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AUTONOMOUS CROSS-CALIBRATION FOR IMAGING
SATELLITES

Zvonimir Stojanovski* and Dmitry Savransky†

We present a fully autonomous image-based cross-calibration method for
constellations of Earth-observing satellites. Here, each satellite extracts
features from primary mission images and then transmits the features,
along with its state estimate, to other satellites. Furthermore, each satel-
lite uses comparisons of the image features, along with conventional state
measurements, to estimate its position, attitude, and camera parameters
via the unscented Kalman filter or the higher-order unscented estimator.
We demonstrate the simulation framework for testing this method with an
example featuring two imaging satellites. In the future, we will rigorously
test the method’s performance and refine the image-based measurement
model.

INTRODUCTION

Cross-calibration between satellites is crucial to the performance of Earth-observing con-
stellations. To this end, very rigorous cross-calibration schemes have been developed and
implemented, e.g., for the Dove constellation.1 However, these techniques rely heavily
on communications with the ground station and humans-in-the-loop. As a result, they
may not be feasible for larger constellations. Furthermore, state-of-the art in-situ sensor
calibration techniques, such as those used for the Lunar Reconnaissance Orbiter (LRO)2

and the GaoFen4 geostationary optical imaging satellite,3 rely on dedicated calibration
measurements and accurate position and attitude estimates. To mitigate some of these
difficulties, we propose a method called Autonomous Cross-Calibration for Imaging Satel-
lites (ACCIS). This method uses measurements obtained from the primary mission images,
combined with conventional position and attitude measurements, to estimate the states of
satellites and their cameras, with key data transmitted between satellites to achieve accu-
rate cross-calibration. In this paper, we will describe in detail the concept of operation for
ACCIS and demonstrate its operation in a realistic simulation.

In ACCIS, each satellite computes a real-time estimate of its state, which includes its
position, attitude, and camera parameters, which is done using a nonlinear filter. The filter
processes not only conventional position and attitude measurements, but also measure-
ments obtained from images. Specifically, it uses features, or key points, extracted from
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images using the Scale-Invariant Feature Transform (SIFT) introduced by Lowe.4 For each
key point found in the image, the SIFT algorithm computes a position, orientation, and
scale, as well as a descriptor that is invariant under translation, rotation, and scaling. This
allows us to develop a measurement model that maps changes in the imaging satellite’s
position, attitude, and camera parameters to changes in a key point’s position, orientation,
and scale.

For filtering, ACCIS uses either the Unscented Kalman Filter (UKF), developed by Julier
and Uhlmann,5 or the Higher-Order Unscented Estimator (HOUSE), developed by the au-
thors6 with the application of satellite cross-calibration in mind. The former is known to be
robust and computationally efficient for a wide range of systems with nonlinear dynamics
and measurements.7 The latter is an extension of the UKF that accounts for third and fourth
order moments—i.e., skewness and kurtosis—in addition to the mean and covariance, al-
lowing more accurate estimation in systems with non-Gaussian noise.6 This is particularly
relevant for measurements based on features extracted from satellite imagery, which exhibit
highly non-Gaussian error.8

During a mission, ACCIS would operate as follows. Whenever a satellite takes an image,
it extracts the key points using SIFT. It then transmits the key points, along with the state
estimate and covariance from its observer, to other satellites in the constellation. Then,
when two or more satellites have imaged approximately the same area, each of them can
use the difference in the key points and the estimated states to update its own state estimate.

Compared to existing techniques, ACCIS has several features that could make cross-
calibration faster and cheaper for large constellations of imaging satellites. First, it is
fully autonomous, requiring no humans-in-the-loop. Also, it does not require uplinks or
downlinks, but only crosslinks between satellites, reducing the communication load for the
ground station. Furthermore, the crosslinks transmit only the state estimates, covariance
matrices, and SIFT key points and descriptors, which is much less expensive than transmit-
ting full images. In addition, this method uses only the primary mission data, requiring no
dedicated calibration measurements.

To test the performance of ACCIS, we develop a detailed simulation framework. In the
simulation, each of the satellites is equipped with a GPS receiver, a star tracker, and a
nominally nadir-pointing camera for imaging. The simulation features a detailed model
of the satellites’ rigid-body attitude dynamics and orbital motion, including high-fidelity
models for perturbations such as non-spherical Earth gravity and aerodynamic drag. We
also model the orientation, focus, and distortion parameters of the satellites’ cameras. To
emulate the raw data obtained by the satellites, we generate synthetic images from Landsat
data; a mosaic formed from Landsat images is trimmed, projected, and distorted based on
the satellites’ position, field of view, and camera distortion parameters.

The rest of the paper is organized as follows. First, we describe the state model of
a satellite, including both its dynamics and camera parameters. Then, we describe the
measurement models, including conventional state measurements and novel image-based
measurements. After that, we provide a summary of the filtering techniques used. Finally,
we present preliminary results showing the operation of the simulation framework.
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STATE MODELS

In ACCIS, the satellite state is considered to include both its dynamical state and its
camera parameters. In this section, we describe all of the state components, how they are
propagated in time, and how they relate to the imaging operations of the satellite.

Satellite Dynamics

We model each satellite as a rigid body in a perturbed Keplerian orbit. Let G denote
the satellite’s center of mass and O the center of the Earth. Furthermore, let I denote an
Earth-centered inertial (ECI) frame and B a body-fixed frame. To simplify calculations,
we choose B to be the principal axis frame, though in theory any other body-fixed frame
could be used. The satellite’s dynamical state consists of the position rG/O, velocity vI

G/O,
attitude quaternion qB/I , and angular velocity ωB/I . The translational dynamics of the
satellite are governed by

v̇I
G/O = g+uG + fG, (1)

where g is the gravitational acceleration, uG is acceleration due to controls (e.g., thrusters),
and fG is the sum of all other perturbing forces, including atmospheric drag. The rotational
dynamics of the satellite are governed by

ω̇
B
B/I = I−1(MG + τG−ωB/I × (IG ·ωB/I )) (2)

where IG is the inertia tensor of the satellite about G, MG is the total control moment due
to ADCS actuators, and τG is the total disturbance torque. In the filter, we model fG and
τG as random process noise, due to the difficulty of accurately predicting the atmospheric
density, the satellite’s aerodynamics properties, and other factors.

For the Earth’s gravitational field, we use a truncated version of the EGM2008,9 with
the gravitational forces evaluated using the procedures described Gottlieb.10 For transfor-
mations between the ECI frame and the Earth-centered Earth-fixed frame (ECEF), we use
the Naval Observatory Vector Astronomy Subroutines (NOVAS).11 When propagating the
“ground truth” state in the simulation, we compute drag forces using the NRLMSISE-00
atmospheric model.12

Camera Model

Let P be an arbitrary point in the camera’s field of view. In an ideal pinhole camera
at point C, this point is projected onto a point P′ in the image plane, at the focal distance
u from the camera origin and opposite of C. In a real camera, on the other hand, P is
projected onto a different point P′′ due to distortions. For simplicity, we assume a purely
radial distortion model, i.e., that the positions rP′ and rP′′ satisy

rP′

‖rP′‖
=

rP′′

‖rP′′‖
. (3)
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Such models are widely used to correct distortions in commercial lenses.13 Specifically,
we use a third-order radial distortion model,

‖rP′′‖= ‖rP′‖
(

1− c1− c2− c3 + c1
‖rP′‖

R
+ c2
‖rP′‖2

R2 + c3
‖rP′‖3

R3

)
, (4)

where c1, c2, and c3 are the distortion parameters for a particular lens, and R is the radius a
circle circumscribed about the image; that is,

R =
1
2

√
W 2 +L2, (5)

where W and L are the width and length of the image, respectively. This scaling ensures
that the distortion parameters are of the same order of magnitude, which improves numer-
ical stability in the filter. Furthermore, for filtering purposes, we combine the distortion
parameters into a vector c =

[
c1 c2 c3

]T.

In addition to the distortion, we account for imperfect focusing of the camera. This
depends on the focal length f of the lens, the aperture size A, the distance u from the
camera to the object, and the density ρ of pixels per unit length. The effects of defocusing
can be modeled well by a Gaussian blur with standard deviation14

σG =
σ√

2
, (6)

where

σ = ρ
f s

2N

(
1
f
− 1

u
− 1

s

)
(7)

and

N =
f
A
. (8)

Finally, we account for the fact that the orientation of the camera frame C with respect to
the body frame B is not known exactly, e.g., due to structural tolerances. We parametrize
this attitude by a quaternion qC /B.

All of the camera parameters that are estimated by the filter—namely, c, f , and qC /B—
are assumed to be constant in time. Therefore, in the filter they are modeled as having unity
dynamics with zero process noise. In the future, we will add a noise term to account for
drift in the parameters, particularly for qC /B.

In the simulation, we generate synthetic satellite images based on Landsat data and our
camera model. Specifically, we obtain a sector of a Landsat image mosaic using the NASA
World Wind library.15 Then, we apply a perspective transform, based on the satellite’s posi-
tion, attitude, and camera parameters. Finally, we apply the radial distortion and defocusing
blur. For the transform, distortion, and blurring, we use the OpenCV library.16
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Combined State

By combining the dynamical state of the satellite with the camera parameters, we obtain
the overall system state that is estimated by the filter in ACCIS:

x =
[
rG/O

T vI
G/O

T
ωB/I

T qB/I
T qC /B

T f cT
]T

. (9)

The system state has a total of 21 components. While the rates vI
G/O and ωB/I are not nec-

essary for image calibration (assuming sufficiently short exposure time), they are needed
for state prediction in the filter.

MEASUREMENT MODELS

The ACCIS framework features two categories of measurements: conventional measure-
ments of the satellite’s dynamical states and measurements derived from images.

Conventional Measurements

In our model, the satellite is equipped with a Global Positioning System (GPS) receiver,
which provides measurements of its position and velocity, and also a star tracker to obtain
precise attitude measurements. The GPS measurements are assumed to have a Gaussian
noise distribution. The star tracker measurements are assumed to have a boresight error
and a normal error, also with a Gaussian distribution.

Image-Based Measurements

While straightforward models exist for the conventional measurements, there are no stan-
dard methods for relating image data to the satellite’s dynamical state and camera param-
eters. Here, we present a preliminary model for measurements based on features extracted
from images.

The Scale-Invariant Feature Transform (SIFT), proposed by Lowe,4 provides a robust
and efficient method for extracting and matching features from images. Each feature, or
key point, extracted from an image by SIFT includes a position rK , orientation angle θ , and
scale S, as well as a gradient-based descriptor that is invariant under translation, rotation,
and scaling. Also, the effects of differences in illumination and perspective are relatively
small. Thus, the descriptors can be matched between images taken from various distances,
angles, etc. However, the SIFT descriptors not fully invariant under affine transformations.
In the simulation, we use the implementation of SIFT from the OpenCV library.16

To make the SIFT key points more convenient to use in our model, we use an equivalent
representation as two positions, rK′1

and rK′2
, given by

rK′1,2
= rK±

1
2

Su, (10)

where u =
[
cosθ sinθ

]T. Thus, a key point is given by

K =
[
rT

K′1
rT

K′2

]T
, (11)
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and we can directly convert between this and the standard key point representation. Given
the time t and the satellite state x, we can geometrically map rK′i

to a point on the Earth’s
surface and vice versa. For this, we take into account the position and attitude of the
satellite, as well as the attitude, distortion, etc. of the camera.

Suppose that a descriptor matching algorithm has matched two key points K1 and K2,
from images taken at times t1 and t2 by satellites with states x1 and x2, respectively. We can
map K1 to a pair of points on Earth’s surface given t1 and x1. Then, given t2 and x2, we can
map two ground positions to a “predicted” key point K̂2. Thus, given estimate distributions
of x1 and x2, we can obtain a distribution of K̂, adding an error term to both K1 and K̂2.
Then, we can apply K2 as the “true” measurement in the filter update step, to obtain a better
estimate of x2.

In the future, we will expand this method to more accurately model the relation be-
tween the satellite state and the SIFT key points. In particular, we will investigate how the
gradient-based descriptors could be used as part of the state measurement and not only for
key point matching.

FILTERING METHODS

The discrete-time nonlinear filtering problem can be summarized as follows, and the
description of the satellite state and measurements in the previous two sections can easily
be cast in the above form. A system with state x evolves in time as

x(k+1) = f(x(k),u(k),w(k),k), (12)

where k is the time step, u is the control, w is the process noise, and f is a nonlinear
function. We want to find an estimate of x(K) based on a sequence of measurements
z(0),z(1), . . . ,z(K), given by

z(k) = h(x(k),n(k),k), (13)

where n is the measurement noise, and h is a nonlinear function. Note that h may have very
different characteristics for different values of k, e.g., if different types of measurements are
taken at different cadences.

The Unscented Kalman Filter

The unscented Kalman filter (UKF), proposed by Julier and Uhlmann,5 is based on the
unscented transform (UT), in which the distribution of the state x ∈Rn is approximated by
a set of 2n+1 points x j, called sigma points, with weights w j. The points are given by

x j =


x̄+
√

n+κc j, 1≤ j ≤ n
x̄−
√

n+κc j−n, n+1≤ j ≤ 2n
x̄, j = 2n+1

(14)

where c j is the j-th column of
√

Pxx, and κ is a tuning factor. The matrix square root
is not unique; it is most often evaluated using the Cholesky decomposition, though other
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methods, such as eigenvalue decomposition, may also be used. The corresponding weights
are given by

w j =

{
1

2(n+κ) , 1≤ j ≤ 2n
κ

n+κ
j = 2n+1

(15)

Then, for an arbitrary nonlinear function φ : Rn → R, we can approximate the expected
value E[φ(x)] by a weighted sum over the sigma points:

E[φ(x)]≈
2n+1

∑
j=1

w jφ(x j). (16)

Such approximations are used for the mean and covariance of the predicted state in the
filter’s prediction step and the measurement in the filter’s update step.

The Higher-Order Unscented Estimator

The authors developed an extension of the UKF, called the Higher-Order Unscented
Estimator (HOUSE), which accounts for third and fourth order moments in addition to
the mean and covariance.6 Specifically, HOUSE uses a modified unscented transform that
preserves the skewness and kurtosis (the marginal third and fourth order moments) of the
standardized state x̃, which is defined as

x̃ =
(√

Pxx

)−1
(x− x̄), (17)

which has a mean of zero and a covariance equal to the identity matrix. Let γ j and κ j denote
the skewness and kurtosis of x̃ j, respectively. The sigma points in HOUSE are given by

x( j) =


x̄+α jc( j), 1≤ j ≤ n
x̄−β j−nc( j−n) n+1≤ j ≤ 2n
x̄ j = 2n+1

(18)

where

α j =
γ j +

√
4κ j−3γ2

j

2
(19)

and

β j =
−γ j +

√
4κ j−3γ2

j

2
. (20)

Due to Pearson’s inequality,
κ j ≥ γ

2
j +1, (21)

the coefficients α j and β j are guaranteed to be real and positive. The corresponding weights
are given by

w j =


1

α2
j +α jβ j

, 1≤ j ≤ n
1

β 2
j−n+α j−nβ j−n

, n+1≤ j ≤ 2n

1−∑
n
i=1

1
αiβi

j = 2n+1

(22)
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All weights except w2n+1 are guaranteed to be positive. However, even one negative weight
can be problematic; for example, it can generate a covariance matrix that is not positive-
definite. To ensure that w2n+1 > δ for some δ ≥ 0, we can modify the kurtosis to take the
value

κ
′
i =

{
κmin, κ ≤ κmin

κi, κ > κmin
(23)

where
κmin =

n
1−δ

. (24)

The computational complexity of HOUSE is not significantly greater than that of the
conventional UKF, since both filters require 2n+1 sigma points; the runtimes for HOUSE
were found to be only slightly longer than for the UKF.6 Another higher-order estimator is
the Conjugate Unscented Transform (CUT) filter proposed by Adurthi, Singla, and Singh,
which uses O(2n) sigma points to match moments for a specific family of distributions
(e.g., Gaussian or uniform) up to the fourth, sixth, or eighth order.17 While CUT filters
can provide more accurate estimates than the conventional UKF or HOUSE in cases with
Gaussian noise,6 the dimension of the satellite state makes CUT infeasible for the satellite
cross-calibration problem, as it would require more than 221 = 2,097,152 sigma points.

As for estimation accuracy, the main advantage of HOUSE is robustness in the pres-
ence of outliers in the process and measurement noise. Numerical tests show that HOUSE
produces much fewer outliers in the estimation error, compared to the UKF and CUT fil-
ter, when the process and measurement noise have a high kurtosis and are therefore more
likely to produce outliers. In such cases, the root-mean-square error (RMSE) is found to
be significantly lower for the other filters. In cases with Gaussian noise, the accuracy of
HOUSE was found to be comparable to that of the UKF.6

PRELIMINARY RESULTS

As an initial test of the ACCIS framework, we ran a short simulation of two Earth-
observing satellites. The two satellites are in circular, equatorial orbits at an altitude of
400 km, with a 0.5◦ difference in true anomaly. Each is equipped with a nominally nadir-
pointing camera, with a nominal focal length of 2000 mm, an aperture of 500 mm, and an
image size of 1000×1000 pixels, with a density of 1 pixel/mm.

At t = 5 s, each satellite takes an image, extracts the key points using SIFT, and transmits
its state estimate and the key points to the other satellite. Then, at t = 15 s, each satellite
takes another image, applies SIFT to it, and updates its state estimate using the new key
points and the prior data from the other satellite. Throughout the simulation, each satellite
obtains GPS and star tracker measurements at a cadence of 5 Hz.

Figure 1 shows the images obtained by the two satellites, showing the overlap between
the image frames. Figures 2 and 3 show the error in the dynamical state estimate for the
UKF and HOUSE, respectively, and Figures 4 and 5 show the error in the camera parameter
estimates. The dynamical state error is nearly equal for the two filters, most likely because
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Time (s) Satellite 1 Satellite 2

5

15

Figure 1. Images captured by the two satellites in the simulation.

the measurement noise is Gaussian. For the camera parameters, on the other hand, the
HOUSE error is slightly lower overall. In this test, the image-based measurements do not
significantly improve the camera parameter estimates for either filter; they even increase
the error for some of the parameters. However, since this test includes only one set of
image-based measurements, we cannot draw conclusions on the performance of the filters
or the measurement model. A rigorous test of the estimation accuracy of ACCIS will
require running the simulation for multiple orbital periods with various orbit and camera
parameters. This will be the next step in our work.

CONCLUSION

We have presented a method for the autonomous cross-calibration of imaging satellites,
using nonlinear filtering combined with image feature extraction. Also, we have demon-
strated that the simulation framework for testing this method is fully operational. In our
future work, we will test the performance of ACCIS with longer and more varied simu-
lations, and we will use the results of these simulations to further refine the image-based
measurement model. While ACCIS is still a work in progress, we believe that it has the
potential to make cross-calibration more accurate and efficient in future missions.
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Figure 2. Estimation error for dynamical state using UKF.
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Figure 3. Estimation error for dynamical state using HOUSE.
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Figure 4. Estimation error for camera parameters using UKF.
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Figure 5. Estimation error for camera parameters using HOUSE.
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