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Motivation

Multiple teams are currently developing direct detection planet-finding
mission concepts.

Multiple different instrument designs, mission scenarios and observing
strategies have been proposed.

We require an objective comparison of the capabilities and expected science
yield of mission hardware and mission rules.

We have created an analysis framework based on end-to-end mission
simulations and applied it to several mission concepts.
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Direct Detection Platforms

Coronagraphs - multiple methods
exist for removing light from the
star entering a telescope’s aperture.

Occulters - a ‘starshade’ is flown
along with the telescope to block
out star-light.

Figure: Pupil mask for high contrast
imaging. [Vanderbei et al., 2003]

Figure: Schematic of a PIAA system.
[Guyon, 2003]

Figure: Proposed star-shade design.
[Spergel et al., 2009]
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Instrument Outputs and Constraints
[Brown, 2005, Lindler, 2007]

Limiting ∆mag - maximum achievable difference in brightness between star
and planet.
Inner working angle (IWA) - minimum angular separation between a star and
planet.
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Figure: Schematic of a planetary observation.

The red circle represents the
instrument’s projected IWA.

The planet is sufficiently
illuminated only on the
green portion of the orbit.

Detection occurs on the
green part of the orbit
outside the red circle.
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Mission Analysis

Create descriptions of instruments, planetary orbits/properties and
observations.

Generate full mission simulations (timelines of observations and their
outcomes).

From these mission ensembles, extract distributions of science
yield/performance metrics:

◮ All Detections - Total number of successful planetary observations throughout
a whole mission simulation (includes repeat detections).

◮ Unique Detections - Number of individual planets found during a mission
simulation.

◮ Unique Targets - Number of individual stars observed during a mission
simulation.

◮ Spectral Characterizations - Number of observations where the planet was
observable for sufficient time to integrate to a predefined S/N level.

◮ Propellant Used - For occulters, the amount of propellant used by the
starshade for slewing and stationkeeping.
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Visits as a Graph
[Savransky and Kasdin, 2008]

Figure: Visit graph for 3 target pool.

Each set of possible transitions on
the visit graph can be represented
as a weighted adjacency matrix.

The weights of the matrix entries
represent the ‘cost’ of choosing the
next star.

The cost of transitioning from target i to target j is calculated as:

Aij =
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cos−1(ui ·uj )

2π
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Automated Visit Order
The amount of time spent on any one target depends on whether a planet is
detected.

The adjacency matrix must be continuously updated.
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Figure: Automatically generated visit order.
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Test Cases and Requirements

Common Elements

1, 4, 8, 16m circular telescope

5 year mission

Launch vehicle capacity = 6300kg
(or unlimited)

High QE, low readnoise CCDs

Same propulsion subsystems for all
occulters.

2,3 λ/D Internal Coronograph

Idealized PIAA

Maximum throughput of 0.8

Simultaneously maximize number of
visited targets and probability of
detecting planets with importance
weighting of 2:1 towards finding
planets.

Acquire one full spectrum
(250-1000nm) for each uniquely
found planet, to SN = 11 at 760nm
O2 line, with R = 70.

Attempt at least four detections of
each discovered planet at orbital
separations of at least 10o .
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Occulter Test Cases

Telescope Occulter Starshade Separation 50% Throughput
Diameter (m) Type Radius (m) Distance (km) IWA (mas)

4
SDO 25.6 70400 59
MDO 20 55000/35000 57.5

8
SDO 35.2 96800 56
MDO 27.2 74800/52360 53

16m MDO 43.2 118800/83160 47

Telescope Occulter Starshade Petal
Diameter (m) Type Mass (kg) Length (m)

4
SDO 4200 19
MDO 3370 10

8
SDO 7180 24
MDO 4915 13.5

16m MDO 10022 21.5
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Comparison of Mission Concepts - Unique Detections
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Comparison of Mission Concepts - Summary at η⊕ = 1

Unique Detections

SDO MDO 2λ/D 3λ/D

1 m X 25 X X

4 m 31 32 40 25

8 m 18 37 66 54

16 m X 12 102 99

Full Spectra

SDO MDO 2λ/D 3λ/D

1 m X 7 X X

4 m 24 18 17 5

8 m 15 18 44 24

16 m X 6 96 80
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First Detections
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Conclusions

At 4m scale, occulter and coronagraph performances are comparable.
◮ Coronagraphs will get more total detections.
◮ Occulters will produce more full spectra.

A 1 to 2 m telescope with an occulter is a viable option for Earth-twin finding.

At 8m and above, coronagraphs outperform single occulters - need to study
multiple occulter systems and better propulsion systems.
[Hunyadi et al., 2007]

Coronagraphs are likely to produce results earlier in the mission than
occulters.

More study is needed on putting together the best possible target lists.
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Local Optimality of Decision Modeling
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Figure: Comparison of scientific yield from automated visit order selection and
randomized visit order. The blue bars are histograms of results from 1000 mission
simulations using randomized visit order in one universe. The red dashed lines are results
from the automated visit order for the same universe, and the green dashed lines are
results obtained by always going to the next highest completeness target.
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Local Optimality of Decision Modeling
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Figure: Occulter propellant use (in kg) vs. the number of unique planet detections for
1000 mission simulations using randomized visit order in one universe. The red point
represents the mission generated using the automated visit order for the same universe
and the green point represents the mission generated by always going to the next highest
completeness target.
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Observation Times and Target Pools

Telescope Suppression Mission Available
Diameter (m) System Portion Targets

4

SDO 19% 112
MDO 20% 117
2 λ/D 50 % 173
3 λ/D 50 % 110

8

SDO 7% 140
MDO 8% 157
2 λ/D 50 % 253
3 λ/D 50 % 230

16
MDO 4% 242
2 λ/D 50 % 385
3 λ/D 50 % 351
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Comparison of Mission Concepts with 4m Telescope
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Comparison of Multiple Distance Occulters Systems
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Comparison of Coronagraph Systems
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Comparison of of Mission Concepts with 8m Telescope
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Partial Spectra
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Repeated Detections
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Figure: Histograms of percent detected planets with repeated detections.
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Cumulative Unique Detections in First Year
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Figure: Histograms of percent detected planets with repeated detections.
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First Detection for 4m MDO
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First Detection for 4m 2 λ/D Coronagraph
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First Detection for 4m 3 λ/D Coronagraph
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