow guides them to L2 without the need of propulsion. We first create a vertical
Lyapunov orbit using a differential control algorithm. We then calculate an invariant manifold
through the monodromy matrix—the state transition matrix Φ(T, t0), where T is the period of the
orbit—of the vertical Lyapunov. The monodromy matrix has six eigenvalues with the following
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Figure 2. Lissajous trajectory about the Sun-Earth L2 point (in the rotating frame)
produced through two-step differential correction process shown for 2 and 20 revolu-
tions (left and right, respectively).

properties:5

λ1 > 1 (20)

λ2 =
1

λ1
(21)

λ3 = λ4 = 1 (22)

λ5 = λ̄6 , |λ5| = 1. (23)

The first two eigenvalues correspond to unstable and stable behavior, respectively. Their corre-
sponding eigenvectors are used to find the invariant manifolds extending towards Earth. A state on
the periodic orbit xP

0 can be offset from the periodic orbit along the direction of one of these eigen-
vectors and integrated forwards or backwards through time to create the desired trajectory. The new
initial state of the unstable manifold, for instance, is

xU0 (xP
0 ) = xP

0 + εYU (xP
0 ) (24)

where ε corresponds to a small displacement and YU is the unstable eigenvector. The displacements
are conducted at varying points along the periodic orbit to obtain an approximation of the invariant
manifold; a subset of these trajectories is shown in Figure 3. From the integration, it is noted that
a trajectory starting from the closest point on the manifold to the Earth and ending near the vertical
Lyapunov has a flight time of approximately 90 days.

Earth Escape Trajectories

After launch, each individual spacecraft will be injected onto an initial Earth-centered orbit. The
solar sails must accelerate the spacecraft sufficiently to match the position and velocity of the man-
ifold before entering the manifold towards the Sun-Earth L2. The Earth-escape trajectories are
computed starting from an initial Earth-centered orbit using a control law for energy maximization
as in References 7,12,13 but applied to the Circular Three Body Problem. The control law is found
through their same optimization of

max
n̂

aS(n̂) · Sv, (25)
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Figure 3. A subset of the vertical Lyapunov invariant manifold found by integrating
the unstable manifold backwards in time (left). The zoomed-in plot (right) shows the
vertical Lyapunov orbit and the initial conditions of the invariant manifold.

finding the direction of the normal sail vector needed to maximize the projection of the solar radia-
tion pressure acceleration on the velocity of the spacecraft, though the velocity is projected onto the
S frame defined in Equations (7), (8), and (9). The optimization is solved as a constrained parameter
optimization problem with the Hamiltonian

H = β
1− µ
r2

1

(r̂1 · n̂)2n̂ · ~v + η(n̂ · n̂− 1) (26)

where a Lagrange multiplier η is added for the constraint that the normal sail vector must be of unit
length. The optimal pointing of the normal vector is found by requiring that

∂H

∂n̂
= 0 (27)

which leads to

nx =
|vy|√

v2
y + ξ2(v2

y + v2
z)
, (28)

ny = ξnx, and (29)

nz =
vz
vy
ny (30)

where

ξ =
−3vxvy ± vy

√
9v2

x + 8(v2
y + v2

z)

4(v2
y + v2

z)
. (31)

Taking the positive sign in the ξ definition leads to an energy gain trajectory while the negative sign
leads to energy loss; a sample energy gain trajectory is shown in Figure 4 as a function of time. We
integrate initial conditions on an Earth orbit forwards in time using this energy gain control law;
an event function terminates the trajectory once the spacecraft matches the Jacobi constant of the
invariant manifold.
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Figure 4. Sample escape trajectory from Earth (left). Jacobi constant of a sample
Earth escape trajectory using an solar sail energy gain control law (right). Jacobi
constant for invariant manifold is also plotted for reference.

Entering the Manifold

The algorithms used to transfer a spacecraft onto and out from the invariant manifold use the same
techniques; we will therefore only summarize the former algorithm in depth as an example. The
transfer from the Earth-escape trajectory onto the invariant manifold is computationally challenging
to produce with the low-thrust propulsion of a solar sail. We therefore solve an easier problem and
iterate over it until we converge onto a trajectory with our desired parameters.

Optimal Control with an Unconstrained Thruster First, we model the propulsion of the space-
craft as an unconstrained thruster and solve the transfer trajectories indirectly using optimal control
theory. The control inputs are therefore

u = u1x̂ + u2ŷ + u3ẑ. (32)

which are the accelerations produced by the unconstrained thruster in theR frame.14 The equations
of motion for the unconstrained thruster are

ẋ = f(t,x,u) =



ẋ
ẏ
ż

2ẏ + ∂Ω
∂x + u1

−2ẋ+ ∂Ω
∂y + u2

∂Ω
∂z + u3


. (33)

The control effort of the thruster is minimized with the cost function

J =

∫ tF

t0

1

2
u · u dt, (34)

where u is the continuous control inputs throughout the trajectory and t0 and tF are the initial and
final time of the trajectory. We solve a constrained optimization problem through the Hamiltonian

HT (t,x,u, λ) =
1

2
u · u + λT f(t,x,u) (35)
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where we minimize the cost function in Equation (34) under the constraint that the trajectories
follow the equations of motion in Equation (33). The six Lagrange multipliers in λ are referred to
as costates; they are the solution to the differential equation

λ̇ = −

(
∂HT (t,x,u,λ)

∂x

)T

. (36)

Setting the partial derivative of the Hamiltonian with respect to the control inputs u to 0, as in
Equation (27), leads to the following optimal control law15

u1 = −λ4, (37)

u2 = −λ5, (38)

u3 = −λ6. (39)

With this new control law, we integrate the full equations of motion with initial conditions for the
states and costates. We compute the transfer trajectories by solving a boundary value problem with
12 initial and terminal boundary conditions: 6 position and velocity conditions each on the escape
trajectory and manifold respectively. These BVPs are solved using a collocation algorithm16 to find
the initial and final costates needed to realize the desired trajectory.

Lowest Thrust Solution Next, we conduct a coarse search algorithm to find the optimal transfer
conditions with the unconstrained thruster. After solving a particular BVP, we map the resultant
velocity costates to control inputs. We determine an optimal transfer to be one where the average
magnitude of the velocity costates—and therefore the accelerations caused by the unconstrained
thruster—throughout the trajectory to be minimized, allowing us to more easily transition to a low-
thrust optimization problem. For a particular escape trajectory, there are four parameters that can
be toggled to produce the lowest-thrust maneuver possible: the time tE that the spacecraft detaches
from the escape trajectory, the specific manifold branch nM that is being targeted, the time (or
location) of injection onto that specific branch of the manifold tM and the flight time ∆t. We model
the optimization as

min
tE ,nM ,tM ,∆t

1

∆t

∫ tE+∆t

tE

|λv| dt. (40)

We find the minimum thrust trajectory by solving BVPs over the four parameters. Quick yet suffi-
cient solutions can be found by randomly selecting nM , selecting the latest tE before reaching the
Jacobi constant of the manifold, and then performing a loop over the parameters tM and ∆t.

Iterating with a Solar Sail The ideal solar sail trajectories are solved using a multiple shooting
strategy:9 the trajectory is divided into N segments and the pitch and clock angles are held con-
stant throughout each trajectory. The N segments are individually and simultaneously integrated
forwards until the time at which the next segment begins (or, in the case of the last segment, until
the termination point). The optimization is conducted under the constraint that the final state of
the integrated trajectory and the initial state of the next trajectory must match. The optimization
variables are defined as follows:

w = [α0, δ0,x1, α1, δ1, . . . ,xN−2, αN−2, δN−2, αN−1, δN−1,∆t] (41)

where αn and δn are the pitch and clock angles of the nth segment, xn is the state vector of the
intermediate points between segments (not defined for the first or last segment), and ∆t is the total
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flight duration. Each segment is defined in equal portions of time from tE to tE + ∆t. We use
the optimal unconstrained thruster trajectory from the previous section as an initial guess for the
optimization variables. The velocity costates λv are converted into angles by projecting it onto the
S frame and rewriting the corresponding unit vector as pitch and clock angles as follows:

Sλ̂v =

λ4,S
λ5,S
λ6,S

 =

 cos ᾱ
sin ᾱ cos δ̄
sin ᾱ sin δ̄

 . (42)

These relative angles are used as an initial guess for the pitch and clock angles of the solar sail. The
multiple shooting optimization is conducted using the optimal unconstrained thruster BVP solutions
as an initial guess but with an infeasibly powerful sail (β = 1). Once that optimization converges
(meaning a continuous trajectory is formed out of the N segments), the multiple shooting process
is conducted again but with a lower β value using the previous optimization variables as an initial
guess. This is done iteratively until the desired final β converges. Future optimization will seek to
minimize the flight time of these transfers.

SIMULATING THE ENTIRE MISSION

A full mission simulation was conducted using the previous techniques to develop end-to-end
trajectories for multiple spacecraft with randomized initial conditions. A 31 m primary requires 840
hexagonal 1 m mirror segments.17 In the following sections we detail the methods for determining
launch schedules, designing the solar sail and results of sending multiple solar sails from Earth orbit
to the Lissajous.

Launch Scheduling

Predicting future launch capability is central to determining how many segments can be launched
as payloads of opportunity, and how many would have to be launched on rockets dedicated to this
mission. To predict future launch capability, a historical launch analysis was performed, which was
targeted at recent launches (2016-2018) from the United States. Launch data was collected from the
Orbital Launch Log,6 last updated in May of 2018. It includes data on launch dates, sites, vehicles,
and the Committee on Space Research (COSPAR) designation for each payload on the launch.
Payload data was collected from the Union of Concerned Scientists’ satellite catalogue,18 which
contains orbital elements and payload mass for most satellites in order. Satellites were matched to
launches using COSPAR designations.

For this analysis, launches from Kennedy Space Center/Cape Canaveral (KSC/CC), Wallops
(W), and Vandenburg Airforce Base (V/VS) were selected, if they took place between January
1st, 2016, and December 31st, 2017. Once the payloads for each launch were identified based on
their COSPAR designation, the mass of each payload, and the inclination and semi-major axis of
their orbit were collected. The semi major axis was used to calculate the C3 value for each payload.
Launches where payload data was missing were removed from the data pool. For launches with a
full data set, an array of total payload mass, inclination, and C3 value was calculated. The C3 value
for the launch was taken to be the a weighted average of the C3 for each payload, weighted by mass.
The inclination launch was taken to be the average inclination for each payload item.

Next, launches were categorized based on launch vehicle. Then, for each launch, a spare payload
was calculated. This calculation was performed conservatively, by defining spare payload as the
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difference between a given launch’s payload, and the maximum payload carried by the same launch
vehicle, on a launch with an equal or higher C3. This definition means that we considered many
flights to have zero spare payload, but ensures that the spare payload estimate is based off of the
payload capabilities that have been demonstrated by each launch vehicle. For recent years (2016,
2017), many launches took place on launch vehicle variants that only had one flight. Many launches
also took place on launch vehicles that had few enough flights that no spare payload could be
calculated. For 2016-2017, only the Falcon 9 and Atlas V 401 had enough launches to define spare
payload. Therefore, only these launch vehicles were used to predict future spare payload capacity.
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Figure 5. Histograms of randomly generated launch attributes. The figure on the left
is a histogram of launch C3, the center figure is a histogram of launch inclination, and
the figure on the right is a histogram of spare payload capacity.

To predict future launch capacity, launches were randomly generated based on the historical
launch data. The distribution of launch vehicles in 2016 and 2017 was used to randomly select
a launch vehicle from the pool of launch vehicles for which spare payload was calculated. Once a
launch was chosen, a launch profile was randomly selected from the launches for that vehicle from
2016 to 2017. The payload, spare payload, launch site, inclination, and c3 for that launch were
taken to be the values for the randomly generated launch. Figure 5 shows 1000 randomly generated
launches describing the projected distribution of future launches. The results from this analysis were
that the majority of launches have little to no spare payload, and are launched on geosynchronous
transfer orbits (GTO), which have little to no inclination. Fewer launches are to low Earth orbit, or
are launched to a high inclination or polar orbit, and 43% of launches have more than 500 kg of
spare payload.

To determine the number of modules that could be launched, random launches were generated
for 7 years, with each year containing 34 launches (the total number of relevant US launches in
2018, and therefore a conservative estimate that doesn’t project any growth in the orbital launch
market). The spare payloads were then run through the methods described previously; the current
rate of launches would be sufficient to launch all 840 modules in less than 7 years, with no dedicated
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launches required.

Escape Time as a Sail Design Metric

The time to escape the Earth, or at least reach an appropriate Jacobi constant, can be used as a
good metric for measuring the performance of the solar sail. Simulations of Earth escape trajec-
tories were conducted by seeding random initial Earth-centered orbits from the launch catalog and
deploying the solar sail by solving an IVP with the terminating event that the Jacobi constant of
the invariant manifold is reached. The beta values were varied for 200 simulations. The results are
presented in Figure 6, showing an inverse relation between beta and escape time.

Figure 6. Escape times are plotted on the left for 200 simulations of Earth escape
trajectories with varying β values. On the right is a contour plot of β values as a
function of sail length and payload masses, with β replaced by escape times. Heatmap
shows corresponding sail mass with sail density of 25g/m2.

As mentioned previously, the beta values can be parameterized using the payload mass, sail area
and sail density. A visualization of the parameter space for the sail loading is shown in Figure
6. Sail density is assumed a constant (value of 25g/m2) while payload mass and sail length are
varied in the 2D plot. The corresponding sail mass is shown in the color scale. Each point on the
grid corresponds to a beta value and, from Figure 6, the beta and escape time relationship is nearly
one-to-one. Contour lines are drawn on the figure for escape times corresponding to the shown beta
value. Parameters can be chosen to target feasible escape times under 6 years, for example.

Full Mission Simulation

We conducted a mission simulation for 840 spacecraft launching within a 7 year period. We
chose a 1 m mirror design and estimate the payload mass mP to be approximately 150 kg. With a
feasible escape time of approximately 2 years, the contour map in Figure 7 indicates a sail length of
approximately 35 m and sail mass of 45 kg (corresponding to a β of 0.01). The launch windows are
sampled from the gathered launch data and shown in Figure 7. The number of spacecraft launched
as payloads of opportunity are also shown for each launch. Almost every launch was performed
by the Falcon 9 vehicle because of the likelihood for spare payload corresponding to our spacecraft
mass.

Each trajectory, from Earth orbit to Lissajous, was computed using 16 parallel 3.7GHz cores
in approximately 27 hours. Unfortunately, not every solar sail converged at a β of 0.01; most of
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Figure 7. Histogram of launch schedule throughout simulated mission with number
of launched spacecraft shown per launch.

the trajectories shown converged at approximately 0.06. More refined optimization techniques are
needed to conclude whether this limitation is a physical one or one due to the algorithm used. We
also assumed that, whenever multiple satellite are launched at a single date, they all follow the same
trajectory. Future simulations may decide to stagger the solar sail deployment while on the initial
Earth orbit. A subset of trajectories are shown in Figure 8, approximately 44. The trajectories take
each module from Earth orbit, to an Earth escape orbit, transfer into the manifold, follow the natural
flow of the manifold, then branch off and transfer into the Lissajous orbit. A histogram is also shown
in Figure 9 showing the full mission flight times of all the modules. Every successful mission was
completed within less than 4.5 years total, meaning that in the worst case scenario, launching all
modules within a 7 year span, all modules would be on the Lissajous in under 12 years without
needing any dedicated launches.

TELESCOPE ASSEMBLY

Rendezvous

Analysis of module rendezvous is motivated by the need to determine which maneuvers can be
accomplished with solar sails. The first step in rendezvous analysis was identifying the phasing of
modules such that a close approach would be induced. To do this, a Lissajous orbit that would last
50 years was generated. This was necessary due to the quasi-periodic behaviour of the selected
Lissajous orbit. With this orbit created, the distance between each point on the orbit, and every
other point, was calculated. This was done with the goal of identifying locations on the orbit that
had a close approach, where two modules would come within 1000 km of each other. Points within
± 30 days of a given point on the orbit were ignored for this part of the analysis, to prevent close
approaches from being identified in parts of the Lissajous orbit immediately adjacent to a given
point. This analysis showed that close approaches would be induced if modules were phased by
177.5 days on the orbit. This means that if a module is randomly placed on the Lissajous orbit,
it will have a close approach with a module placed 177.5 days ahead of it on the orbit, or 177.5
days behind it. For the following rendezvous simulations, modules were placed near where close
approaches were identified, to reduce the amount of the trajectory that needed to be simulated.
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Figure 8. Plot of subset of mission trajectories from Earth orbit to Lissajous injection,
centered about the Earth. Total of 44 trajectories are shown.

Once two modules were appropriately placed on the Lissajous orbit, they were assigned roles.
One was arbitrarily designated as the leader, which would move passively on the Lissajous orbit,
and the other was designated as the follower, which uses control to match the leader’s position and
velocity. The first attempt at developing rendezvous trajectories involved modeling the propulsion
system as an unconstrained thruster as was done during the manifold injection trajectories. Ren-
dezvous trajectories and control inputs were generated using the same collocation algorithm, with
the time to rendezvous set to 1.45 days.

These trajectories and control inputs were used as the initial guess for the multiple shooting
method, which was used to solve for the trajectories and control input for a module with a solar
sail. Additionally, the multiple shooting method was set to minimize time to rendezvous, and used
Equation (43) as the cost function to minimize. Here, t0 is the time at close approach, and tf
is the time at rendezvous. In contrast to the unconstrained thruster optimal control solution, this
method set the time at rendezvous, tf , as a free parameter, to be updated every iteration along with
the positions and velocities at each segment. Since the position and velocity of the lead satellite
at rendezvous is a function of tf , these values were updated as final time changed, requiring the
terminal constraint equation to be updated every iteration. The terminal constraint can be seen in
Equation 44. Here, x1(tf ) and ẋ1(tf ) are the position and velocity of the lead satellite at tf . x2(tf )
and ẋ2(tf ) are the position and velocity of the follower at the final time.
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Figure 9. Histogram of module flight times from Earth to Lissajous.

L =

∫ tf

t0

dt (43)

[
x1(tf )− x2(tf )
ẋ1(tf )− ẋ2(tf )

]
= 0 (44)

Rendezvous were generated throughout the Lissajous trajectory, to ensure the solar sail was capable
of producing a rendezvous trajectory regardless of the direction of the initial and final velocity, as
this varies greatly depending on the location on the Lissajous orbit.
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Figure 10. Histogram of the time to rendezvous for modules using a solar sail. The
x axis is the time to rendezvous in days, the blue bar represents the percentage of
simulated rendezvous that took that amount of time to rendezvous.

Simulations of 100 rendezvous were conducted; a histogram of the time to rendezvous for these
simulations can be seen in Figure 10. This indicates that modules can rendezvous regardless of their
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position on the orbit. A peak is identified for final times between 1.5 days and 2 days. The mul-
tiple shooting algorithm is not deterministic; increasing the number iterations for each rendezvous
increases the chances of identifying the true minimum time trajectory. However, the majority of the
rendezvous events simulated have a time to rendezvous greater than the initial guess of 1.45, so it
is reasonable to assume that this is close to the true minimum time to rendezvous for most of the
simulated events, as no rendezvous events were found to have a time to rendezvous of less that one
day.

Docking

Analysis of the docking procedure is required to understand how larger groups of modules should
rendezvous. The concept of operations for this mission calls for the assembly of clusters of mod-
ules, which will then rendezvous with one another for the final assembly of the primary mirror. The
first step in assessing docking is to identify how many modules should be in a cluster before it can
rendezvous for final assembly. It is desirable to have a low number of ”precision docking events”,
where a module needs to navigate to a specific location on a cluster. However, it is necessary for
some number of precision docking events to take place, to prevent vacant positions from being sur-
rounded and made inaccessible, and to ensure the correct final mirror shape is created. Additionally,
it is desirable for docking events to occur on docking sites where the vacant position is adjacent to
three modules. When three modules are adjacent to a docking site, the incoming trajectory can be
anywhere within a 60 degree arc, allowing for some error in the incoming module’s trajectory. If
four modules are adjacent to a docking site, there is only one allowable approach direction, allowing
for no error in the approach trajectory. This can be seen in Figure 11.

60˚

Figure 11. Top view of modules docking in two configurations. In the configuration
on the left, an incoming module’s trajectory may be anywhere within a 60 degree arc.
However, in the configuration on the right, an incoming module only has one available
trajectory.

These conditions produces a simple docking scheme, where modules are allowed to randomly add
themselves to any available docking site on a cluster, unless there is a docking site that is adjacent
to three modules. In that case, a precision docking maneuver must take place, where the incoming
module must dock at the site with three adjacent modules. Figure 12 shows a cluster growing using
this scheme. Each frame shows the state after 5 modules have been added. This docking scheme,
while simple, prevents difficult docking situations, while still allowing some modules to dock to at
random sites.
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(a) (b)

(c) (d)

(e) (f)

Figure 12. Top views of growing clusters of modules. Frame (a) shows the cluster
after the first five modules have docked, and frames (b) through (f) show the state
sequentially, with five modules docking in between each frame. The black hexagons
represent docked modules, and the red dashed hexagons represent the available dock-
ing sites.

CONCLUSION

We demonstrate a basic concept of operations for the in-space autonomous assembly of modular
spacecraft about Sun-Earth L2. Each spacecraft carries a 1m sized hexagonal mirror and, when
all 840 are assembled, form a 31 m primary mirror for a space telescope. With our conservative
projection of future launches, all spacecraft can be launched within a period of 7 years as payloads
of opportunity. Transfers from Earth to the Sun-Earth L2 Lissajous orbit have a flight time of
approximately 4 years if using a 35m solar sail and a 200kg spacecraft (including sail). Rendezvous
trajectories can also be achieved within days. Full assembly can be accomplished within an 11-12
year period. Further work is needed to refine the transfers to the manifold, including a higher level
optimization which incorporates the initial Earth orbit.
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