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ABSTRACT

Autonomous mobile robot nowadays has more and more applications, ranging

from everyday application such as food delivery to scientific applications. In

many operation scenario, the robot needs to move to a target with high preci-

sion under disturbances, sensor noises and many other restrictions. The CCTA-

p project presents such a complex setting for the mobile robot to operate, in

which a differential drive robot traverses telescope’s mirrors to place a measure-

ment device to a set of predefined measurement points. This thesis addresses

some of challenges aroused from the project’s requirements, such as arriving

at the target with very high precision and handling different emergency situ-

ations, through the designs of a localization algorithm and a motion control

scheme. Meanwhile, the thesis also presents a novel approach for indoor local-

ization by fusing inertial measurements with the laser based external measure-

ment (Etalon) through Kalman Filter. The performance of the designs would be

studied in a customizely developed simulation software.
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CHAPTER 1

INTRODUCTION

1.1 Background

The Cerro Chajnantor Atacama Telescope prime (CCAT-p) is a 6-meter diameter

telescope that starts to operate in 2021 and is sited at 5600 meters elevation on

Cerro Chajnantor in the Atacama desert of northern Chile [5]. The telescope

consists of two large mirror made of aluminum panels. Figure 1.1 shows the

telescope structure. The primary mirror (M1) has 87 panels and is 30◦ inclined;

the secondary mirror (M2) has 78 panels and is 20◦ overhang [7]. The orientation

of each panel can be adjusted independently by the five adjusters underneath.

The surfaces of both M1 and M2 mirrors are not planar, but have curvatures that

can be described by a polynomial equation of the general form,

z(x, y) =

k∑
i=0

k∑
j=0

ai j(
x

RN
)i(

y
RN

) j (1.1)

where z is the sag at position (x, y) in the mirror frame, RN is the normal-

ization radius, k is the maximum polynomial power, and ai j are the coefficients

[8].

The observatory is interested to know if the orientations of the panels are in

the expected alignment, which could be done by measuring whether the loca-

tions of the nine measurement points on the panel are in the expected locations in

space. A retro-reflector (i.e. puck) is to be placed on the measurement point so

that the laser based measurement system (i.e. Etalon) could measure the posi-

tion of the puck. As such, an autonomous system is designed to carry the puck
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Figure 1.1: The telescope in the observatory. The telescope has two mirrors, M1
and M2 mirrors as labeled in the diagram.

and traverse to all the measurements points so that the Etalon measurement

could be carried out. One interesting and challenging aspect of this project is

that since the M2 mirror is 20◦ overhang, to traverse the M2 mirror the robot

essentially needs to ”climb the wall”. To stay on the overhang mirror, the robot

uses two powerful fans to push the itself onto the mirror, as shown in figure 1.2.

1.1.1 Requirements

The system needs to address several requirements.

• The Etalon measurement system requires that the puck should be placed

within 1cm of the measurement point [6].
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Figure 1.2: The rendering CAD model of the differential drive robot.

• The robot should prevent itself from falling off the edge of the mirror.

• At each measurement point, the robot should stop for measurement and

send a start measurement request to the Etalon multi-line server, then re-

sume traversing to the next measurement point.

• The total operation time to traverse the entire mirror should not exceed

one hour.

• The robot’s total mass must not exceed 1kg.

1.2 Problem Statement

While the design of the system involves many aspects including structural de-

sign, electronics, motion control, localization and software development, this

thesis focuses on the designs of the autonomous functionalities. More precisely,
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the purpose of this thesis is to present the designs of the localization system

and the motion control system that address the functional requirements stated

previously. Meanwhile, the thesis would discuss some unique features of the

implementations, and analyze the effectiveness of the designs through a simu-

lation software. The thesis also presents a novel approach for indoor localiza-

tion by fusing inertial measurement system (INS) with the laser based external

measurement (Etalon) through Kalman Filter.

1.3 Design Overview

The system consists of a differential drive robot with on-board electronics, an

off-board computer, and the Etalon system. The computationally heavy tasks

such as localization, motion control and decision making are handled by the

off-board computer, while the on-board computer focus on simple tasks such

as sending driving commands and fan speed commands, and formating and

passing sensor data from the data acquisition device to the off-board computer.

Each remote component communicates with each other through TCP/IP proto-

col, while the on-board sub-components interface with each other through serial

and I2C, as shown in figure 1.3.

For the system to perform the autonomous functionalities, the design con-

sists of four components: localization, motion control with way-points track-

ing, path-planning, and a continuously running loop checking for dangerous

conditions (i.e. danger loop). Figure 1.4 shows the dependencies between the

components. The localization component estimates the robot’s current pose by

continuously filtering the sensor data and occasionally fusing with Etalon mea-
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Figure 1.3: The electronic components.

surement and the orientation computed from edge sensors. The path-planning

component defines a path consisted of all the measurement points (783 for M1

and 702 for M2). The motion control component computes the next driving

command based on the distance from robot’s current position to the next mea-

surement point in the path, and the flags from the danger loop, which runs in a

separate process and uses sensor data to check for various of conditions.

Figure 1.4: An overview of the system design.
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1.4 Review of Related Work

One of the major challenges that the design needs to address is to provide highly

precise localization estimates during the full one-hour operation, under the con-

straints and requirements of this project. Many approaches exist for localizing

a robot in the indoor environment. This section reviews some of the common

approaches and suggests why the approach proposed in this thesis is the most

suitable solution for this project.

Inertial navigation system (INS) is the common approach for indoor local-

ization. INS uses sensors such as the Inertial Measurement Unit (IMU) and the

encoder to compute the position by dead-reckoning, without any knowledge of

external references [1]. The INS approach has very high precision for short dis-

tance localization. However, INS would suffer from drift and lose its precision

dramatically in long distance localization. Therefore, INS often fuses with exter-

nal measurements such as GPS and visual based measurement to eliminate the

accumulated errors, while still being able to provide high precision localization

in between short distance.

There are several choices of external measurements. The global positioning

system (GPS) is an common approach for fusing with the INS. However, the

robot operates in an indoor environment, which makes it not suitable to use the

GPS, since the satellite signal is attenuated by the construction materials and

obstructions [12], such as the dome of the observatory. The precision of GPS

in the indoor environment averages at 5 − 50 meters, which is far below the

required precision for this project [4]. Therefore, GPS is not applicable.

The other common solution for indoor localization is Wi-Fi positioning sys-
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tem. Many techniques exist for the Wi-Fi based localization, but they all fail to

meet the precision requirement for this project. For example, the first indoor

Wi-Fi positioning system, RADAR, has precision of 2 to 3 meters [2]; other tech-

niques such as Horus system and grid-based Bayesian system have precision of

at most 1 meter for most of the time [13] [14].

Visual-based measurement that uses camera to measure the relative position

of the camera against a set of known external features is another common ap-

proach. However, when applied to this project, the visual-based approach has

a few drawbacks. First, since the robot has a strict mass limit of less than one

kilogram, and a camera usually has mass more than 100 grams, installing a cam-

era on-board would add significant weights to the mass budget. Second, Etalon

requires that the puck needs to have at least 120◦ of clearance around the z-axis

and no structures are to cross the clearance [6]. Therefore, the on-board camera

could not extend above the puck clearance and the field-of-view (FOV) of the

camera could be limited. If an off-board camera system is to be used to track the

robot’s position on the mirror, many cameras are needed to be installed in the

observatory, which would drastically increase the overall cost of the system.

In comparison with all the choices above, the Etalon measurement is read-

ily available at each measurement point, and thus requires no additional sen-

sors either on-board or off-board, which would save both the mass-budget and

the overall cost. The Etalon measurement also has micrometer level precision,

which could effectively eliminate the accumulated error in the position estima-

tion.
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1.5 Thesis Layout

In chapter 2, the thesis would present the localization system in detail, includ-

ing the Kalman Filter used to continuously filter the IMU and encoder data, the

external measurements used to eliminate the accumulated error, and the im-

plementation that addresses the problem of asynchronous measurement. The

chapter would demonstrate and analyze the performance of the localization

system through the simulation software. Chapter 3 would present the motion

control scheme, including path planning, the design of closed-loop control us-

ing waypoint-tracking logic and PID controller, and the danger loop which de-

termines when to respond to dangerous situations. The chapter would also

demonstrate the effectiveness of the motion control scheme in the simulation

and analyze the performances.
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CHAPTER 2

LOCALIZATION

2.1 Algorithm

The purpose of the localization algorithm is to estimate the position and the

orientation of the robot on each panel. To be more specific, the output of the

algorithm is the pose (x, y, θ)p, where the subscript p stands for panel frame,

which is defined in figure 2.2.

Meanwhile, the context of this project presents some unique challenges for

performing localization on the robot. First, as explained in section 1.4, the choice

of sensors available for localization is limited due to the project’s requirements

and practical design choices. Second, the robot is required to localize itself with

one centimeter precision so that the measurement at the measurement point is

meaningful. Third, the localization algorithm needs to maintain its precision

during the full one-hour operation. A Kalman Filter with sensors such as an

encoder and accelerometer that only inform the robot’s relative position to the

previous time step would accumulate large error over time. Therefore, a lo-

calization algorithm is designed based on Kalman Filter to fuse encoder data

and Inertial Measurement Unit (IMU) data, and occasionally the high precision

Etalon measurement data, which could be used to inform the robot’s position on

the panel, (x, y)p with proper frame transformations, to eliminate the accumu-

lated error over time and provide high precision estimates of the robot’s pose

on the panel over the course of the operation.
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2.1.1 Reference Frames

There are four reference frames that need to be specified to describe the local-

ization algorithm.

First, the origin of the robot frame is attached to the robot’s geometric center.

The x − y plane is parallel to the plane of the chassis, which is assumed to be a

rigid two-dimensional plane. The positive x-axis points along the heading of the

robot, while the y-axis is perpendicular to the x-axis, with it’s direction following

the right-hand rule. The robot frame is shown in figure 2.1. In all subsequent

sections, the quantities in robot frame are denoted with the subscript b.

Second, the origin of the panel frame is attached to the center measurement

point of the panel. The panel is assumed to be a rigid two-dimensional plane.

The x-axis is pointing along horizontal direction, while the y-axis is pointing

along vertical direction, with its direction following the right-hand rule. The

panel frame is shown in figure 2.2. In all subsequent sections, the quantities in

the panel frame are denoted with the subscript p. The panel frames in all panels

are defined in the same method.

The mirror frame is attached to the center of the mirror. Figure 2.3 shows the

two mirror frames of the M1 and M2 mirrors. The mirror frame is used to de-

scribe the position of a point on the mirror surface, which is defined in equation

1.1. The world frame is an inertial reference frame with its origin attached to

the intersection of the primary mirror’s boresight axis and secondary mirror’s

EL axis, as shown in figure 2.3. The Etalon measurement is represented in the

world frame.
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Figure 2.1: The top-down view of the robot and the attached robot frame. The
origin of the frame, O, is attached to the robot’s center of mass. The x-axis points
along the heading of the robot, while the y-axis is perpendicular to the x-axis
and follows the right-hand rule.

2.1.2 Kalman Filter

Kalman Filter is a Gaussian Filter that estimates the state recursively[10]. The

state that Kalman Filter estimates is shown in equation 2.1,

q =



vb

ab

θp

ωp


(2.1)

where:
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Figure 2.2: The top-down view of the panel and the attached panel frame. The
origin of the frame is attached to the panel’s central measurement point. The
x-axis points along the horizontal direction, while the y-axis points along the
vertical direction.

vb = the forward velocity in robot’s frame x-axis, [m/s]

ab = the linear acceleration in robot’s frame x-axis, [m2/s]

θp = the orientation of the robot’s frame x-axis with respect to panel frame’s

x-axis, [rad]

ωp = the angular velocity of the robot’s frame x-axis with respect to panel

frame’s x-axis, [rad/s]

and the state is propagated from time step k to the time step k + 1 following

equation set 2.2.
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Figure 2.3: The world frame and the two mirror frames of the primary (M1) and
secondary (M2) mirror.

vb,k+1 = vb,k + ab,k∆t

ab,k+1 = ab,k

θp,k+1 = θp,k + ωp,k∆t

ωp,k+1 = ωp,k

(2.2)

The measurement vector is shown in equation 2.3,
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z =



ax

ωR

ωL

θz


(2.3)

where:

ax = the linear acceleration in robot’s frame x-axis, [m2/s]

θz = the orientation of the robot’s frame x-axis with respect to panel frame’s

x-axis, [rad]

ωR = the angular velocity of the robot’s right wheel, [rad/s]

ωL = the angular velocity of the robot’s left wheel, [rad/s]

and the state and measurement are related by the measurement function in

equation 2.4.



ax

ωR

ωL

θz


=



0 1 0 0

1/r 0 0 L/2r

1/r 0 0 −L/2r

0 0 1 0





vb

ab

θp

ωp


(2.4)

where:

r = the wheel’s radius, [m]

L = the width of the wheel base, [m]

Since the both state propagation and the measurement function can be de-

scribed by sets of linear equations, the linearity assumptions of Kalman Filter

are obeyed [10].
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One iteration of state estimation in Kalman Filter involves two steps: predic-

tion and update [3]. The state prediction follows equation 2.5,

x̄k+1 = Fkxk + Gkuk+1 (2.5)

where the state is predicted using the linear state propagation model, as rep-

resented by the matrix Fk. uk+1 is the input to the system at time step k + 1. The

state co-variance prediction follows equation 2.6,

P̄k+1 = FkPkFT
k + Qk (2.6)

where Pk denotes the state co-variance matrix, and Qk denotes the co-

variance matrix of the process noise. The measurement prediction follows equa-

tion 2.7,

z̄k+1 = Hk+1x̄k+1 (2.7)

where z̄k+1 is the predicted measurement given the predicted state, and H

is the measurement model that relates the state and the measurement. All the

overhead bar denotes the prediction value.

Equation 2.8 computes the Kalman gain,

Wk+1 = P̄k+1HT
k+1(Hk+1P̄k+1HT

k+1 + Rk+1)−1 (2.8)

where Wk+1 denotes the Kalman gain, and Rk+1 denotes the co-variance ma-
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trix of the measurement noise. The state update follows equation 2.9,

xk+1 = x̄k+1 + Wk+1(zk+1 − z̄k+1) (2.9)

where zk+1 is the actual measurement vector. The state co-variance follows

equation 2.10,

Pk+1 = (I −Wk+1Hk+1)P̄k+1 (2.10)

where I is an identity matrix.

The dimensions of the matrices in the above equations is described as follow.

If state is a n − by − 1 vector and measurement is a m-by-1 vector:

F = n-by-n

P = n-by-n

Q = n-by-n

H = m-by-n

R = m-by-m

W = n-by-m

I = n-by-n

2.1.3 Algorithm outline

The localization algorithm is designed based on the Kalman Filter. The out-

line of the algorithm is shown in figure 2.4. The Kalman Filter is continu-

ously running to update the state using encoders data and IMU data. Then,

16



the state is used to compute the robot’s position estimate on the panel, (x, y)p,

using the robot’s kinematic equation. Combining with the robot’s orientation

on the panel, θp, the localization algorithm outputs the robot’s pose estimate,

(x, y, θ)p. At each measurement point, the robot receives the Etalon measure-

ment that measures the position of the puck center in global frame. The Etalon

measurement is transformed to the robot’s position in panel frame to correct the

position estimate. Since the robot stops at the measurement point to take mea-

surement, the acceleration, linear velocity, and angular velocity are known to be

zero. Therefore, the Kalman Filter can be re-initialized by setting vb, ab, ωp of the

state to zero, and resetting the corresponding diagonal entries in the state co-

variance. When the robot crosses the panel, the edge sensors compute the angle

at which the robot enters the next panel. The entering angle is used to compute

the robot’s orientation in the panel frame, and is used both to correct the orien-

tation in the pose estimate and re-initialize the orientation in the Kalman Filter

state.

The Kalman Filter is implemented using the equations described in the pre-

vious section. It is assumed that system time-invariant. Therefore, the matrices

are constant and the subscript that denotes the time step is dropped. Formulate

the state propagation in 2.2 in the format of Kalman Filter defined in equation

2.5, the matrix F is defined in equation 2.11, while input u is zero.

F =



1 ∆t 0 0

0 1 0 0

0 0 1 ∆t

0 0 0 1


(2.11)
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Figure 2.4: Localization Algorithm Outline

Formulate the measurement data and the measurement function that maps

the relationship between the state and measurement data in the format of equa-

tion 2.7, the measurement vector z and the matrix H are defined in equation

2.12.

z =



ax

ωR

ωL

wz


H =



0 1 0 0

1/r 0 0 L/2r

1/r 0 0 −L/2r

0 0 0 1


(2.12)

The implementation of Kalman Filter is summarized in the set of equations

2.13.
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q̄k+1 = Fqk

P̄k+1 = FPkFT + Q

z̄k+1 = Hq̄k+1

Wk+1 = P̄k+1HT (HP̄k+1HT + R)−1

qk+1 = q̄k+1 + Wk+1(zk+1 − z̄k+1)

Pk+1 = (I −Wk+1H)P̄k+1

(2.13)

The forward velocity, v, and the robot’s orientation with respect to x axis of

the panel frame, θ, are then used to compute the robot’s (x, y) position in the

panel frame, following the robot’s kinematic model in equation 2.14.

xk+1

yk+1

 =

xk + vk+1cos(θk+1∆t)

yk + vk+1sin(θk+1∆t)

 (2.14)

2.1.4 Asynchronous Measurement

The issue of asynchronous measurement could happen when the sensor sam-

ples data at different frequencies. For this project, the maximum sampling rate

of the IMU, which includes the accelerometer and the gyroscope, is 100 Hz [9],

while maximum the sampling rate of the encoder is 1000 Hz. Different sampling

rates mean that when the four sensor data are packed together and sent to the

main-computer, the four sensor date may have different time-stamps. When

such issue arises, one solution is to only use the measurement data with the

latest time-stamp at the moment when the measurement data is queried, and

discard all measurement data with earlier time-stamps.
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Implementing such solution in the Kalman Filter implies that the dimension

of the measurement vector, zk, might be different and needs to be adjusted in

each iteration. Accordingly, the dimensions of the measurement function, H,

and the measurement noise co-variance, R, also need to be adjusted. In specific,

when the measurement vector has dimension m × 1, the measurement function

H has dimension m×n, and co-variance R has dimension m×m, where n is the di-

mension of the state, which is four in this project. The dimension of the Kalman

gain, K, also varies accordingly. However, since K is the computed result of

other matrices as shown in equation 2.13, it does not need to be adjusted manu-

ally. The dimensions of the rest matrices, namely, F,Q, P,q, remain unchanged.

Therefore, one way to implement the modified Kalman Filter is to pass in the

matrices with varying dimensions as parameters before each iteration. In spe-

cific, the measurement vector, zk, would be constructed based on the available

measurement data, while the corresponding rows of the complete measurement

function and measurement noise matrices are extracted to construct the H and

R matrices for each iteration. The detail of this implementation is shown in the

next section.

With the modified Kalman Filter, the complete outline of the localization

algorithm can be summarized in figure 2.5. The output of the localization algo-

rithm is the pose of the robot on the panel, (x, y, θ)p, which would be queried by

other processes such as the motion control and path planning.
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Figure 2.5: Complete outline of the localization algorithm.

2.1.5 Cross-Panel Adjustment

There is accumulated error in the orientation estimate, which could cause the

localization algorithm to lose its accuracy. To eliminate the accumulated error,

the localization algorithm should be provided with another source of orienta-

tion measurement. This orientation measurement could come from the angle at

which the robot enters the panel when it crosses from one panel to another. The

angle of entering the panel is measured by the four edge sensors placed at the

four corners of the robot, as shown in figure 2.6.

Figure 2.7 shows the geometric relationship between robot’s front two edge

sensors and the panel’s edge. According to the geometric relationship, the angle
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Figure 2.6: The four edge sensors are positioned at four corners of the robot.
The edge sensors are attached to the L-shape supports, which extruded from
the robot’s chassis, so that the robot could detect the edge ahead of time.

of entering the panel, α, can be computed using equation 2.15,

α = arctan(d/L)

d = vbt
(2.15)

where t is the time interval between the first and second edge sensor entering

the panel, and d is the distance the robot travels during this interval at forward

velocity vb. To convert the angle of entering the panel to the robot’s orientation

with respect to the panel frame, one could follow equation 2.16,

θ = π/2 − α (2.16)

The angle of entering panel can be computed in the same way with the two

back edge sensors. Since there are four edge sensors around the robot, the angle
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Figure 2.7: The geometric relationship between the robot’s chassis and the edge.
α is the angle of entering panel, θ is the robot’s orientation in the panel frame,
d is the distance travels by the edge sensor, L is the distance between the two
edge sensors.

of entering the panel could be computed twice with the front two sensors and

the back two sensors.
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2.2 Implementation

As shown in figure 2.5, the localization algorithm consists of a continuous fil-

tering process and an occasional re-initialization process. Therefore, it is best

to implement the two processes in two objects. In specific, the Filter interface

implements a filter such as the Kalman Filter to continuously estimate the state,

while the Localizer class is composited with a Filter and is responsible for re-

initializing the filter by resetting µ and Σ. In addition, the Localizer class can

also handle the asynchronous measurement data issued by adjusting the di-

mensions of the matrices for the Kalman Filter based on the available sensor

data before each iteration.

Figure 2.8 shows the class diagram of the localization algorithm. The Lo-

calizer class reads the measurement data and constructs the matrices of the

Kalman Filter with the correct dimensions, using the method contructKalman-

Mat(). It then delegates the filtering process to the Filter object in update(). For

this project, the Filter is implemented using Kalman Filter, with the equations

described in 2.13 in specific. Using the estimated forward velocity and the ori-

entation, the Localizer computes the position of the robot, (x, y)p, on the panel,

as described in equation 2.14, and thus completes the process of estimating the

robot pose, (x, y, θ)p. The resetFilter(µ, Σ) method is used to re-initialize the filter.
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Figure 2.8: Unified Modelling Language (UML) of localization system’s imple-
mentation

2.3 Simulation and Result

2.3.1 Simulation Setup

The purpose of the simulation software is to demonstrate the functional perfor-

mance of all implementations, which are the actual implementations that would

be used in the real operation; the entire localization algorithm described above is

implemented in the simulation software, along with the motion control scheme,

which would be introduced in the next chapter. However, due to the lack of the

actual hardware, the simulation should also simulate the behaviour of the actual

robot to supply ”fake” sensor data. Therefore, in addition to the programs used

in the real operation, the simulation software has another independent process,
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the ”DataLoop”, which essentially acts as the virtual robot to receive speed com-

mand from the main loop process and respond with the ”fake” sensor data. The

”DataLoop” is also responsible for simulating the noise of each sensor. In spe-

cific, the noises of the accelerometer, gyroscope and encoder are modelled as

additive white noises Nw described by the zero-mean Gaussian distribution in

equation,

Nw = N(0, σ) (2.17)

where σ is the variance representing the strength of the white noise. One

benefit of the simulation software is that the noise levels of the sensors can be

adjusted to study the performance of the localization algorithm and motion con-

trol scheme under different situations. To be specific, there are two noise levels:

the noise level that matches specification of the actual sensor and the noise level

twice as much as that of the actual sensor. The reason of testing for higher noise

level is that the noise generally varies proportionally with bandwidth, which is

currently set at 100 Hz for the accelerometer and the gyroscope, but could be set

to higher bandwidth to meet any potential changes in the project’s requirements

in the future. The specifications of the BNO055 Inertial Measurement Unit used

for this project [9] described the noises of the accelerometer and the gyroscope,

while the noise of the encoder is manually measured by collecting encoder data

and computing the standard deviation. The values of the noise strength used in

the simulation are shown in table 2.1 below.

The measurement noise and sensor noise in the Kalman Filter are adjusted

accordingly. The performance of the localization algorithm is analyzed in the
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Noise level Accelerometer (m/s2) Gyroscope (rad/s) Encoder (rad/s)
normal 0.0059 0.0087 0.001
twice 0.0118 0.0175 0.002

Table 2.1: The strengths of sensor noises used in the simulation.

section below, while the performance of the motion control scheme would be

shown in the next chapter.

2.3.2 Result and Analysis

The simulation is run with normal noise level first. Figure 2.9 shows the robot’s

true positions and the estimated positions in one complete simulation run. The

L2 error can be used to measure the localization error during the simulation,

which is the distance between the true and estimated position and can be de-

scribed by equation 2.18 [11],

errorL2 =
√

(xtrue − xestimate)2 + (ytrue − yestimate)2 (2.18)

The L2 error is computed for every data point during the above simulation

run, and the histogram in figure 2.10 visualizes the distribution of the L2 errors.

The distribution plot shows that the localization is very accurate for most of the

time, with 96.21% of the errors fall below 0.01 m, mean error equals to 0.0034 m

and largest error equals to 0.0181 m.

The simulation is then run with higher noise level. Figure 2.11 shows the

robot’s true positions and the estimated positions in the second run, while figure

2.12 shows the distribution of the L2 errors. The localization is still accurate

enough for the robot to track the waypoints, although the localization errors are
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Figure 2.9: The robot’s true positions and the estimated positions in the simula-
tion with normal noise level.

evidently larger than those from the first run, with 92.5% of the errors fall below

0.01 m, mean error equals to 0.0039 m and largest error equals to 0.0317 m.

2.4 Summary

This chapter introduces the localization algorithm, including how the Kalman

Filter is fused together with the occasional ultra-accurate position measurement

from Etalon system, how the algorithm deals with asynchronous measurement,

and how the robot computes the angle of entering panel when crossing from
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Figure 2.10: The L2 error between the true positions and the estimated positions.

one panel to another, and use it to eliminate the estimation error in orientation.

The chapter also demonstrates the performance of the localization algorithm in

the simulation software under two noise levels, and provides statistical analysis

of the localization errors. Now that a trustworthy localization is in place, the

control program can make use of this knowledge to determine the robot’s next

move (i.e the robot’s speeds) under different situations. Next chapter would

discuss the details of the motion control scheme.

29



Figure 2.11: The robot’s true positions and the estimated positions in the simu-
lation with twice as much noise level.
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Figure 2.12: The L2 error between the true positions and the estimated positions
with twice as much noise level.
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CHAPTER 3

MOTION CONTROL

3.1 Overview

The main purpose of the differential-drive robot is to place the puck at each

measurement point, where the robot needs to stop so that the Etalon system can

measure its position. Moreover, when operating on the mirror, the robot should

respond to more complicated situations; for example, in the case of emergencies

(e.g. power outage, earthquake, fire alarm, etc.) the entire operation needs to be

aborted, and in the danger of falling-off the mirror the robot needs to back-off

from the edge. Therefore, a motion control scheme is needed so that the robot

would receive the correct drive command under different situations.

The motion control scheme consists of three parts: the main loop process that

implements waypoint tracking logic and PID controllers to compute the speed

command that needs to be sent to the robot through TCP communication, the

danger loop process that runs in parallel to the main loop and continuously

checks for dangerous conditions using sensor data and emergency signal from

the observatory, and the on-board low-level control that takes the speed com-

mand from the off-board computer to compute the voltage command to the DC

motors. Moreover, the main-loop process is also implemented with path plan-

ner that selects and generates a path consisted of a series of waypoints based

on the robot’s operation status, and also moniters the current waypoints for the

waypoint tracking logic to use. The flowchart in figure 3.1 provides an overview

of the relationships among different parts of the control scheme. The following

sections would discuss each parts of the control scheme in details. The chapter
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would also analyze the result and the performance of the motion control scheme

in the simulation.
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3.2 Path Planning

When moving on the mirror, the robot always tracks a waypoint from either a

pre-defined path during the normal operation, or a return-to-base path when

the operation is aborted. One of the two paths are fed into the path planner,

which keep track the current and the next waypoint until all the waypoints

in the path are exhausted. The nine waypoints on each panel are numbered

according to figure 2.2, while a panel’s location on the mirror is described by

its row and column position on the mirror. The traversing order of the way-

points on different panels are different to prevent the robot from making exces-

sive turning, which would inject more disturbances in the orientation estimate.

More precisely, there are four types of traversing order depending on the row

and column that a panel is located on the mirror, as shown in figure 3.2. For a

panel with its location described by (ri, c j), where 1 ≤ i ≤ 9, 1 ≤ j ≤ 9, i, j ⊆ Z,

the traversing order is described by table 3.1.

remainder of i,j divided by 2 mod(j,2) == 1 mod(j,2) == 0
mod(i,2) == 1 order 1 order 4
mod(i,2) == 0 order 2 order 3

Table 3.1: Traversing order of each panel depending on its row and column
location in the mirror.

3.3 Closed-Loop Control

As shown in the overview of control scheme in figure 3.1, close-loop control

is used to track the waypoints in the planned path defined above. The reason

to use closed-loop control instead of open-loop control is that the robot should
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Figure 3.2: The four types of traversing order in simulation.

reach the measurement point with very high precision, while the disturbances

during its operation, such as wheels’ slip and the vibration of the fans, are not

negligible.

More precisely, the states of the robot that need to be controlled are the for-

ward velocity and the angular velocity in the panel frame. A good strategy is

to let the robot first align its orientation with the waypoint as best as possible,
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and then head to the target. This turn-and-move method is well suited for this

project because the robot has limited turning radius, especially at the edge of

the mirror to prevent the robot from driving off the mirror by making a large

turn. Another benefit of the turn-and-move method is that it simplifies the con-

trol of the forward velocity and angular velocity, since the two velocities can be

separately controlled.

The forward velocity and the angular velocity are separately controlled by

two PID controllers, where the errors fed into the controllers are computed us-

ing the waypoint tracking logic. The control output is the left and right wheels’

speeds which are then sent to the on-board computer and passed as the refer-

ence input to another low-level PID controller that computes the voltage inputs

to the DC motors. The entire close-loop control strategy can be summarized in

figure 3.3.

Figure 3.3: Flowchart of close-loop control strategy.
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3.3.1 Waypoint Tracking

The robot’s forward velocity and angular velocity are separately controlled by

two PID controllers, and the PID controller needs an error as input, which is the

differences between a set-point and feedback data. The purpose of waypoint

tracking logic is to compute the errors to feed into the two PID controllers. For

the forward velocity, the error is computed based on the distance between the

current waypoint position and the robot’s current position in panel frame as

shown in equation 3.1,

ev =

√
(xwaypoint − xp)2 + (ywaypoint − yp)2 (3.1)

and the result is the error that is fed into the PID controller to compute the for-

ward velocity, as shown in the block diagram in figure 3.5. The range of the error

ev is from 0 to 0.744m, where 0.744m is the maximum distance the robot would

travel from one waypoint to another when crossing two panels. For the angu-

lar velocity, the error is computed based on the angular displacement between

the robot’s current orientation in the panel frame (θp) and the angle between the

robot and the waypoint (β) as shown in equation 3.2,

ew = β − θp

β = arctan(xwaypoint − xp, ywaypoint − yp)
(3.2)

The above equation can also be visualized in figure 3.4. Similarly, the result is

fed to a separate PID controller to control the robot’s angular velocity. The range

of the error is from 0 to 3.14 rad, since the maximum turn the robot would make

is 180◦.

The forward velocity and the angular velocity are then used to compute the

robot’s left and right wheels’ speeds with the inverse kinematic model given in

equation 3.3.
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Figure 3.4: Angular displacement between the robot’s orientation θ and the an-
gle between the robot and waypoint β.

ωR

ωL

 =

1/r L/2r

1/r −L/2r


vω
 (3.3)

where:

r = the wheel’s radius, [m]

L = the width of the wheel base, [m]
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Figure 3.5: The block diagram of the PID control.

3.3.2 PID Controller

A PID controller C(s) can be defined by its three control gains, as shown by

the transfer function in equation 3.4. To analyse and tune the control gains, a

plant model, P(S ), is needed to describe the system that needs to be controlled.

Since the inputs to the robot are velocity commands and the observed outputs

are the robot’s position and orientation, the relationship between the input and

output can be modelled as a first order system, which is given in equation 3.4.

By modelling the system as first order system, the delays such as the communi-

cation delay and the delay from actuator response can be lumped into the time

constant.

P(s) =
1

T s + 1

C(s) = Kp +
Ki

s
+ Kd s

(3.4)

In equation 3.4, Kp,Ki,Kd are the gains of the PID controller, and T is the

time constant of the first order system. There are several factors that should be

considered when tuning the PID gains. First, the controller should satisfy the

precision requirement, which implies that the steady-state error should be zero;

ideally overshoot should also be zero so that the robot does not move back and
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forth around the target (i.e the waypoint). Second, the controller should provide

good rejection to the high frequency disturbance from fans’ vibration. Third,

the control effort should not exceed the constraints of the DC motor. Since the

ranges of errors for forward velocity control and angular velocity control are

different as described in the previous section, the control gains should be tuned

accordingly for the two PID controllers.

Figure 3.6 shows the bode plot of the open-loop system for forward velocity,

with Kp = 0.5,Ki = 0.5,Kd = 0. The infinite gain margin and 120◦ phase mar-

gin show that the system is stable. The infinite gain at low frequency shows

that there is no steady-state error and could provide good disturbance rejec-

tion, while the downward slope at high frequency provide good noise rejection.

Moreover, the large phase margin would account for the potential communi-

cation delay and generate only very small overshoot. The root locus plot of

the closed-loop system in figure 3.7 also verifies that the system is stable since

there aren’t poles on the right-hand plane, and the pole at infinity shows that

the system would be stable with arbitrarily large gains given that the gains are

practically achievable by the actuators. Figure 3.8 shows the bode plot of the

open-loop system for angular velocity, with Kp = 0.1,Ki = 0.05,Kd = 0.01. Sim-

ilarly, the gain margin and phase margin shows that the system is stable, and

there is good disturbance rejection and good noise rejection and no steady-state

error. The root locus plot in figure 3.9 also verifies that the system is stable and

has zero overshoot.
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Figure 3.6: The bode plot of forward velocity open-loop system.

3.4 Danger Loop

There are many situations that the robot could encounter when operating on

the mirror, such as driving near the edge of the mirror due to malfunctioning

sensors, and various emergency events. Therefore, it’s necessary to look out for

those possible events based on the sensor data returned from the on-board sen-

sors and the emergency signals sent by the observatory, so that the main loop

process could send out the correct speed commands to the robot. The danger

loop is designed for that purpose; it is a separate process that gathers all the
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Figure 3.7: The root locus of forward velocity closed-loop system.

sensor data and the emergency signals to determine what situation the robot

is about to encounter and inform the main loop process by sending the corre-

sponding event code, which would instruct the robot with the corresponding

control action. The reason that the danger loop runs on an independent pro-

cess is that it could potentially check for the danger situations at a higher loop

frequency than the main loop process, which could be extended with compu-

tationally heavy programs (such as different localization algorithms) in the fu-

ture. Table 3.2 shows the events and its corresponding event code, and also the

actions that the main loop implements. Details about how each event is deter-

mined are given in the following subsections.
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Figure 3.8: The bode plot of angular velocity open-loop system.

Event code Event Actions
0 normal operation tracking current waypoint
1 near mirror edge backing off and turning away from the edge
2 operation aborted returning to base

Table 3.2: Event code with corresponding event and actions.
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Figure 3.9: The root locus of angular velocity closed-loop system.

3.4.1 Near the mirror’s edge

In the case of sensor malfunctioning, the localization algorithm could produce

an estimate with large error, which could potentially cause the robot to drive

toward the mirror’s edge. To prevent the robot from falling off the edge, the

danger loop uses the four edge sensors positioned around the robot, as shown

in figure 2.6 in the previous chapter, to determine if the robot is near the edge.

Essentially, the analog signal from an edge sensor needs to be compared with a

threshold value to determine if the edge sensor is on/off the aluminum panel,
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which is already being processed at the on-board computer. Therefore, the input

to the edge detection part of the danger loop is a list of 0/1s indicating on/off

the panel.

However, the edge sensor also would be temporarily off the panel when

the robot crosses from one panel to another, since there is a 1 cm gap in-between

each panel. Therefore, the edge detection algorithm should distinguish whether

the robot is crossing the panels or is actually near the mirror’s edge. The edge

detection algorithm uses the fact that the edge sensors would be off the panel for

a very short amount of time when the robot crosses the panels, since the robot

travels at an average speed of 0.1 m/s. Therefore, the algorithm can compare

the amount of time the edge sensors stay off-panel with an predefined threshold

time; if the edge sensors are off the panel for more than the threshold time, then

the algorithm would determine that the robot is near the mirror’s edge and

send the corresponding event code. A good estimate of the threshold time can

be derived by dividing the 1 cm gap distance by 0.1 m/s, which would equal to

0.1 second.

Once the event code is sent to the main loop process, the main loop would

instruct the robot to back-off by sending a negative forward velocity command

to the robot, and then turn away from the edge, before resuming the normal

operation. This process can be visualized in the overview flowchart in figure

3.1.
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3.4.2 Operation aborted

When encountering emergency situations, such as an earthquake and fire alarm,

the operation is aborted. The danger loop would listen on the designated chan-

nel for the emergency signal from the observatory. Once the emergency signal

is picked up, the danger loop sends the corresponding event code to the main

loop process, which would instruct the robot to return to base. The main loop

process would first generate a path from the currently tracking waypoint to

the base waypoint. The ”abort path” also consists of a series of waypoints and

would substitute the normal operation path in the path planner. The main loop

process would then compute the speed commands based on the new waypoints

until all waypoints in the path planner are exhausted. This process can be visu-

alized in the overview flowchart in figure 3.1.

3.5 Simulation and Result

As described in the previous chapter, the simulation is carried out with two

levels of sensor noise. For each simulation run, the performance of the motion

control scheme is measured by the L2 error between the robot’s position when it

stops at a waypoint and the actual waypoint position, as given by equation 3.1,

and then the percentage of the errors that fall below 0.01 m is calculated, since

the project’s requirement states that the robot should reach within one centime-

ter of the measurement points. For each of the two noise levels, the simulation

is carried out 5 times and the errors of reaching 180 waypoints are recorded.

For the normal noise level, figure 3.10 shows that 88.89% of the waypoints are

reached within the 1 cm error limit, with mean error equals to 0.0064 m and
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largest error equals to 0.0149 m. For the large noise level, figure 3.11 shows that

83.33% of the waypoints are reached within the 1 cm error limit, with mean error

equals to 0.0071 m and largest error equals to 0.0429 m.

Figure 3.10: The errors of reaching the waypoints in five simulation runs with
normal noise level. A total number of 180 data is recorded.
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Figure 3.11: The errors of reaching the waypoints in five simulation runs with
twice as much noise level. A total number of 180 data is recorded.

3.6 Summary

This chapter introduces the motion control scheme, including the closed-loop

control that computes the speed commands sent to the robot when tracking a

waypoint, and the danger-loop process that informs the main loop process of

different situations, so that the main loop process can choose the correct ac-

tion. The simulation results demonstrate the effectiveness of the motion control

scheme, that nearly 90% of the waypoints are reached within the 1 cm the preci-

sion requirement.
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CHAPTER 4

CONCLUSION AND FUTURE WORK

This thesis addresses the some of functional requirements of the CCTA-p

project through the designs of a localization algorithm and a motion control

scheme. For the design of the localization algorithm, the thesis presents a novel

approach by fusing inertial measurement unit and encoder data with the Etalon

external measurement data through Kalman Filter, which increases the localiza-

tion precision to the degree of centimeter, a level of precision that is difficult

to satisfy for many indoor localization problems. The thesis also presents the

design of a motion control scheme, which handles different situations that the

robot would encounter when operating on the mirrors and computes the cor-

rect speed commands using closed-loop control with waypoint-tracking logic

and PID control. The thesis then demonstrates the effectiveness of the designs

through the simulation software, and analyzes the performances and errors of

the designs. In general, the designs have good performances and are able to

satisfy the project’s functional requirements.

Future work could improve the tracking accuracy further using different lo-

calization algorithms such as Sigma-point Filter. Future work could improve the

overall efficiency of the operation by employing a better motion control strategy,

providing that the robot has more powerful motors to realize the control actions.

Future work could also study a more accurate dynamic model of the robot that

also models other factors such as the frictions between the aluminum surface

and the tyre, and the vibration causing by the fan, which could be employed

in the prediction step of the Kalman Filter, or used as the plant model in the

control design. The simulation could be improved with better representation
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of the robot, and the robot’s behaviour could become more realistic by inject-

ing the random disturbances into the ”DataLoop”. Finally, the implementations

should be tested together with the actual hardware to study how well the algo-

rithms perform in the real operation. The software implementations are based

on Object-Oriented Design (OOD) such that the software are flexible to be mod-

ified with different algorithms and extended with additional functionalities to

satisfy any changes in the project’s requirement in the future.
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APPENDIX A

SOURCE CODE

The source code for the simulation software, which also includes the imple-

mentations of the localization algorithm and the motion control scheme is in

the GitHub repository https://github.com/SIOSlab/CCATpRobot.
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