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Math and Dynamics Review

The study of astrodynamics, or orbital mechanics, is essentially the study of classical
mechanics (sometimes known as Newtonian mechanics). While we now know that
these are only approximations, with a more accurate model available via Einstein’s
general relativity, for the majority of cases we rely on the laws first postulated by
Isaac Newton and later expanded by Leonhard Euler. As with any study, the first
step is to make sure that we have the appropriate tools and language to describe
the phenomena under consideration. Since the early 20th century, thanks to the
efforts of Josiah Willard Gibbs, the standard tools for studying classical mechanics
are vector algebra and vector calculus, which we will review here. Remember that
these handouts are not complete on their own. They are intended to accompany the
recorded lectures, and to help in your note-taking and studying.
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Vector Space Properties
A vector space (V ) is a collection of vectors (a,b, c . . . ∈ V ) over a field of
scalars (x, y, z, . . . ∈ F), with two operators: Vector Addition and Scalar
Multiplication with the following properties:

1 Commutativity of vector addition: ∀a,b ∈ V : a + b = b + a

2 Associativity of vector addition: ∀a,b, c ∈ V : (a + b) + c = a + (b + c)

3 Identity element of vector addition: ∃0 ∈ V s.t. a + 0 = a ∀a ∈ V
4 Inverse elements of vector addition: ∀a ∈ V ∃−a ∈ V s.t. a + (−a) = 0

5 Compatibility of scalar multiplication: ∀x, y ∈ F , a ∈ V : x(ya) = (xy)a

6 Distributivity of scalar multiplication over vector addition:
∀x ∈ F , a,b ∈ V : x(a + b) = xa + xb

7 Distributivity of scalar multiplication over scalar addition:
∀x, y ∈ F , a ∈ V : (x+ y)a = xa + ya

8 Identity element of scalar multiplication: ∃1 ∈ F s.t. 1a = a ∀a ∈ V

Euclidean (Geometric) Vectors

A Euclidean vector has a magnitude and a direction. A position vector rB/A
has a magnitude of the distance between points A and B and a direction
pointing from A to B.

Norm (magnitude)

Unit Vector
(direction)
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The basis of a vector space is:

1 A linearly independent set of vectors spanning the vector space
2 A subset of vectors in the space such that all vectors in the space may
be written as a weighted sum of the subset

3 Not unique

Define set S = {v1,v2, . . . ,vn} for vi ∈ V for vector space V .
• S is linearly independent if

∑

i

aivi = 0⇔ ai ≡ 0 ∀i, ai ∈ F

• S spans V if ∃ ai ∈ F such that b =
∑

i

aivi ∀b ∈ V

A reference frame is a basis for a 3D Euclidean vector space.

Reference Frames (Bases) and Vector Components

Reference
 Frame

Origin

I , (O, ê1, ê2, ê3)

rP/O = x1ê1 + x2ê2 + x3ê3

xi are Cartesian coordinates

[
rP/O

]
I =



x1
x2
x3



I

3



Coordinate Systems
A single reference frame can have an infinite number of coordinate systems

Polar/Cylindrical Coordinates
θ - Azimuthal Angle

[
rP/O

]
I =



ρ cos θ
ρ sin θ
z



I

Spherical Coordinates
φ - Polar (Zenith) Angle

[
rP/O

]
I = r




cos θ sinφ
sin θ sinφ

cosφ



I

NB: θ and φ definitions are frequently reversed. Spherical coordinates are
sometimes defined with an elevation angle (the complement to the zenith)

Spherical Trigonometry

Adapted from Green (1985)

• A plane passing through a sphere’s center intersects the sphere in a
great circle, which has poles perpendicular to the plane.

• The spherical angle between intersecting great circle
arcs is the angle between their planes:

Spherical Angle XZQ ≡ ∠XOQ ≡ θ

≡ Great Circle Arc X̄Q

• A plane that does not pass through the sphere’s
center intersects the sphere in a small circle.

[
r̂P/O

]
I =




cos X̃P

sin Ỹ P

cos Z̃P



I
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Vector Products
(Scalar) Dot Product

• a · b = ‖a‖‖b‖ cos θ

• a · b = b · a
• a · (b + c) = a · b + a · c
• xa · yb = xy(a · b)

(Vector) Cross Product
• a× b = ‖a‖‖b‖ sin θĉ

• a× b = −b× a

• a× (b + c) = a× b + a× c

• ya× b = y (a× b) = a× yb

a · a = ‖a‖‖a‖ cos(0) = ‖a‖2

If vector a is perpendicular to vector b (a ⊥ b):

1 a · b = 0

2 â, b̂, â× b̂ is a reference frame
This is a representation of the
right-hand rule. Carrying out the
cross-products in the
counter-clockwise direction produces
positive values. Following the circle
clockwise produces negative values
(i.e., b̂× â = −â× b̂).
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Vector Triple Products

• Scalar Triple Product: a · (b× c) = b · (c× a) = c · (a× b)

• Vector Triple Product: a× (b× c) = b(a · c)− c (a · b)

Vector Products Can Be Written as Matrix Multiplications
I = (O, e1, e2, e3) a =

∑

i

aiei ⇒ ai = a · ei b =
∑

i

biei ⇒ bi = b · ei

[a]I =



a1
a2
a3



I

[b]I =



b1
b2
b3



I

[a · b]I = [a]TI [b]I

[a× b]I = [a×]I [b]I

[b× a]I = [b×]I [a]I = −[a×]I [b]I

where [a×]I ,




0 −a3 a2
a3 0 −a1
−a2 a1 0



I

a · a = ‖a‖2 =⇒ [a · a]I = [a]TI [a]I = a21 + a22 + a23 so ‖a‖ =
»
a21 + a22 + a23
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Multiple Reference Frames and Direction Cosine Matrices

[r]B = BCA [r]A

Direction Cosine Matrix (DCM)

DCMs are Orthogonal Matrices:
ACB =

(BCA
)−1

=
(BCA

)T

DCMs are Composed by Multiplication:
ICF1F1CF2F2CF3 . . . FN−1CFN = ICFN

Simple Direction Cosine Matrices

BCA =




1 0 0
0 cos θ sin θ
0 − sin θ cos θ




︸ ︷︷ ︸
, C1(θ)




cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ




︸ ︷︷ ︸
, C2(θ)




cos θ sin θ 0
− sin θ cos θ 0

0 0 1




︸ ︷︷ ︸
, C3(θ)

Any DCM can be decomposed into three rotations about non-repeating
frame axes.
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More on DCMs
Each entry of a DCM is the cosine of the angle between each pair of unit
vectors of the two frames the DCM maps between:

A = (O, â1, â2, â3)

B = (O, b̂1, b̂2, b̂3)

´ [ACB]
ij

= âi · b̂j =⇒ BCA =
(ACB

)T
=⇒

[BCA
]
ij

= b̂i · âj

b̂1 · â1 = cos θ

b̂1 · â2 = cos
(π

2
− θ
)

= sin θ

b̂2 · â1 = cos
(
θ +

π

2
− θ + θ

)
= − sin θ

b̂2 · â2 = cos θ

b̂3 · â3 = 1

b̂1 · â3 = b̂2 · â3 = b̂3 · â1 = b̂3 · â2 = cos
(π

2

)
= 0

Polar/Cylindrical Reference Frames
P = (O, êr, êθ, ê3)

PCI ≡ C3(θ) =




cos θ sin θ 0
− sin θ cos θ 0

0 0 1




[
rP/O

]
P︸ ︷︷ ︸


ρ
0
z



P

= PCI
[
rP/O

]
I︸ ︷︷ ︸


x
y
z



I



ρ
0
z



P

= PCI



x
y
z



I

=



x cos (θ) + y sin (θ)
−x sin (θ) + y cos (θ)

z



P



x
y
z



I

= ICP︸︷︷︸(PCI
)T



ρ
0
z



P

=



ρ cos (θ)
ρ sin (θ)

z



I

Useful for tracking an object moving in-plane whose position is most easily
described in polar coordinates. êr will always point at the object.
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Spherical Reference Frames

S = (O, êφ, êθ, r̂)

SCI = C2(φ)C3(θ) =




cos (φ) cos (θ) sin (θ) cos (φ) − sin (φ)
− sin (θ) cos (θ) 0

sin (φ) cos (θ) sin (φ) sin (θ) cos (φ)






x
y
z



I︸ ︷︷ ︸[

rP/O
]
I

= ICS︸︷︷︸(SCI
)T




0
0
r



S︸ ︷︷ ︸[

rP/O
]
S

= r




cos θ sinφ
sin θ sinφ

cosφ



I

Useful for tracking an object moving in 3D whose position is most easily
described in spherical coordinates. r̂ will always point at the object.

Vector Derivatives

• A vector rP/O = a1a1 + a2a2 + a3a3 is differentiable in time at a time t1
with respect to frame A = (O, a1, a2, a3) if a1(t), a2(t), a3(t) are
differentiable at t = t1. Then:

Ad

dt
rP/O

∣∣∣∣∣
t=t1

=
da1
dt

∣∣∣∣
t=t1

a1 +
da2
dt

∣∣∣∣
t=t1

a2 +
da3
dt

∣∣∣∣
t=t1

a3

• The unit vectors defining a frame always have zero time derivatives
with respect to that frame (but not necessarily to other frames)
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Vector Differentiation Across Reference Frames
Angular Velocity of B in A: AωB , θ̇ n̂

Positive for CCW rotation
IωFN = IωF1 + F1ωF2 + F2ωF3 + . . .+ FN−1ωFN

Rotation axis: [n̂]A = [n̂]B =



n1

n2

n3




The Transport Equation

Ad

dt
c =

B d

dt
c + AωB × c

NB: Counter-clockwise is defined by looking down along the axis of rotation.

Newton’s Laws of Motion
1 Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in
directum, nisi quatenus a viribus impressis cogitur statum illum mutare
Every body preserves in its state of rest, or of uniform motion in a right
line, unless it is compelled to change that state by forces impressed
thereon

2 Mutationem motus proportionalem esse vi motrici impressae; et fieri secundum
lineam rectam qua vis illa imprimitur
The alteration of motion is ever proportional to the motive force
impressed; and is made in the direction of the right line in which that
force is impressed

3 Actioni contrariam semper et aequalem esse reactionem: sive corporum duorum
actiones in se mutuo semper esse aequales et in partes contrarias dirigi
To every action there is always opposed an equal reaction; or the mutual
actions of two bodies upon each other are always equal, and directed to
contrary parts
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Newton’s Second Law

Inertial Frame Derivative Inertially Fixed Point Mass (Assumed Constant)

FP =
I d
dt

ÄIpP/O
ä
=
I d
dt

Ä
mP
IvP/O

ä
=mP

IaP/O

Resultant Force on P Linear Momentum Inertial Velocity and Acceleration

MP/O =
I d
dt

(I
hP/O

)
=
I d
dt

Ä
rP/O × IpP/O

ä
= rP/O × FP

Net Moment (Torque) about O Angular Momentum of P about O

Newton’s Law of Gravity

Gravitational Constant

F1 = −F2 = − Gm1m2

‖r1/2‖3
r1/2
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Work and Energy
• A force (FP ) does work (W ) on a particle P when it displaces the particle

along a trajectory (γP ): WFP
P (rP/O; γP ) ,

∫

γP
FP · IdrP/O

Path Integral over trajectory

• The Kinetic Energy of particle P is defined as: TP/O , 1

2
mp(

IvP/O · IvP/O)

• The change in kinetic energy from time t1 to time t2 is equal to the total
work done on the particle during that time
• The work done by Conservative Forces depends only on the endpoints of

the trajectory.
∮
FP · IdrP/O = 0 means that FP is conservative.

Closed Path Integral
• Conservative Forces can always be written as the gradient of a scalar

Potential (U): F(cons)
P = −∇U

(FP )
P/O so

U
(FP )
P/O (t2) = U

(FP )
P/O (t1)−W (FP )

P (t1, t2)

Total Work and Energy

• Total Energy: EP/O(t) , TP/O(t) + UP/O(t)

• Total Work: W tot
P (rP/O; γP ) = W c

P (t1, t2)︸ ︷︷ ︸ + W nc
P (rP/O; γP )︸ ︷︷ ︸

Work due to conservative forces Work due to non-conservative forces
= negative change in potential energy = change in total energy

• Conservation of Energy: no non-conservative forces ≡ constant total energy

EP/O(t2) = EP/O(t1) +W
(nc)
P (rP/O; γP )
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Numerical Integration for Initial Value Problems
In general, numerical integrators are trying to solve the IVP:

For ẋ = f(x, t); x(t0) = x0 ∈ Rn; f : Rn × [t0,∞)→ Rn

Find x(t); t ∈ [t0,±∞)

Forward Euler Method: xk+1 = xk + ∆tf(xk, tk)

Runge-Kutta: xk+1 = xk+∆t
s∑

i=1

bigi





g1 = f(xk, tk)

g2 = f(xk + ∆t(a21g1), tk + c2∆t)

g3 = f(xk + ∆t(a31g1 + a32g2), tk + c3∆t)

. . .

gi = f
Ä
xk + ∆t

∑s
j=1 aijgj, tk + ci∆t

ä

The values of the coefficients aij, bi, ci are determined by the order of the
Runge-Kutta method.

Numerical Integrators in MATLAB

MATLAB Provides many different functions for solving systems of ordinary
differential equations:
• ODE45 General-purpose, medium-order Runge-Kutta method. Good

place to start for most problems.
• ODE23 General-purpose, lower-order Runge-Kutta method. Good for

getting faster results with less precision.
• ODE113 Variable-order method, useful when high precision (low

numerical error) is desired, and when the function f is expensive to
compute.

For lots more detail, see:
www.mathworks.com/help/matlab/ordinary-differential-equations.html
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Numerical Integration for 2nd order differential equations

• Our equations of motion typically have the form ẍ = f(x, ẋ, t)

• We can always turn these into first-order equations by defining a new
state:

z ,
ï
x
ẋ

ò
≡
ï
z1
z2

ò
=⇒ ż =

ï
z2

f(z1, z2, t)

ò
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Reference Frames, Coordinate Systems, and Time

One of the very first steps in solving a dynamics problem involving objects in space
(after you have created your system model and listed out all assumptions being
made), is to select the reference frames and coordinate systems you’ll be working
with. For astrodynamics problems, there will usually be one (or a handful) of sys-
tems that make the most sense, based on the central body of your orbit, or what,
specifically, you are trying to calculate. Here, we review the standard reference
frames and coordinate systems used to describe orbits about the Earth and through-
out the solar system, as well as standards for measuring time.
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Solar System Reference Planes

Ecliptic Plane

Equatorial Plane

North Pole Direction

ε is known as the obliquity of the ecliptic. The ecliptic was historically defined as
the mean plane of Earth’s orbit, while the equatorial plane was defined as the plane
of the Earth’s equator. In reality, neither of these planes is inertially fixed, but
modern (inertially fixed) definitions attempt to match the historical meanings as
closely as possible.

Solar System Reference Frames

Heliocentric Geocentric

I,G Ecliptic, Inertial; I ′,G ′ Equatorial, Inertial; GB Equatorial, Non-Inertial
2



International Celestial Reference System (ICRS)

ICRF3: 4,356 Extragalactic Sources, 303 defining.
http://hpiers.obspm.fr/icrs-pc/newwww/icrf/index.php

ICRS is the standard by which the reference frame is defined. ICRF1-3 are
realizations fo the standard based on updated measurements. ICRS attempts
to approximate equatorial coordiantes, with a coordinate origin at the solar
system barycenter, a pole direction approximating the north pole direction,
and an equinox direction approximating à.

Spherical Coordinate Systems

Name Origin Reference 
Plane 

Prime 
Direction 

Azimuth Angle Elevation Angle 

Geographic Geocentric Equator Prime 
Meridian 

Longitude (𝜆) Latitude (𝜑 or L) 

Horizontal 
(Topocentric) 

Observer 
Location 

Horizon North Azimuth (Az) Altitude/Elevation 
(Alt/El) 

Equatorial Geocentric or 
Heliocentric 

Celestial 
Equator 

Vernal 
Equinox 

Right Ascension (𝛼) Declination (𝛿) 

Ecliptic Geocentric or 
Heliocentric 

Ecliptic Vernal 
Equinox 

Ecliptic Longitude (𝜆) Ecliptic Latitude (𝛽) 

Galactic Heliocentric Galactic 
Plane 

Galactic 
Center 

Galactic Longitude (𝑙) Galactic Latitude (𝑏) 

NB: These are defined via an elevation (rather than zenith) angle.
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Topocentric-Horizon Coordinate System
Earth-Centered-Inertial (ECI) Topocentric-Horizon (SEU)

The majority of observations still occur from the surface of the Earth, and so it is important
to define reference frames that assist in the transformation of these observations to inertial
frame components. The topocentric-horizon reference frame and coordinate system is defined
with the origin at the observer’s location, and with the frame rotating with the Earth. The
coordinates are spherical: azimuth (Az) measured in the Ê− Ŝ plane from north (N̂ = −Ŝ)
and elevation (El) measured up from this plane to the position vector.

Central Body Shape

It is important to remember that the Earth and other central bodies are not spherical.
In fact, the smaller the body, the more non-spherical it is likely to be. The Earth
and other planetary bodies are best described as ‘lumpy, oblate spheroids’. This
description allows for multiple levels of approximation. The first is to simply treat
the body as a sphere. For the Earth, the polar and equatorial radius differ by
approximately 0.3%, so this is a fair approximation, but inadequate for precision
work. The next level of approximation is to fit a mean oblate spheroid (the surface
of revolution produced by an ellipse), called a reference geoid (or datum surface).
The final level is to decompose the true shape/mass distribution of the body into
an orthogonal basis set known as spherical harmonics, which we will consider when
we discuss orbital perturbations. While many different reference geoids exist for the
Earth, we will focus on one of the most widely used ones (and the one used by the
GPS constellation: the World Geoditic System 1984 (WGS84) geoid.
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The Reference Geoid
A surface point
O at Lon/Lat
(λ, L) is at
some height h
above the
reference geoid

World Geodetic System (WGS) 84
ωe = 7.292115× 10−5 rad/s
ae = 6,378,137 m
1

f
= 298.257223563

f , a− b
a

be ≈ 6,356,752.314245179 m

λ = 0 at IERS
Reference Meridian
∼5.3 arcsec(102.5 m)
East of original Greenwich

Center at center of mass
of the Earth

See also: https://www.iers.org/IERS/EN/Home/home_node.html

L is the geoditic latitude and L′ is the geocentric latitude.

Finding Where You Are
A surface point O at
Lon/Lat (λ, L) is at
some height h above the
reference geoid

Geoid described by ae
and ee where:
e2e = 2f − f 2

[
rO/G

]
G′ =



x cos θLST
x sin θLST

z



G′

x =

(
ae√

1− e2e sin2 L
+ h

)
cosL

z =

(
ae(1− e2e)√
1− e2e sin2 L

+ h

)
sinL
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Space and Time
The expressions in the previous slide use the geoditic latitude to find the components
of the position vector of the surface point with respect to the center of the Earth.
As we want the Û to represent the vertical from this surface point, we similarly use
L (and not L′) when finding the transformation between the G′ and T frames. The
transformation from the Earth-Centered inertial frame to the Topocentric-Horizon
frame is effectively the same as our usual spherical frame definition: a θLST rotation
about the ê′3 direction, followed by a π/2 − L rotation about the Ê direction. Re-
member that the final frame is defined as T = (O, Ŝ, Ê, Û), so that Ê is the second
unit direction. In cases where you wish to use a purely spherical Earth model, L and
L′ are identical, and all the same expression still hold (but are greatly simplified, as
ee would be treated as zero in this case).

Note that we still don’t know how to calculate θLST - the angle between the inertial
àdirection and the meridian of the observer. As this is a time-varying quantity, we
first need to understand how we measure time before we return to this quantity.

SI Seconds

• The second is the duration of 9,192,631,770 periods of the radiation
corresponding to the transition between the two hyperfine levels of the
ground state of the Cesium-133 atom.
–NIST (http://physics.nist.gov/cuu/Units/second.html)
• This definition refers to a cesium atom at rest at a temperature of 0 K.

–BIPM
(http://www.bipm.org/en/publications/si-brochure/second.html)
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Solar vs Sidereal Time

To Sun at Noon

To Sun at Noon

Orbital MotionAxial
Rotation

To “Fixed” Star
At Midnight

To “Fixed” Star
At Midnight

• Mean Solar Day (d):
24 SI hours = 86400 SI
seconds
• Solar (Tropical) Year:

365.242190402 d
• Mean Sidereal Day:

23h56m4.09054s
• Sidereal Year:

365.256363004 d

Solar vs Sidereal Days

A solar day is length of time it takes for the sun to return to the same position in
the sky. It varies by observer location and in time, but has a mean value set to
24 hours exactly. The sidereal day is the length of time that it takes for distant
(fixed) stars to return to the same position in the sky. As the Earth has moved by
approximately 1 degree in its orbit during the course of a day, the sidereal day is
approximately 4 minutes (1◦ = 24h×60min/360◦). The sidereal day defines the Earth’s
‘true’ rotation rate, such that the Earth rotates fully on its axis once per sidereal
day, but the solar day is more useful in our day to day lives, and the one that is used
in all civil applications.
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Hour Angles and Sidereal Time

Vernal Equinox Direction or
 Mean Equinox at Epoch (inertially fixed)

Observer Meridian
(rotating with the Earth)

To Sun
(rotating with orbit)

Prime (Greenwich) Meridian
(rotating with the Earth)

0o

60o East

120o

180o

240o

300oObserver East
Longitude

Greenwich Mean
 Sidereal Time

Right Ascension of the Sun

Greenwich Hour Angle
of the Sun

Local Hour Angle
 of the Sun

Local Mean
 Sidereal Time

Hour Angle
is defined as the
time from when an
object was directly
overhead. Negative
hour angles imply
that the object is
approaching.

Time Measurements

• Local Hour Angle and Greenwich Hour Angle: LHA = GHA+ λE
• Local Solar Time (local midnight is 0 hours): LHA� + 12h

• Greenwich Solar Time: θGMST − α� + 12h where θGMST is the location of
the Prime (Greenwich) Meridian with respect to the vernal equinox
• There are two different ‘suns’: The apparent sun (where the sun

actually is) and the fictitious mean sun (a sun moving uniformly along
the celestial equator). We can define apparent and mean solar times.
• The mean solar time at Greenwich is defined as Universal Time:

UT0 = GHA� + 12h = LHA� + 12h − λE
• The motion of Earth’s pole affects all these measurements. Correcting

for this gives you UT1 (|UT1− UT0| ≈ 30 ms)
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Finding When You Are

θLST = θg0+ ωe(t− t0) + λE

Reference Value at Epoch

OR

CALENDAR, 2019 17

JULY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER

Day Day Day Day Day Day Day Day Day Day Day Day Day
of of of of of of of of of of of of of

Month Week Year Week Year Week Year Week Year Week Year Week Year

1 Mon. 182 Thu. 213 Sun. 244 Tue. 274 Fri. 305 Sun. 335
2 Tue. 183 Fri. 214 Mon. 245 Wed. 275 Sat. 306 Mon. 336
3 Wed. 184 Sat. 215 Tue. 246 Thu. 276 Sun. 307 Tue. 337
4 Thu. 185 Sun. 216 Wed. 247 Fri. 277 Mon. 308 Wed. 338
5 Fri. 186 Mon. 217 Thu. 248 Sat. 278 Tue. 309 Thu. 339

6 Sat. 187 Tue. 218 Fri. 249 Sun. 279 Wed. 310 Fri. 340
7 Sun. 188 Wed. 219 Sat. 250 Mon. 280 Thu. 311 Sat. 341
8 Mon. 189 Thu. 220 Sun. 251 Tue. 281 Fri. 312 Sun. 342
9 Tue. 190 Fri. 221 Mon. 252 Wed. 282 Sat. 313 Mon. 343

10 Wed. 191 Sat. 222 Tue. 253 Thu. 283 Sun. 314 Tue. 344

11 Thu. 192 Sun. 223 Wed. 254 Fri. 284 Mon. 315 Wed. 345
12 Fri. 193 Mon. 224 Thu. 255 Sat. 285 Tue. 316 Thu. 346
13 Sat. 194 Tue. 225 Fri. 256 Sun. 286 Wed. 317 Fri. 347
14 Sun. 195 Wed. 226 Sat. 257 Mon. 287 Thu. 318 Sat. 348
15 Mon. 196 Thu. 227 Sun. 258 Tue. 288 Fri. 319 Sun. 349

16 Tue. 197 Fri. 228 Mon. 259 Wed. 289 Sat. 320 Mon. 350
17 Wed. 198 Sat. 229 Tue. 260 Thu. 290 Sun. 321 Tue. 351
18 Thu. 199 Sun. 230 Wed. 261 Fri. 291 Mon. 322 Wed. 352
19 Fri. 200 Mon. 231 Thu. 262 Sat. 292 Tue. 323 Thu. 353
20 Sat. 201 Tue. 232 Fri. 263 Sun. 293 Wed. 324 Fri. 354

21 Sun. 202 Wed. 233 Sat. 264 Mon. 294 Thu. 325 Sat. 355
22 Mon. 203 Thu. 234 Sun. 265 Tue. 295 Fri. 326 Sun. 356
23 Tue. 204 Fri. 235 Mon. 266 Wed. 296 Sat. 327 Mon. 357
24 Wed. 205 Sat. 236 Tue. 267 Thu. 297 Sun. 328 Tue. 358
25 Thu. 206 Sun. 237 Wed. 268 Fri. 298 Mon. 329 Wed. 359

26 Fri. 207 Mon. 238 Thu. 269 Sat. 299 Tue. 330 Thu. 360
27 Sat. 208 Tue. 239 Fri. 270 Sun. 300 Wed. 331 Fri. 361
28 Sun. 209 Wed. 240 Sat. 271 Mon. 301 Thu. 332 Sat. 362
29 Mon. 210 Thu. 241 Sun. 272 Tue. 302 Fri. 333 Sun. 363
30 Tue. 211 Fri. 242 Mon. 273 Wed. 303 Sat. 334 Mon. 364

31 Wed. 212 Sat. 243 Thu. 304 Tue. 365

MEAN SIDEREAL TIME, 2019

Greenwich mean sidereal time at 0h UT
h h h h

Jan. 0 6·6250 Apr. 0 12·5389 July 0 18·5185 Oct. 0 0·5638
Feb. 0 8·6620 May 0 14·5102 Aug. 0 20·5555 Nov. 0 2·6008
Mar. 0 10·5019 June 0 16·5472 Sept. 0 22·5925 Dec. 0 4·5721

Greenwich mean sidereal time (GMST) on day d of month at hour t UT

= GMST at 0h UT on day 0 + 0h.065 71 d + 1h.002 74 t

Local mean sidereal time = GMST + east
� west longitude

HA371/009/008/-01 : Astronomical Phenomena, 2019 TEX aph19 30/08/2016 PLEASE REMOVE

https://aa.usno.navy.mil/publications/reports/ap19_for_web.pdf

ωe = 7.292115× 10−5 rad/s (WGS84)

θg0 = 100.4606184◦+36, 000.77005361TUT1+0.00038793T 2
UT1−2.6×10−8T 3

UT1

TUT1 = number of Julian centuries from J2000.0

Julian Date
• Defined as days since January 1, 4713 BCE, 12h UT
• 1 Julian year is exactly 365.25 days, 1 Julian century is 100 Julian years
• Define Modified Julian Date: MJD , JD - 2,400,000.5

JD =367Y − int



7

(
Y+ int

(
M+ 9

12

))

4


+ int

(
275M

9

)
+D+ 1721013.5 +

UT

24

− 1

2
sgn (100Y +M− 190002.5) +

1

2

int(x) =

{
bxc x ≥ 0

dxe x < 0
sgn(x) =

{
1 x ≥ 0

−1 x < 0

In MATLAB: see juliandate and datetime
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More Time Systems

• Coordinated Universal Time (UTC) is an approximation to UT1
defined such that |UT1− UTC| < 0.9 seconds

• UTC is based on International Atomic Time (TAI), a weighted
average of >400 atomic clocks in over 50 national laboratories worldwide

• Leap seconds are added to TAI to get UTC. In 2021, TAI is 37 seconds
ahead of UTC, with the last leap second added on 12/31/2016 23:59:60
UTC

• GPS time is UTC as of 1/16/1980. As of 2021, GPS - UTC = 18
seconds. TAI - GPS will equal 19 seconds forever.
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The Two-Body Problem

The two-body problem (two point masses interacting via gravity, with no other forces
present) is the fundamental building block of celestial mechanics. In fact, the two-
body problem is the only orbital mechanics problem with an exact solution, allowing
you to express the positions of both bodies in the past, present, and future via
a single analytical expression. Although in practice you are unlikely to ever deal
with an exact two-body system, many complex systems (including the solar system)
behave like collections of two-body orbits that gradually change over time, making
two-body concepts broadly applicable to a variety of other cases.
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Newton’s Law of Gravity and the Two-Body Problem

Gravitational Constant

F1 = −F2 = − Gm1m2

‖r1/2‖3
r1/2

Orbital Radius: r ≡ r1/2 (or r2/1)
Gravitational Parameter: µ , G(m1 +m2)

I
d2

dt2
r +

µ

‖r‖3
r = 0

The Two-Body Problem is a Central Force Problem, so:

1 MP/O = rP/O × FP = 0 where rP/O 6= 0

2 The resultant force acts in the direction of rP/O

3 Angular momentum is conserved

2



Specific Angular Momentum

Specific Angular Momentum: h , r×
I d

dt
r

I
d2

dt2
r+

µ

‖r‖3
r = 0⇒

I
d2

dt2
r× h =

I d

dt

(
µ

‖r‖r
)

=⇒
I d

dt
r× h = µ

(
r

‖r‖ + e

)

Constant of Integration
The eccentricity vector

Also: the Laplace–Runge–Lenz (LRL)
vector

The Two-Body Problem Solution

r ·
(I d

dt
r× h

)

︸ ︷︷ ︸(
r×

I d

dt
r

)
· h

≡ ‖h‖2

= r · µ
(

r

‖r‖ + e

)

︸ ︷︷ ︸
µ
(
‖r‖+ ‖r‖‖e‖ cos ν

)

Angle Between r and e
True Anomaly

r , ‖r‖ =
h2/µ

1 + e cos(ν)

h , ‖h‖ e , ‖e‖ r · e = re cos ν

3



In general, in the two-body problem:

1 The orbit position and velocity vectors are both orthogonal to the
specific angular momentum vector of the orbit.

2 The orbit position, velocity, and eccentricity vectors all lie in an
invariant plane in inertial space. We call this plane the perifocal plane
and use it to define a useful reference frame.

3 A single, simultaneous measurement of both the orbit position and
velocity vectors (assuming µ is known) fully defines the orbit.

The Perifocal Frame
r = r cos(ν)ê + r sin(ν)q̂

v ,
I d

dt
r = [ṙ cos(ν)− rν̇ sin(ν)] ê + [ṙ sin(ν) + rν̇ cos(ν)] q̂

=
µ

h
[− sin(ν)ê + (e+ cos(ν))q̂]

r = ‖r‖ =
h2/µ

1 + e cos(ν)

e = ‖e‖ =

∥∥∥∥
v × h

µ
− r

r

∥∥∥∥
h = ‖h‖ = ‖r× v‖



Constants

h = r2ν̇

ê, q̂, r, and v all lie within the perifocal plane.
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Turning Points

• In general, the angle between r and v is arbitrary, but there exist special
cases, called turning points, where: rt ⊥ vt

r× v

e =
v ×

︷︸︸︷
h

µ
− r

r
=

1

µ

(
‖v‖2 − µ

r

)
r−

(
r · v
µ

)

︸ ︷︷ ︸
v

= 0 for r ⊥ v

• So at turning points: rt ‖ e

• If rt ‖ e, νt = 0, π. So rt =
h2/µ

1 + e cos(νt)
=
h2/µ

1± e .
Therefore, turning points occur at the minimum and maximum orbital
radius.

Turning Point Nomenclature
• A turning point is also called an apsis (plural: apsides)
• The closest approach between bodies is known as periapsis

(also pericenter or periapse)
• The furthest distance between bodies is known as apoapsis

(also apocenter or apoapse)
• When orbiting specific bodies, we frequently replace apsis

with a body-specific suffix:

Body Periapsis Apoapsis
Earth Perigee Apogee
Sun Perihelion Aphelion

Jupiter Perijove Apojove
Star Periastron Apoastron

5



Kepler’s First Law

Circle

Ellipse
Parabola

Hyperbola

Kepler’s First Law
The orbit of a planet is
an ellipse (conic
section) with the Sun
at a focus

Conic Sections

Two-body orbits are conic sections
with the central body at a focus

FP = ePQ

Ellipse (Circle) 0 < e < 1
Parabola e = 1
Hyperbola e > 1

Directrix

6



Elliptical Orbits

r′ + r = 2a

r =
a(1− e2)

1 + e cos(ν)

=
h2/µ

1 + e cos(ν)

=
`

1 + e cos(ν)

*This last equation

applies for all conic

sections.

Parabolic and Hyperbolic Orbits
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Conic Section Parameters
semi-parameter: ` = r(ν = π/2) = height above focus

linear eccentricity: c = ae = distance from center to focus
focal parameter: p = /̀e = distance from focus to vertex

NB: p and ` frequently have reversed definitions, depending on the
text.

Definition e c ` p

circle x2 + y2 = a2 0 0 a ∞

ellipse
x2

a2
+
y2

b2
= 1

√
1− b2

a2

√
a2 − b2

b2

a

b2

√
a2 − b2

parabola y2 = 4ax 1 ∞ 2a 2a∗

hyperbola
x2

a2
− y2

b2
= 1

√
1 +

b2

a2

√
a2 + b2

b2

|a|
b2

√
a2 + b2

∗a is the focus to vertex distance for a parabola

Kepler’s Second Law
A line segment joining a planet and
the Sun sweeps out equal areas in

equal time

Recall: rν̇ =
h

r

dA =
1

2
r(r dν) =

1

2
r2 dν

dt︸ ︷︷ ︸
h

dt

dA

dt
=
h

2

Corollary: a body is traveling the fastest at periapsis and slowest at apoapsis
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Kepler’s Third Law

The square of the orbital period (TP )
is proportional to the cube of the

semi-major axis

∫ TP

0

dA

dt
dt =

∫ TP

0

h

2
dt =⇒ A =

h

2
TP

For an ellipse: A = πab = πa
3
2

√
` =

h

2
TP

TP =
2π√
µ
a

3
2

Specific Energy and Effective Potential

r

0 h2

2µ
h2

µ
∞ →

−∞ ↓

minUeff

0

∞ ↑

Elliptical Orbits (2 turning points)

Hyperbolic Orbits
(1 turning point)

Ueff

h2/2r2

−µ/r
Circular Orbit
Parabolic Orbit

←
C
lo
se
d

O
p
en

→

E =
v2

2
− µ

r
= constant

E = − µ

2a

The Vis-Viva Equation

v2 = µ

(
2

r
− 1

a

)

E =
ṙ2

2
+ U(r) +

h2

2r2︸ ︷︷ ︸
, Ueff
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Special Orbits

• On a circular orbit, r = a everywhere, so: vc =

√
µ

r

• On a parabolic orbit, a =∞, so vp =

√
2µ

r
=
√

2vc

• A parabolic orbit is where an orbit switches from closed to open,
and so vp is the Escape Velocity

The Auxiliary Circle and Mean Anomaly
Eccentric Anomaly:

cos(E) =
ae+ r cos(ν)

a
tan

(
E

2

)
=

√
1− e
1 + e

tan
(ν

2

)

M = n(t− tp) = E − e sin(E)

tp = time of periapsis
Kepler’s Time Equation:Mean Motion:

n , 2π

TP
=

√
µ

a3

10



Solving Kepler’s Time Equation

Kepler’s time equation is still a transcendental one, and so cannot be analytically
inverted to solve for eccentric anomaly (and therefore true anomaly) as a function
of mean anomaly (time). The benefit of this equation is that it is more easily nu-
merically solvable than attempting to find true anomaly directly from time. Much
of the history of astrodynamics has been devoted to coming up with new and better
approaches for inverting Kepler’s time equation. While literally dozens of distinct
methods exist, here we will focus on just one: Newton-Raphson iteration. This ap-
proach has the benefit of being easy to implement in almost any computer language,
is relatively computationally efficient, and, with the proper choice of initial condi-
tions, is typically guaranteed to converge to any desired precision within a finite
number of iterations.

Newton-Raphson Iteration

• Given: x : f(x) = 0, x ∈ R; f ′(x) =
df

dx

• Iterate: xn+1 = xn −
f(xn)

f ′(xn)

• Until converged (answer stops changing to your desired precision)

11



Newton-Raphson Iteration for Kepler’s Time Equation

M − (E − e sin(E)) = 0

En+1 = En −
M − En + e sin(En)

e cos(En)− 1

E0 =





M

1− e
M

1− e <
√

6(1− e)
e

(
6M

e

) 1
3

else

Eccentric Anomaly Revisited

r = r cos(ν)ê + r sin(ν)q̂

= a (cos(E)− e) ê + b sin(E)q̂

v = −aĖ sin(E)ê + bĖ cos(E)q̂

=
an

r
(−a sin(E)ê + b cos(E)q̂)

Ė =
n

1− e cos(E)
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Parabolic and Hyperbolic Time Equations

We can define a parabolic and hyperbolic anomaly (B and H) that are effectively
equivalent to the eccentric anomaly in terms of their function—proxies for relating
true anomaly to time. In the case of parabolic orbits, we can actually solve the
time equation analytically, as it is a third order polynomial (and thus has a known,
exact solution). On the other hand, hyperbolic anomaly is defined to behave in the
exact same way as eccentric anomaly, only with hyperbolic instead of trigonometric
functions in the time equation. This is why hyperbolic anomaly is defined in terms
of an area rather than an angle. The exact same Newton-Raphson procedure can be
applied for solving the hyperbolic time equation.

Parabolic Orbits and Barker’s Equation

B , tan
(ν

2

)

r =
`

2

(
1 +B2

)

ν = sin−1

(
`B

r

)

np , 2

√
µ

`3

np(t− tp) = B +
B3

3
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Hyperbolic Orbits
Equilateral (right)
Hyperbola

sinh(H) = − r sin(ν)

a
√
e2 − 1

cosh(H) =
ae+ r cos(ν)

a

r = a (1− e cosh(H))

tan
(ν

2

)
=

√
e+ 1

e− 1
tanh

(
H

2

)

nh ,
√
− µ
a3

nh (t− tp) = e sinh(H)−H

Orbits in 3D

Recall that the orbital radius and velocity vectors (r and v) fully define an orbit, and
contain six scalar values. In our geometric description of an orbit, however, we have
only used three scalar values - the semi-major axis (a), eccentricity (e), and some
measure of time or anomaly (t, ν, or E,B,H). This is because our geometric descrip-
tion has been entirely in the perifocal frame. To make it generally applicable, we
must also add the orientation of a specific perifocal frame within an arbitrary inertial
frame (note that the perifocal frame is inertial, as it is based on an invariant plane
in space, but for an arbitrary orbit, the perifocal frame typically won’t correspond
to a frame in which we define standard measurements). As we will learn later in the
course, the orientation of one reference frame with respect to another can be encoded
via three angles (called Euler angles), representing rotations about a particular axis
of a series of reference frames. By convention, the relationship between the perifocal
and inertial reference frames is given by a 3-1-3 rotation set, detailed below.
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Inertial → Perifocal: 3-1-3 (Ω, I, ω) Body Rotation
1. 2.

3.

Longitude of the Ascending Node

Line of Nodes
Inclination

Argument of Periapsis

Angular Momentum

Eccentricity Vector

Orbits in 3D

15



Orbits in 3D (Math Version)

PCI =




cos (ω) sin (ω) 0
− sin (ω) cos (ω) 0

0 0 1






1 0 0
0 cos (I) sin (I)
0 − sin (I) cos (I)






cos (Ω) sin (Ω) 0
− sin (Ω) cos (Ω) 0

0 0 1


 =



− sin (Ω) sin (ω) cos (I) + cos (Ω) cos (ω) sin (Ω) cos (ω) + sin (ω) cos (I) cos (Ω) sin (I) sin (ω)
− sin (Ω) cos (I) cos (ω)− sin (ω) cos (Ω) − sin (Ω) sin (ω) + cos (I) cos (Ω) cos (ω) sin (I) cos (ω)

sin (I) sin (Ω) − sin (I) cos (Ω) cos (I)




[
rP/O

]
I = ICP



r cos ν
r sin ν

0



P

= r




cos (Ω) cos (ν + ω)− sin (Ω) sin (ν + ω) cos (I)
sin (Ω) cos (ν + ω) + sin (ν + ω) cos (I) cos (Ω)

sin (I) sin (ν + ω)




Special Cases
• I = 0, Longitude of Periapsis:

π ≡ $ , ω + Ω

• e = 0, Argument of Lattitude:

u ≡ θ , ν + ω

• e = I = 0, True Longitude:

l , $ + ν = Ω + ω + ν

NB: All of these can be defined in the general case as well, but only the
argument of latitude is always a true angle (since ν and ω always lie in the
perifocal plane) whereas π and l are compound angles measured across two
planes in cases where I 6= 0.
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Numerical Encoding and Canonical Values

It is important to remember that computers (for the most part) don’t actually encode
numbers to infinite precision. The majority of the time, when dealing with non-
integer values on a computer, you are utilizing floating point values, which encode
numbers to a fixed precision. In most situations, this will not lead to any issues at
all, but can lead to highly surprising results when operating on pairs of values of very
different magnitudes (e.g., adding very small numbers to very large numbers). At
the same time, certain values in astrodynamics are notoriously difficult to measure
to great precision. These two considerations lead us to briefly consider how exactly
computers store numerical values, and to introduce the concept of canonical units.

IEEE 754: Standard for Floating-Point Arithmetic

• A floating point number is represented by two values:
1 s: The significand (mantissa, coefficient)—fixed length (p) digit string in

base b
2 e: The exponent—a signed integer

f ≈ s

bp−1
be

• The IEEE 754 double precision (binary64, default in MATLAB) data
type has: b = 2, p = 52, and 11 exponent bits (e ∈ [−1022, 1023]).
• See MATLAB eps command.
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Canonical Units
• In astrodynamics, we constantly deal with values of hugely differing

scales: G = 6.67430(±0.00015)× 10−11 m3 kg−1 s−2,
m�/

(
m⊕+m$

)
= 328900.56(±0.02),

Gm� = 1.32712440018× 1020(±8× 109) m3 s−2.
See: https://ssd.jpl.nasa.gov/?constants for lots more.
• Define canonical distance, time and mass units (DU, TU, MU) such that
µ = G(m1 +m2) = 1 DU3 TU−2 and G = 1 DU3 TU−2 MU−1

• If 1 MU = m1 +m2 then:

TU =

√
DU3

MU

• For planetary orbits, we typically take DU to be the planetary radius.
For Earth satellites, typically DU = R⊕
• For heliocentric orbits, typically use astronomical units:

1 DU = 1 AU = 149597870700 m

18



Orbital Perturbations

Dmitry Savransky

Cornell University

MAE 4060/5065, Fall 2021

©Dmitry Savransky 2019-2021

Orbital Perturbations

A two-body orbit can be thought of as a static structure in space, but in practice real
orbits evolve in time due to gravitational and non-gravitational effects not captured
in the two-body model. In many cases, we can think of these additional effects
as perturbations—forces that are small compared with the primary gravitational
attraction between the two bodies, that lead to very gradual changes in the Keplerian
orbital elements. We introduce the concept of osculating orbital elements—orbital
elements representing the best fit of a two-body orbit to the true orbit at a given
point in time, which then evolve in response to perturbations.
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Osculating Orbital Elements
• Recall: r(t),v(t) ⇐⇒ a, e, I,Ω, ω, tp︸ ︷︷ ︸

, c

, t

• For a two-body orbit, c is constant and we can always define the orbit
as: r(c, t),v(c, t)

• If c varies in time then its elements are called osculating orbital
elements
• To describe a time-varying orbit, we modify our two-body differential

equation:

I
d2

dt2
r = − µ

‖r‖3
r + f︸︷︷︸

Perturbing Specific Force

• Our goal is to find ċ = f(c, f)

Perturbations Roadmap

I
d2

dt2
r +

µ

‖r‖3
r = f

Specific Perturbations
(Numerical Solutions) General Perturbations

Encke’s
Method

Cowell’s
Method

Variation of
Parameters

Gauss’s
Method

Lagrange’s
Method

2



Perturbation Techniques

Encke’s method utilizes numerical integration of the deviation from a reference orbit
due to any perturbations. Cowell’s method specifically models the perturbations due
to N mutually non-interacting bodies. Variation of parameters and Gauss’s method
apply for all forces, whereas Lagrange’s method is usually used for conservative forces
as the perturbation is expressed as a scalar potential.

Encke’s Method
True Orbit

Osculating Orbits
(Instantaneous Fits to True Orbit)

r(t0) ≡ rosc(t0)

v(t0) ≡ vosc(t0)

r(t) = rosc(t) + δr(t)

v(t) = vosc(t) + δv(t)

I
d2

dt2
rosc +

µ

‖rosc‖3
r = 0

I
d2

dt2
r +

µ

‖r‖3
r = f

q , δr · (δr− 2r)

r · r
f(q) , q

3 + 3q + q2

1 + (1 + q)
3
2

I
d2

dt2
δr +

µ

‖rosc‖3
δr = − µ

‖rosc‖3
f(q)r + f
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Cowell’s Method

...

No Mutual
Interaction

qj ,
r2/1 ·

(
r2/1 − 2rj/1

)

rj/1 · rj/1

=
r2/1

rj/1

(
r2/1

rj/1
− 2 cosαj

)

f(q) , q

(
3 + 3q + q2

1 + (1 + q)
3
2

)

I
d2

dt2
r2/1 +

µ

‖r2/1‖3
r2/1 = −G

n∑

j=3

mj

‖r2/j‖3

(
r2/1 + f(qj)rj/1

)

Variation of Conserved Quantities

• In the unperturbed two-body problem, we have two conserved vector
quantities:

h = r× v and e =
v × h

µ
− r

‖r‖
• If we add a specific perturbing force to our two-body equations of

motion, how do these change?

• Given:
I

d2

dt2
r ≡

I d

dt
v = − µ

‖r‖3
r + f

︸ ︷︷ ︸
we can look at the variation of h:

I d

dt
h =

I d

dt
(r× v) =

I d

dt
r× v + r×

︷︸︸︷
I d

dt
v
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Variation of Specific Angular Momentum and the
Eccentricity Vector

h = r× v

I d

dt
h = r× f

I
d2

dt2
r =

I d

dt
v = − µ

‖r‖3
r+f

e =
v × h

µ
− r

‖r‖

I d

dt
e =

1

µ
(f × h + v × r× f)

Variation of Parameters Reference Frames
IωB = Ω̇ê3 + İn̂ + θ̇ĥ

[IωB
]
B =



İ cos (θ) + Ω̇ sin (I) sin (θ)

−İ sin (θ) + Ω̇ sin (I) cos (θ)

Ω̇ cos (I) + θ̇



B

[r]B =



r
0
0



B

[Iv
]
B =



vr
vθ
0



B

[f ]B =



fr
fθ
fh



B

[Ih
]
B =




0
0
h



B

[e]B =



e cos ν
−e sin ν

0



B
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Gauss’s Perturbation Equations (the setup)
Idh
dt

=
Bdh
dt

+ IωB × h = r× f ⇒




0
0

ḣ



B

+



h
(
−İ sin (θ) + Ω̇ sin (I) cos (θ)

)

−h
(
İ cos (θ) + Ω̇ sin (I) sin (θ)

)

0



B

=




0
−fhr
fθr



B

Ide
dt

=
Bde
dt

+ IωB × e =
1

µ
(f × h + v × (r× f)) ⇒



−e
(
ω̇ − θ̇

)
sin (ω − θ) + ė cos (ω − θ)

e
(
ω̇ − θ̇

)
cos (ω − θ) + ė sin (ω − θ)

0



B

+




−e
(

Ω̇ cos (I) + θ̇
)

sin (ω − θ)
e
(

Ω̇ cos (I) + θ̇
)

cos (ω − θ)
e
(
İ sin (ω)− Ω̇ sin (I) cos (ω)

)



B

=
1

µ





fθh
−frh

0



B

+



fθrvθ
−fθrvr
−fhrvr



B




Gauss’s Perturbation Equations (the solution)

İ =
fhr

h
cos (θ)

Ω̇ =
fhr sin (θ)

h sin (I)

ḣ = fθr

ė =
efθ
h
r sin2 (ν) +

frh

µ
sin (ν) +

2fθ
µ
h cos (ν)

ω̇ = −fhr sin (θ)

h tan (I)
− fθr

2h
sin (2ν)− frh

eµ
cos (ν) +

2fθh

eµ
sin (ν)

h

r2
= Ω̇ cos (I) + θ̇

ȧ =
2a2

h
[e sin νfr + (1 + e cos(ν))fθ]
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Gauss’s Perturbation Equations (other versions)

Battin (1999) Eq. 10.41
NB: f ≡ ν, p ≡ `

(adr, adθ, adh) ≡ (fr, fθ, fh)

Vallado (2013) Eq. 9-24
NB: p ≡ `

(FR, FS, FW ) ≡ (fr, fθ, fh)

Lagrange Planetary Equations
da

dt
=

2

na

∂R

∂M
de

dt
=

1

na2e

((
1− e2

) ∂R
∂M
−
√

1− e2
∂R

∂ω

)

dI

dt
=

1

na2
√

1− e2 sin I

(
cos I

∂R

∂ω
− ∂R

∂Ω

)

dω

dt
=

√
1− e2

na2e

∂R

∂e
− cot I

na2
√

1− e2

∂R

∂I

dΩ

dt
=

1

na2
√

1− e2 sin I

∂R

∂I

dM

dt
= n−1− e2

na2e

∂R

∂e
− 2

na

∂R

∂a︸ ︷︷ ︸

F
(cons)
P = −∇U , ∇R

Recall the mean motion:

n =

√
µ

a3

Remember: mean anomaly is
always changing (at rate n).
This term gives the variation in
this change due to the
perturbation.
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Lagrange Planetary Equations (other versions)

Battin (1999) Eq. 10.31
λ , ntp

b = a
√

1− e2

Vallado (2013) Eq. 9-12
M = M0 + n(t− tp)

Orbiting About Extended Bodies

One of the most important perturbations for spacecraft in orbit about the Earth (or
another large body) is due to the fact that the central bodies have physical extent
(they’re not ideal particles) and are non-spherical (remember, the Earth is best
described as a lumpy, oblate spheroid). Here we will continue our earlier development
of the parametrization of Earth shape, which started by defining the reference geoid.
We can introduce the concept of spherical harmonics to decompose the true mass
distribution of the Earth into a finite number of measurable terms, and then use this
description along with our perturbation equations to find the effects on a satellite
orbit.
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Orbiting About Extended Bodies (forces)

dFdm =
Gm2 dm

‖rdm/2‖3
rdm/2 ⇒ F =

∫∫∫

B

Gm2

‖rdm/2‖3
rdm/2 dm

F = m2∇U U = G

∫∫∫

B

dm

‖r dm/2‖

Orbiting About Extended Bodies (coordinates)
Body-Fixed Frame
(rotating with body)

NB: Careful! θ, φ are often reversed in other texts
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Potential of an Azimuthally Symmetric Body
Body Total Mass Body Equatorial Radius

U(r, φ) =
GmB

r


1−

∞∑

k=2

Jk

(
RB

r

)k
Pk(cosφ)︸ ︷︷ ︸




Non-dimensional coefficients named after Harold Jeffreys. Legendre Polynomials
J1 = 0 due to symmetry

Legendre Polynomials are Solutions to Legendre’s differential equation:

0 =
d

dx

((
1− x2

) d

dx
Pn(x)

)
+
(
n2 + n

)
Pn(x)

Pn(x) =
1

2n

n∑

k=0

(
n

k

)2

(x− 1)n−k(x+ 1)k = 2n
n∑

k=0

xk
(
n

k

)(
(n+ k − 1)/2

n

)

J Values for Solar System Bodies

(×10−6) Earth Mars Moon Venus Mercury
J2 1082.6 1955.5 203.23 4.4044 22.5
J3 -2.5327 31.450 8.4759 -2.1082 4.49
J4 -1.6196 -15.377 -9.5919 -2.1474 6.5

(×10−6) Jupiter Saturn Uranus Neptune
J2 14696.572 16290.573 3341.29 3408.43
J3 -0.042 0.059 — —
J4 -586.609 -935.314 -30.44 -33.40

From: Lemoine et al. 1998 (Earth), Lemoine et al. 2001 (Mars), Konopliv et
al. 2001 (Moon), Konopliv et al. 1999 (Venus), Iess et al. 2018 (Jupiter), Iess

et al. 2019 (Saturn), Smith et al. 2012 (Mercury)
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Potential of an Arbitrary Body
Multipole Moments

U(r, θ, φ) =
GmB

r
+G

∞∑

`=2

∑̀

m=−`
qm` r−(`+1) Y m

` (θ, φ)

Spherical Harmonics: Y m
` (θ, φ) =

√
(2`+ 1)

4π

(`−m)!

(`+m)!
Pm
` (cosφ) eimφ

Associated Legendre Polynomials :Pm
` (x) = (−1)m (1− x2)m/2

dm

dxm
(P`(x))

Typically use:

U(r, θ, φ) =
GmB

r

[
1 +

∞∑

`=2

∑̀

m=0

(
RB

r

)`
Pm
` (cosφ)×

(
Cm
` cos(mθ) + Sm` sin(mθ)

)]

Tabulated Coefficients

Spherical Harmonics
U(r, θ, φ) =

µ

r

[
1−

∞∑

`=2

(
RB

r

)`

J`P`(cosφ) +

∞∑

`=2

∑̀

m=1

(
RB

r

)`

Pm
` (cosφ)× (Cm

` cos(mθ) + Sm
` sin(mθ))

]

` = degree, m = order
Zonal Harmonics Sectoral Harmonics Tesseral Harmonics
Bands of Latitude Bands of Longitude Tiles of lat/lon

J` = −C0
` ` = m ` 6= m 6= 0
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State of the Art: GRACE
• Launched in 2002 with original 5 year

mission (decommissioned in 2017)
• Followup (GRACE-FO) launched in 2018
• Provides monthly gravity anomaly

mapping (degree 60-90)
• Static geopotential maps available from:

• International Centre for Global Earth
Models (ICGEM)

• National Geospatial-Intelligence Agency
(NGA)

• Current Standard is Earth Gravitational
Model 2008 (EGM2008)
http://earth-info.nga.mil/GandG/update/index.php?action=home

• See also: http://icgem.gfz-potsdam.de/tom_longtime

Normalizations – Be Careful!
Description of Files Related to Using the EGM2008 Global Gravitational 

Model to Compute Geoid Undulations with Respect to WGS 84 
 

 
(1) EGM2008_to2190_TideFree.gz 
  

 This file contains the fully-normalized, unit-less, spherical harmonic coefficients of the Earth’s 

gravitational potential },{
nmnm
SC  and their associated (calibrated) error standard deviations 

},{ nmnm SsigmaCsigma , as implied by the EGM2008 model. The },{
nmnm
SC  coefficients are 

consistent with the expression: 
  

 ( )
!
!
"

#

$
$
%

&
'+(

)

*
+
,

-
+= . .

= =

max

2 0

)(cossincos1),,(
N

n

n

m

nmnmnm

n

PmSmC
r

a

r

GM
rV /000/             (1) 

  

 The scaling parameters },{ aGM  associated with this model have the numerical values: 
  

 
ma

smGM

3.6378136

10415.3986004
238

=

!=
"

                 (2) 

  

 The EGM2008 model is complete to spherical harmonic degree and order 2159, and contains 

additional coefficients extending to degree 2190 and order 2159. The file contains 2401333 ASCII 

formatted records, each record containing: 
  

 }10.202,15.252,52{},,,,,{ ddiSsigmaCsigmaSCmn nmnmnmnm !                     (3) 
  

 Missing and non-existent coefficients 

! 

(e.g., S n0 ) are written as zeros. The file can also be read 

with free format. In this file, the second degree zonal harmonic coefficient }{ 20C  is expressed in the 

“Tide Free” system, as far as the permanent tide is concerned. 

   
(2)  Zeta-to-N_to2160_egm2008.gz 
  

 This file contains fully-normalized spherical harmonic coefficients of ζ*-to-N (Height_Anomaly-to-

Geoid_Undulation) conversion term 

! 

{CCnm , CSnm}  in units of meters. These ζ*-to-N conversions 

are applied to EGM2008 height anomalies computed on the WGS 84 ellipsoid, to yield EGM2008 

geoid undulations with respect to WGS 84. The 

! 

{CCnm , CSnm}  coefficients are consistent with the 

series: 
  

 

! 

C(",#) = CCnm cosm# + CSnm sinm#( ) $P 
nm
(cos" )

m=0

n

%
n=0

N max

%                  (4) 

  

 This model is complete to degree and order 2160. The file contains 2336041 ASCII formatted 

records, each record containing: 
  

 

! 

{n, m, CC
nm
, CSnm}" {2i5, 2d25.15}                 (5) 

  

 This file can also be read with free format. For geoid undulation computations, where the full 

resolution of EGM2008 is sought, we recommend the use of the EGM2008 gravitational model to 

degree 2190, with the parallel use of this ζ*-to-N conversion expansion to degree 2160. 

From:
README_WGS84_2.pdf

Cm
` =

[
(`−m)!(2`+ 1)(2− δ0m)

(l +m)!

] 1
2

C
m

`

For example:

C
0

2 = −4.841651437908150× 10−4

C0
2 =

[
(2− 0)!(2× 2 + 1)(2− δ20)

(2 + 0)!

] 1
2

C
0

2 = −0.001082626173852 = −J2
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J2 Perturbation Analysis Setup
U(r, φ) ≈ µ

r
− µ

r
J2

(
RB

r

)2(
3 cos2 φ− 1

2

)

︸ ︷︷ ︸
Perturbing Potential

[r]I = r




− sin (Ω) sin (θ) cos (I) + cos (Ω) cos (θ)
sin (Ω) cos (θ) + sin (θ) cos (I) cos (Ω)

sin (I) sin (θ)︸ ︷︷ ︸



I

[r]I = r




sin (φ) cos (λ)
sin (λ) sin (φ)

cos (φ)



I
⇒ cosφ = sin I sin θ

Secular (non-periodic) perturbation:

Rav = − J2µR
2
B

2a3(1− e2)
3
2

(
3

2
sin2(I)− 1

)

θ ≡ ω + ν

NB: The secular perturbing potential is the result of averaging over one full orbit.
This means that encodes effects that span multiple orbits, but ignores any effects
that cancel out over the course of a full orbit. As such, it is good for predicting
long-term orbit evolution, but not suitable for detailed tracking of a spacecraft.

Apsidal Rotation

Initial Perigee

Final Perigee

ω̇sec =
3

2
J2n

(
RB

a(1− e2)

)2(
2− 5

2
sin2(I)

)

ω(t) = ω(t0) + ω̇sec(t− t0)

Polar, 1000 km altitude, 0.1 eccentricity
orbit over 10 periods

Rotation exaggerated 100x for clarity
Figure based on Vallado (2013)
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Nodal Regression

Ω̇sec = − 3nR2
BJ2

2a2(1− e2)2
cos I

Ω(t) = Ω(t0) + Ω̇sec(t− t0)

30◦ inclination, 1000 km altitude,
0.1 eccentricity orbit over 10 periods

Rotation exaggerated 10x for clarity
Figure based on Vallado (2013)

Geopotential Perturbation Analysis with Gauss’s Equations
Remember that Gauss’s equations encode the same basic physics as Lagrange’s equa-
tions, which means that we should be able to get the exact same results (i.e., nodal
regression and apsidal rotation) via a force-based analysis. While this is absolutely
true, in this case, the analysis is significantly more complex with Gauss’s equations
than with Lagrange’s. Here, we will show how to get equivalent perturbing forces
equivalent to the J2 perturbing potential, but leave the application of Gauss’s equa-
tions as an exercise for those so inclined. However, there is another important reason
why we may wish to derive perturbing forces due to the central body geopotential:
we require this form of equations if we wish to numerically integrate the specific path
a spacecraft will take along its orbit. Note that the final form of the perturbing force
expressions we derive will be in Earth-fixed, rotating (non-inertial) components. To
use these within a numerical integration, an additional step is required to transform
these force components into whichever inertial frame is being used to encode the
spacecraft state.
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J2 Perturbation Analysis Setup (Forces)
U(r, φ) ≈ µ

r
− µ

r
J2

(
RB

r

)2(
3 cos2 φ− 1

2

)

︸ ︷︷ ︸
Perturbing Potential :

f , −∇
(
µJ2R

2
B

r3

(
3 cos2 φ− 1

2

))

[f ]S =
3J2R

2
Bµ

r4




1
2

(3 cos2 (φ)− 1)
sin (φ) cos (φ)

0



S

S =
(
P, r̂, φ̂, λ̂

)
B =

(
P, êr, êθ, ĥ

)

[f ]B = −3J2R
2
Bµ

r4




1
2

(
1− 3 sin2 (I) sin2 (θ)

)

− sin2(I) sin(θ) cos(θ)
sin(I) cos(I) sin(θ)



B

Central Body Shape Perturbing Forces

S = (O, êφ, êθ, r̂)
SCGB = C2(φ)C3(θ)

Perturbing
Acceleration

f = ∇R = ∇
(
µ

r

∞∑

`=2

∑̀

m=0

(
RB

r

)`
Pm
` (cosφ) [Cm

` cos(mθ) + Sm` sin(mθ)]

)

[∇R]S =




1

r

∂R

∂φ
1

r sinφ

∂R

∂θ

∂R

∂r




S

[∇R]GB = GBCS [∇R]S

[r]GB ,



r1

r2

r3



GB

= GBCS




0
0
r


 =⇒

sin (φ) =
ρ

r
, sin (θ) =

r2

ρ
, cos (φ) =

r3

r
, cos (θ) =

r1

ρ

ρ =
√
r2

1 + r2
2
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Central Body Shape Perturbing Forces (continued)

[f ]GB =




r1

r

(
∂R

∂r
+
r3

rρ

∂R

∂φ

)
− r2

ρ2

∂R

∂θ

r1

ρ2

∂R

∂θ
+
r2

r

(
∂R

∂r
+
r3

rρ

∂R

∂φ

)

r3

r

∂R

∂r
− ρ

r2

∂R

∂φ



GB

∂R

∂r
= − µ

r2

∞∑

`=2

∑̀

m=0

(
RB

r

)`

(`+ 1)Pm
` (cosφ) [Cm

` cos(mθ) + Sm
` sin(mθ)]

∂R

∂θ
=
µ

r

∞∑

`=2

∑̀

m=0

(
RB

r

)`

mPm
` (cosφ) [−Cm

` sin(mθ) + Sm
` cos(mθ)]

∂R

∂φ
=
µ

r

∞∑

`=2

∑̀

m=0

(
RB

r

)` (
` cos(φ)Pm

` (cosφ)− (`+m)Pm
`−1(cosφ)

) [Cm
` cos(mθ) + Sm

` sin(mθ)

sin (φ)

]

Specialized Orbits

Orbital perturbations due to the Earth’s geopotential can be either helpful or harm-
ful, in that they can either enable orbital capabilities that are impossible with stan-
dard two-body orbits, or they can cause orbits based on two-body analyses to lose
some of their desired features over time. Here we will consider two orbital design
problems (one of each type). In the first, we will take advantage of nodal regression
to create new orbital capabilities, while in the second, we will see that apsidal ro-
tation must be accounted for explicitly in the orbital design in order to ensure the
desired functionality.
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Design Problem 1: You wish for your satellite to observe
the same points on the surface at the same local time of day

• Non-synchronous orbits will cross different points on the ground at
different times of day
• Solution: use nodal regression to match the mean motion of the sun:

Ω̇sec = − 3nR2
BJ2

2a2(1− e2)2
cos I =

2π

Tropical Year

• Various combinations of a, e, I will make this work. For Low-Earth
Orbits (LEO), Sun-Synchronous orbits are near Polar (I ∼ 90◦)
• Spacecraft will pass over the same points on the surface at the same

mean solar time (not apparent)
• A synchronous orbit on the terminator is called a dawn/dusk

orbit—the spacecraft always sees the mean sun (but will still have
eclipses)

Design Problem 2: You wish to have extended views of
one high-latitude region of the Earth

• Typically solved with a Geostationary Orbit (GEO)—orbit period is
exactly one sidereal day
• Secondary problem: GEOs only stay over one spot in near-equatorial

orbits, and therefore are unsuitable for high/low latitudes
• Solution: create a highly eccentric orbit with a period of exactly 12

sidereal hours with apogee over the region of interest
• Tertiary problem: apsidal rotation will move apogee away from the

preferred region over many orbits:

ω̇sec =
3

2
J2n

(
RB

a(1− e2)

)2(
2− 5

2
sin2(I)

)

• But what if
5

2
sin2(I) = 2? Then ω̇ = 0. This corresponds to I ∼ 63.43◦

• Still have a problem of nodal regression, but can deal with that by
adjusting the orbital period to counteract the effect.
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Molniya Orbits (12 hour period)
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 N  
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°
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Points are spaced equally in time, so that the spacecraft spends most of its
time (at apogee) over North American and Asia.

Atmospheric Drag

For low Earth orbits (and low orbits about any body with a significant atmosphere),
atmospheric drag will typically be the most important perturbation. Unfortunately,
it is also much harder to model than the geopotential perturbation, as the atmosphere
evolves very quickly, and in response to many different forcing functions. Here, we
will develop a basic model of the atmosphere and apply our perturbation equations
to find its secular (orbit-average) effects. We will also consider the main contributors
to atmospheric variation and define a basic exponential atmosphere model useful for
numerical propagation of orbits.
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Atmospheric Drag
Non-inertial Frame Cross-sectional Area Relative Velocity

Fdrag = −1

2
CD A ρ v2

rel v̂rel

Drag Coefficient Atmospheric Density

vrel = IvP/O− Ivatm/O︸ ︷︷ ︸
GBvatm/O + IωGB × rP/O

vrel ≈ IvP/O − IωGB × rP/O

Ballistic Coefficient , m

CDA

Secular Perturbations Due to Atmospheric Drag
Planet Rotation Rate

Q,
(

1−
ωr(1− e)3/2

n
√

1 + e
cos(I)

)

∆arev ≈ −2π
Q2ACD

m
a2ρp

(
I0 + 2eI1 +

3e2

4
(I0 + I2) +

e3

4
(3I1 + I3)

)
exp

(
−ae
H

)

Spacecraft Mass Density at Periapsis Atmospheric Scale Height

∆erev ≈ −2π
Q2ACD
m

aρp

(
I1 +

e

2
(I0 + I2)− e2

8
(5I1 − I3) +

e3

16
(5I0 + 4I2 − I4)

)
exp

(−ae
H

)

Here, I0...4 are modified Bessel functions of the first kind with argument
z =

ae

H
:

Is(z) =
1

π

∫ π

0

exp (z cos θ) cos(sθ) dθ
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Secular Perturbations Due to Atmospheric Drag (2)

∆Irev ≈ −π
QACD
2nm

ωraρp sin(I) (I0 − 2eI1 + (I2 − 2eI1) cos(2ω)) exp

(−ae
H

)

∆Ωrev ≈ −π
QACD
2nm

ωraρp (I2 − 2eI1) sin(2ω) exp

(−ae
H

)

∆ωrev ≈ −∆Ωrev cos(I)

Again, here Ii are the Modified Bessel Functions of the First Kind with
argument

ae

H

The primary effects of drag are to circularize and shrink the orbit.

Atmosphere Variation
• The density of the Earth’s upper atmosphere constantly fluctuates.

Two major effects are:
• Incident Solar Flux - heating from extreme ultraviolet radiation

(EUV) has a near instantaneous effect
• Geomagnetic Interactions - collisions with charged energetic particles

cause a delayed heating effect
• Atmospheric fluctuations vary both spatially and temporally, with both

random and cylcic behavior. Important cycles include:
• Diurnal Variations - the atmosphere bulges in a direction lagging the

direction of the sun (around 2:00 PM local time)
• Solar Rotation Cycle - the same solar active regions come into view

approximately every 27 days
• Solar Magnetic Activity Cycle - the sun cycles in activity over a

period of 11 years, as measured by the number of observed sun spots
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Atmosphere Temperature Variation

• Range of systematic variability of
temperature around U.S. Standard
Atmosphere, 1976.
• Arrows indicate min/max monthly

measured temperatures.
• Dots are estimates of 1% min/max global

temperatures.

From: U.S. Standard Atmosphere, 1976.
https://ntrs.nasa.gov/search.jsp?R=19770009539

Measuring Solar Activity
• The atmosphere absorbs all UV radiation, so we cannot directly measure EUV

flux from the ground but both EUV and radiation with a wavelength of 10.7
cm (2800 MHz) originate in the same layers of the sun.

• F10.7 is used as a proxy for EUV, and has been measured since 1940
• Define one Solar Flux Unit (SFU) as 1× 10−22 watt m−2 Hz−2

2006 2008 2010 2012 2014 2016 2018 2020
Year

100

150

200

250

300

F 1
0.

7 (
SF

U)

Data from: https://www.spaceweather.gc.ca/solarflux/sx-en.php
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Measuring Geomagnetic Activity
• The Earth’s magnetic field also varies temporally and spatially and is typically

fit with a spherical harmonic model (same as the geopotential)
• Define a geomagnetic planetary index Kp to measure worldwide geomagnetic

activity. Can also use the daily planetary amplitude Ap. Both are in units of
gamma = 10−9 Tesla = 10−9 kg s m−1.
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Data from: https://www.ngdc.noaa.gov/stp/GEOMAG/kp_ap.html

The Exponential Atmosphere
Assuming a static atmosphere where density decays exponentially with
altitude:

ρ = ρ0 exp

(
−h− h0

H

)

• ρ0, h0 are reference density and reference altitude (tabulated)
• h is the altitude above the ellipsoid
• H is the Scale Height - the fractional change in density with height. H

is the increase in altitude required for ρ to drop to 1/e of its initial value:

H =
R?T

Mg0

• R? is the ideal gas constant: 8.31446261815324 J K−1 mol−1

• T and M are the temperature and mean molecular weight of the
atmosphere
• g0 is the gravitational acceleration at the surface (9.80665 m s−2 on

Earth)
22



The Exponential Atmosphere (2)

10 13 10 11 10 9 10 7 10 5 10 3 10 1

Density (kg m 3)

0

200

400

600

800

1000

Al
tit

ud
e 

(k
m

)

h (km) h0 (km) ρ0 (kg m−3) H (km)
0-25 0 1.225 7.249
25-30 25 3.899e-2 6.349
30-40 30 1.774e-2 6.682
40-50 40 3.972e-3 7.554
50-60 50 1.057e-3 8.382
60-70 60 3.206e-4 7.714
70-80 70 8.770e-5 6.549
80-90 80 1.905e-5 5.799
90-100 90 3.396e-6 5.382
100-110 100 5.297e-7 5.877
110-120 110 9.661e-8 7.263
120-130 120 2.438e-8 9.473
130-140 130 8.484e-9 12.636
140-150 140 3.845e-9 16.149
150-180 150 2.070e-9 22.523
180-200 180 5.464e-10 29.740
200-250 200 2.789e-10 37.105
250-300 250 7.248e-11 45.546
300-350 300 2.418e-11 53.628
350-400 350 9.518e-12 53.298
400-450 400 3.725e-12 58.515
450-500 450 1.585e-12 60.828
500-600 500 6.967e-13 63.822
600-700 600 1.454e-13 71.835
700-800 700 3.614e-14 88.667
800-900 800 1.170e-14 124.64
900-1000 900 5.245e-15 181.05

1000- 1000 3.019e-15 268.00
Data from Wertz (1978)

The U.S. Standard Atmosphere (1976)

From: https://ntrs.nasa.gov/search.jsp?R=19770009539
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Third-Body Perturbations

Another important source of orbital perturbations is the effect of other masses in-
teracting with the two-body system. These become increasingly significant with
distance from the central body (for example, during interplanetary flight), but will
also effect the orbits of spacecraft about the Earth. The Sun and moon are the two
most important third-body perturbers for Earth-orbiting spacecraft, and their effects
are collectively known as lunisolar perturbations. We can define a critical radius
(called the Laplace radius) below which oblateness (geopotential) effects dominate,
and beyond which third-body perturbations dominate. For the Earth, the Laplace
radius is approximately at 8.41 R⊕. We have already seen third body perturbers in
Cowell’s method, but there, we ignored any mutual interaction between the perturb-
ing bodies. Here, we will provide the full formalism for N-body perturbers, and will
again look at the secular effects of a perturbing third body.

3rd (Nth) Body Perturbations

Central

Orbiting

Perturbing

I
d2

dt2

, r︷︸︸︷
r2/1 +

, µ︷ ︸︸ ︷
G(m1 +m2)

‖r2/1‖3
r2/1 =

−G
∑

j

mj

(
rj/1
‖rj/1‖3

+
r2/j

‖r2/j‖3

)

︸ ︷︷ ︸
, f
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Secular Perturbations From Third Body in Circular Orbit

Ω̇sec ≈ −
3

16

µ3

(
2 + 3e2

) (
2− 3 sin2(I3)

)

nr3
3

√
1− e2

cos I

ω̇sec ≈
3

16

µ3

(
2− 3 sin2(I3)

)

nr3
3

√
1− e2

(
e2 + 4− 5 sin2(I)

)

No subscript refers to elements of orbiting body, 3 subscript refers to perturber orbit

• No secular or long-period variations occur in the semi-major axis due to
third-body perturbations
• Sinusoidal variations in periapsis and long period variations in e, I,Ω, ω
• Periapsis variations can couple significantly with drag perturbations

Solar Radiation Pressure (SRP)

• Photons are energetic, and can transfer momentum to masses via
absorption, re-emission, reflection, and scattering
• This is a perturbation, but also a potential for propulsion (stay tuned)
• SRP generates periodic variations in all orbital elements and starts to

dominate over atmospheric drag effects above ∼ 800 km
• Highly dependent on spacecraft mass and surface area
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Tides and Magnetic Field Effects

• Solid-Earth Tides: The Earth is deformed by other masses in the solar
system (and especially the Moon)
• Ocean Tides: Water moves over the surface of the Earth in response to

gravitational forces
• Both types of tides change the mass distribution of the central body and

therefore the geopotential effects on an orbit
• Interaction with the Earth’s magnetic field and charged particles can

produce forcing and torquing effects on a spacecraft. This is a
perturbation but can also be used for attitude control (stay tuned)
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Orbital Maneuvers, Trajectories, and Relative Motion
At the start of the space age, in-space propulsion was almost entirely chemical,
based on systems capable of producing (relatively) large thrusts over (relatively)
short intervals of time. Because of this, the standard starting point for the analysis
of orbital maneuvers is to adopt an impulsive model—one where changes in veloc-
ity can occur instantaneously, without a corresponding change in position. In this
model, spacecraft are typically thought of as spending the majority of their time
passively following two-body orbits, with control applied for only a tiny fraction of
the trajectory. While this model is significantly less applicable to high-efficiency,
low-thrust propulsion system, which can thrust over the majority (or entirety) of a
trajectory, it remains an essential initial calculation for trajectory planning. It is also
the basis for the patched-conic model, which allows us to do preliminary analyses
of interplanetary trajectories. Ultimately, however, even chemical systems are not
truly impulsive, and the final trajectory must always be evaluated and optimized via
numerical integration.

1



Review of Linear Momentum and Impulse

• The change in linear momentum (proportional to the change in velocity)
from t1 to t2 is equal to the integral of the total force applied

∫ t2

t1

FP dt =

∫ t2

t1

I d

dt
(IpP/O) dt = IpP/O(t2)− IpP/O(t1)

mP
IvP/O(t2) = mP

IvP/O(t1) +

∫ t2

t1

FP dt

︸ ︷︷ ︸
Linear Impulse , FP (t1, t2)

• If the applied force is nearly constant, then we can approximate:
FP (t1, t2) ≈ FP∆t where ∆t = t2 − t1 and is typically very small

Impulsive Maneuvers and ∆v
• If the time over which a force is applied is infinitesimal, then the

position of the particle doesn’t have time to change. An impulse over
infinitesimal time produces a change only in velocity
• We call this model an impulsive maneuver (or burn)

Original Orbit

{
r

v
+ burn =

r

v + FP

mP

Original Position
New Velocity

}
New Orbit

• The velocity change due to the maneuver is ∆v and its magnitude is
called ∆v.
• NB: While the velocity change is a vector quantity and can be positive or

negative, when talking about maneuvers, we primarily care about total
fuel expended, and so all individual ∆vs are positive
• NB: Real burns take place over extended periods of time. The only way

to accurately model this is via numerical integration
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Flight Path Angle

φfpa: The angle
between the local
horizontal and the
velocity vector such
that
h = ‖r× v‖

= rv cos(φfpa)

cosφfpa =
rν̇

v
=

1 + e cos ν√
1 + 2e cos ν + e2

sinφfpa =
ṙ

v
=

e sin ν√
1 + 2e cos ν + e2

Tangential and Non-Tangential Burns

• Tangential burns are those where the added ∆v is tangent to the
initial and resulting orbits. All other burns are non-tangential
• Tangential burns must occur at φfpa = 0

• Tangential burns are parallel to the orbital velocity vector

NB: Because an impulsive burn does not change the orbital positions, the
orbits before and after a burn must intersect. Therefore, at least two
impulsive maneuvers are needed to get to an orbit that doesn’t intersect the
original one.
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Tangential Burns
• v2 = µ

(
2

r
− 1

a

)
=⇒ a =

µr

2µ− rv2

• e2 = e · e =

∥∥∥∥
v × h

µ
− r

r

∥∥∥∥
2

=
(rv2 − µ)

2

µ2
+

(r · v)v2

µ
− 2(r · v)2 (rv2 − µ)

µ2r

• But at φfpa = 0, r · v = 0 so:

e =
|rv2 − µ|

µ
• Increasing velocity at turning points also

increases the semi-major axis and
eccentricity

NB: As eccentricity cannot go below zero, burning from a circular orbit will always
result in an increase in eccentricity, regardless of whether the semi-major axis
increases or decreases.

Hohmann Transfers A Hohmann transfer requires
two tangential burns.

atransfer ≡ at =
ri + rf

2

ttransfer =
1

2
T transfer
P = π

√
a3
t

µ

∆v = |∆vi|+ |∆vf |

v =

√
2µ

r
− µ

a





∆vi =

√
2µ

ri
− µ

at︸ ︷︷ ︸
vti

−
√

2µ

ri
− µ

ai︸ ︷︷ ︸
vi

∆vf =

√
2µ

rf
− µ

af
︸ ︷︷ ︸

vf

−
√

2µ

rf
− µ

at
︸ ︷︷ ︸

vtf
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Bi-Elliptic Transfers

A bi-elliptic transfer requires three tangential burns and adds a new free
parameter: the orbital radius at the second burn (rt).

Hohmann vs. Bi-Elliptic

• Define: η , af
ai

and ξ , rt
ai

• Hohmann:
|∆vi|+ |∆vf |

vi
=

∣∣∣∣∣

√
2η

1 + η
+

√
1

η
−
(

1 +

√
2

η(1 + η)

)∣∣∣∣∣

• Bi-Elliptic:
|∆vi|+ |∆vt|+ |∆vf |

vi

=

∣∣∣∣∣

√
2ξ

1 + ξ
− 1

∣∣∣∣∣+

∣∣∣∣∣

√
2η

ξ(η + ξ)
−
√

2

ξ(1 + ξ)

∣∣∣∣∣+

∣∣∣∣∣

√
1

η
−
√

2ξ

η(η + ξ)

∣∣∣∣∣

• As rt →∞: lim
rt→∞

( |∆vi|+ |∆vt|+ |∆vf |
vi

)
=
√

2− 1 +

∣∣∣∣
√

1

η
−
√

2

η

∣∣∣∣
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Hohmann vs. Bi-Elliptic (2)

10-1 100 101 102

100

• Hohmann maximum
(for η > 1) occurs at
η = 15.5817

• Hohmann and ξ =∞
intersect at η = 11.93876±1.
Hohmann is always more
efficient in this range
• Bi-elliptic is typically more

efficient below
η = 11.93876−1

• For η > 15.5817, bi-elliptic
is more efficient for ξ > η

A Bi-elliptic transfer may have a lower ∆v than the equivalent Hohmann trans-
fer, but will take longer to complete.

Inclination Changes (Super Costly!)

Burn Point

∆v = 2vi cos(φfpa) sin

(
∆I

2

)

• NB: ∆v ∝ vi. For elliptical orbits,
one of the two nodes will be less
costly
• For ∆I = 60◦, ∆v = vi
• To leave Ω unchanged, burn must

occur on the line of nodes
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Ascending Node Change

Burn Point

• In general, elliptical orbits require
multiple burns to change only Ω,
but circular orbits can do it in one
• The burn occurs on the original

orbit at argument of latitude
θi = ωi + νi resulting with the
spacecraft on the final orbit at θf ,
with a burn angle α

cos(θi) = tan I

(
cos(∆Ω)− cosα

sinα

)

cos(θf ) = cos I sin I

(
1− cos(∆Ω)

sinα

)

cos(α) = cos2 I + sin2 I cos(∆Ω)

∆vcirc = 2vi sin
(α

2

)

Ascending Node and Inclination Change

Burn Point

For circular orbits:

cos(θi) =
sin(If ) cos(∆Ω)− cos(α) sin(Ii)

sin(α) cos(Ii)

cos(θf ) =
cos(Ii) sin(If )− sin(Ii) cos(If ) cos(∆Ω)

sin(α)

cos(α) = cos(Ii) cos(If ) + sin(Ii) sin(If ) cos(∆Ω)

∆vcirc = 2vi sin
(α

2

)
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Hohmann Transfer + Inclination Change

For a total inclination change of ∆I:

• Change by x∆I on initial burn
• Change by (1− x)∆I on final

burn

• Select x to minimize total ∆v:

sin(x∆I) =
∆vivfvtf sin((1− x)∆I)

∆vfvivti

• A good approximation is:

x ≈ 1

∆I
tan−1


 sin(∆I)
vivti
vfvtf

+ cos(∆I)




• ∆vs for the combined maneuvers
are:

∆vi =
√
v2
i + v2

ti − 2vivti cos (x∆I)

∆vf =
√
v2
f + v2

tf
− 2vfvtf cos ((1− x)∆I)

Circular Phasing and Rendezvous
Target

Trailing
Interceptor

Leading
Interceptor

• Define phase angle α between interceptor and
target, positive in direction of orbital motion

• A trailing interceptor needs to put
itself onto a shorter-period orbit to
catch up to the target

• A leading interceptor needs to
put itself onto a longer-period
orbit to allow the target to
catch up
• Phasing orbit perigee must be

greater than the central body
radius (plus atmosphere)

• Can utilize multiple target and
interceptor orbits to rendezvous
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Circular Phasing and Rendezvous (2)
Target

Trailing
Interceptor

Leading
Interceptor

• Phasing orbit period is equal to time
between interceptor and target:

Tphase =
2πj + α

n
for j target revolutions

• Phasing orbit semi-major axis is:

aphase =

(
µ

(
Tphase

2πk

)2
) 1

3

for k interceptor revolutions

∆v = 2

∣∣∣∣∣

√
2µ

a
− µ

aphase

−
√
µ

a

∣∣∣∣∣

General Impulsive Maneuvers

• Remember: a, e, I, ω,Ω, ν(t)⇐⇒ r(t),v(t)

• Before Burn:
ri

vi

}
ai, ei, Ii, ωi,Ωi, νi(t)

• After Burn:
rf ≡ ri

vf = vi + ∆v

}
af , ef , If , ωf ,Ωf , νf (t)

• You can always solve for the ∆v to produce the desired change in
orbital elements as long as the initial and final orbits intersect at the
burn location
• These maneuvers are not guaranteed to be feasible or optimal
• Typical approach is numerical optimization
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Continuous Thrust Trajectories

• All impulsive maneuvers are an idealization, but this model becomes
completely inapplicable in cases of low-thrust propulsion where burns
are continuous (or nearly continuous) throughout the trajectory
• The only way to solve such problems is via optimal control and

numerical optimization
• Resulting trajectories resemble spirals more than the partial conic

sections of impulsive trajectories

Optimization Resources

• EMTG (https://github.com/nasa/EMTG)

• GMAT (https://sourceforge.net/projects/gmat/)

• PAGMO/PyGMO (https://github.com/esa/pagmo2)

• SNOPT (https://web.stanford.edu/group/SOL/snopt.htm)

• scipy.optimize
(https://docs.scipy.org/doc/scipy/reference/optimize.html)

• MATLAB Optimization Toolbox
(https://www.mathworks.com/help/optim/index.html)
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Sphere of Influence

In our discussion of perturbations, we saw that we can frequently describe the grav-
itational effects of two different major bodies on a spacecraft by treating one body
as the central body and the other as a perturber. The central and perturbing body
may change depending on the location of the spacecraft—when a spacecraft is in
Earth orbit, clearly Earth is the central body and the moon is a perturber, but when
the spacecraft is in orbit about the moon, the relationship is reversed. In order to
determine which body is which, we need to find which body is exerting the great-
est force on the spacecraft at a given point in time. We do so by comparing the
gravitational forces of two bodies acting on the spacecraft, which allows us to define
a radius about one of the bodies within which it is the central body. This radius
defines the sphere of influence.

Sphere of Influence Derivation Setup

m1 dominant :
I

d2

dt2
r2/1 +

G(m1 +m2)

‖r2/1‖3
r2/1 = −Gm3

(
r3/1

‖r3/1‖3
+

r2/3

‖r2/3‖3

)

m3 dominant :
I

d2

dt2
r2/3 +

G(m2 +m3)

‖r2/3‖3
r2/3

︸ ︷︷ ︸
Central

= −Gm1

(
r2/1

‖r2/1‖3
+

r1/3

‖r1/3‖3

)

︸ ︷︷ ︸
Perturbing

r2/3

r3/1

=

[
1− 2

r2/1

r3/1

cosα +

(
r2/1

r3/1

)2
] 1

2

cos β =
r3/1

r2/3

− r2/1

r2/3

cosα
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Sphere of Influence
(‖fperturbing‖
‖fcentral‖

)

m1

=

Gm3

[(
r2/3
r3
2/3

+
r3/1
r3
3/1

)
·
(

r2/3
r3
2/3

+
r3/1
r3
3/1

)] 1
2

G(m1 +m2)r
−2
2/1

=
m3

m2 +m1

(r2/1/r3/1)
2

(r2/3/r3/1)
2

[
1 +

(
r2/3

r3/1

)4

− 2

(
r2/3

r3/1

)(
1− r2/1

r3/1
cosα

)] 1
2

(‖fperturbing‖
‖fcentral‖

)

m3

=
m1

m2 +m3

(
r2/1

r3/1

)−2(r2/3
r3/1

)2
[
1 +

(
r2/1

r3/1

)4

− 2

(
r2/1

r3/1

)2

cosα

] 1
2

Intersection :

(
r2/1

r3/1

)4

=
m1(m1 +m2)

m3(m2 +m3)

(
r2/3

r3/1

)4




1 +
(

r2/1
r3/1

)4
− 2

(
r2/1
r3/1

)2
cosα

1 +
(

r2/3
r3/1

)4
− 2

(
r2/3
r3/1

)(
1− r2/1

r3/1
cosα

)




1
2

(
r2/1

r3/1

)
≈
(
m1

m3

) 2
5

⇒ rSOI ≈ aplanet

(
mplanet

msun

) 2
5

The Patched Conic Approximation
The concept of the sphere of influence allows us to model more complex trajectories
involving multiple central bodies. This leads us to the patched conic approximation,
where we stitch together multiple two-body orbits (conic sections). In the case of
interplanetary transfers, we typically consider three orbits—a hyperbolic escape orbit
(typically originating from the Earth), a heliocentric transfer orbit (which may be a
portion of an open or closed orbit about the sun), and a hyperbolic approach orbit
to whatever body we wish to go to. The first and last orbits occur within the spheres
of influence of the origin and destination bodies, while the middle portion is an orbit
about the sun. The three are patched together at the edges of the relevant spheres of
influence. It is important to remember that our two-body model is explicitly wrong
exactly at the edge of a sphere of influence, as the gravitational forces acting on the
spacecraft from two different bodies are nearly equal at this point. Therefore, the
patched conic is only a starting point, which must then be refined within a full-force
model. Nevertheless, it is an incredibly useful starting calculation, and is very often
the first step in any interplanetary trajectory design.
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The Patched Conic Approximation
Spheres of Influence

(Hyperbolic) Escape
Heliocentric Transfer

(Hyperbolic) Approach

rSOI = ap

(
mp

m�

) 2
5

Departure
• Departure is modeled as a hyperbolic orbit (with Earth as the central

body)
• We define v∞ = ‖v∞‖ as the velocity at an infinitely large orbital radius

E =
v2

2
− µ

r
=
v2
∞
2
− µ

∞ =⇒ v2
∞ = 2E

• Recall that escape velocity corresponds to zero specific energy (parabolic
orbit):

0 =
v2

esc

2
− µ

r
=⇒ vesc =

√
2µ

r
• We define the Characteristic Energy: C3 = 2E = v2

∞

C3 = 2

(
v2

2
− µ

r

)
= v2 − v2

esc

• The characteristic energy is a measure of excess velocity (or specific
energy) above what is required to escape.
• The typical v∞ for interplanetary missions is ∼ 5 km/s
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Arrival

• Arrival is just departure in reverse (incoming hyperbolic orbit about the
target body)
• If you want to place the spacecraft into a circular orbit about the target,

the insertion ∆v is calculated the same as the injection ∆v

∆vinsertion =

√
2µtarget

rtarget

+
(
vtarget
∞

)2 −
√
µtarget

rtarget

• If the target body has an atmosphere, you can use aerobraking to save
fuel

Parking Orbits and Departure Design
• Assume an initial (circular) parking orbit about the Earth and an

impulsive thrust to put the spacecraft on the escape hyperbola

∆vinjection =

√
2
(µ
r

+ E
)
−
√
µ

r
=

√
2µ⊕
rpark

+ v2
∞ −

√
µ⊕
rpark

• For an initial 200 km altitude, ∆vinjection = 3.22 km/s to achieve escape,
and 4.31 for v∞ = 5 km/s
• Define the right ascension and declination of the launch
asymptote:

RLA , tan−1

(
v∞ · ê′2
v∞ · ê′1

)
DLA , sin−1

(
v∞ · ê′3
v∞

)

for ê′1, ê
′
2, ê
′
3 defining an ECI equatorial reference frame

• Designing a departure trajectory is designing the v∞ vector: selecting its
magnitude and direction
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Oberth Effect

• The largest energy change is obtained by thrusting at the highest
velocity:

E =
v2

2
− µ

r
dE
dv

= v

dE = v dv

• This is known as the Oberth Effect
• Biggest energy gain will occur at the lowest altitudes (but beware drag

forces)

Initial and Boundary Value Problems

So far, all of the orbital propagations that we’ve considered have been initial value problems (IVP): we have

some starting (or ending) condition and we propagate our orbits forward (or backward) in time. However,

the middle portion of our patched conic trajectory must be constrained on both ends: we have to start at

the sphere of influence of our originating body, and end up at the sphere of influence of our destination body.

This is a boundary value problem (BVP), and the particular BVP associated with finding a two-body orbit

connecting two specific points in space is called Lambert’s problem. It is crucial to remember that Lambert’s

problem is not only about connecting two points in space, but also in time. If we are going from Earth to

Mars, then the location of Mars at the time of our departure is not where we need to go, as Mars will

have moved along its own orbit during our flight. Thus, the problem becomes that of finding a connecting

trajectory between origin and destination, as well as optimal times when to leave and arrive. We will first

consider Lambert’s problem under the assumption that we know the location of our origin and destination

points (i.e., we know when we wish to leave and arrive), and will then study how to use the solutions to

Lambert’s problem in order to actually set those departure and arrival times.
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Lambert’s Problem

Trajectory 
Origin

At Time of 
Departure

Destination
At Time of Arrival

Central Body of
Transfer Trajectory

Assuming a Keplerian orbit between P1 and
P2 with central body at F , there must exist
a vacant focus at F ?

If the transfer between P1 and P2 is an ellipse, we know r′ + r = 2a so:

P1F + P1F ?

P2F + P2F ?

}
= 2a =⇒ P1F ? = 2a− ‖r1‖

P2F ? = 2a− ‖r2‖

Lambert’s Problem: Location of the Vacant Focus
• Vacant focus must be at

intersection of two circles
centered at P1 and P2 with
radii of 2a− ‖r1‖ and
2a− ‖r2‖, respectively

• Selecting transfer orbit a
determines the possible
locations of the vacant focus
and sets the transfer orbit
specific energy (E = − µ

2a
)

and period
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Lambert’s Problem: Transfer Orbit Eccentricity
Selecting one of the two possible
vacant foci sets the transfer orbit
eccentricity:

FF ? = 2c = 2ae

Lambert’s Problem: Closed Transfer Orbits
There are four possible transfer paths
for each semi-major axis: 2 vacant
foci, and 2 directions of travel for each
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Lambert’s Problem: Minimum Energy Transfer
There is always a unique
elliptical orbit minimizing
energy, where the vacant
focus lies on the chord P1P2

amin =
s

2

emin =

√
1− 2`min

s

`min =
‖r1‖‖r2‖
‖r1/2‖

(1− cos(∆ν))

s , ‖r1‖+ ‖r2‖+ ‖r1/2‖
2

Lambert’s Problem: All Possible Transfers
Location of the vacant focus is
given by the hyperbola:

aF =
‖r1‖ − ‖r2‖

2

eF =

∣∣∣∣
‖r1/2‖

‖r1‖ − ‖r2‖

∣∣∣∣

NB: This is not a transfer
orbit itself.

Based on Kaplan (1976)
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Lambert’s Time of Flight Theorem

t =
1√
µ

∫ s

s−c

r√
2r − r2/a

dr `

E1/4
TP
2π

[(α− sinα)∓ (β − sin β)]
4a(s− r1)(s− r2)

c2
sin2

(
α± β

2

)

E2/3 TP −
TP
2π

[(α− sinα)± (β − sin β)]
4a(s− r1)(s− r2)

c2
sin2

(
α∓ β

2

)

Parabolas
1

3

√
2

µ

[
s

3
2 ∓ (s− c) 3

2

] 4(s− r1)(s− r2)

c2

[√
s

2
±
√
s− c

2

]2

H1/2

√
−a3

µ
[(sinh γ − γ)∓ (sinh δ − δ)] −4a(s− r1)(s− r2)

c2
sinh2

(
γ ± δ

2

)

c = ‖r1/2‖ r1 = ‖r1‖ r2 = ‖r2‖ 2s = ‖r1‖+ ‖r2‖+ ‖r1/2‖

sin
(α

2

)
=

√
s

2a
sin

(
β

2

)
=

√
s− c

2a
sinh

(γ
2

)
=

√
s

−2a
sinh

(
δ

2

)
=

√
s− c
−2a

Lambert’s Problem Non-Dimensionalized
E? , −amin

a

T ? ,
√

µ

a3
min

t

K , 1− ‖r1/2‖
s

v1 =

√
µ`

r1r2 sin(∆ν)

(
r2 −

(
1− r2

`
(1− cos(∆ν))

)
r1

)

Based on Kaplan (1976)
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Porkchop Plots
Porkchop plots are a fundamental trajectory design tool, plotting contours of
∆v (or associated values) as functions of departure and arrival times for a
single transfer. The dashed lines represent constant transfer times.
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From: Strange et al. (2013)
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Gravity Assists

An incredibly important tool in interplanetary and deep space trajectories is the
gravitational assist, or hyperbolic flyby. We can use the gravitational interaction
of our spacecraft with a solar system body (typically one of the planets) in order
to modify its heliocentric trajectory. We again base our analysis on the patched
conic approximation: the hyperbolic trajectory occurs within the assisting body’s
sphere of influence and is treated as a purely two-body orbit of the spacecraft about
the assisting body. As such, this means that energy is conserved, and therefore the
magnitude of the spacecraft’s velocity with respect to the assisting body remains
unchanged throughout the assist. The purpose of the assist is to change the direc-
tion of the velocity, which changes the spacecraft’s heliocentric velocity vector, and
can therefore produce a change in the magnitude of the heliocentric velocity.

Hyperbolic Flyby

Turning
Angle

A
sy

m
pt

ot
e

Asymptote
Incoming Velocity
at infinite distance

Impact
Parameter

e =

√
1 +
‖v∞,in‖4D2

µ2
F

D = rp

√
1 +

2µF
rp‖v∞,in‖2

θ = cos−1

(
−1

e

)

φ = 2 sin−1

((
1 +

rp‖v∞,in‖2

µF

)−1
)
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Gravity Assist Effects
• The v∞ vectors are with respect to the flyby body (v∞ ≡ v∞/F )
• For a flyby entering and exiting a body’s SOI at times t1 and t2:

v∞,in/� = v∞,in + vF/�(t1) and v∞,out/� = v∞,out + vF/�(t2)

• Assuming vF/�(t1) ≈ vF/�(t2), the heliocentric ∆v is:

∆v , ‖v∞,out/� − v∞,in/�‖ = 2‖v∞‖ sin

(
φ

2

)
=

2‖v∞‖
1 + rp‖v∞‖2/µF

• Maximum ∆v will be when d∆v/d‖v∞‖ = 0 =⇒ φ = 60◦ and
‖v∞‖ =

√
µF/rp

• rp must be greater than the flyby body’s radius (RF ) therefore:

∆vmax =

√
µF
RF

=
vesc,F√

2

Flybys can be used to speed up or slow down

• Passing behind the flyby body (with
respect to its heliocentric velocity)
increases your heliocentric velocity
and specific energy
• Passing in front of the flyby body

(with respect to its heliocentric
velocity) decreases your heliocentric
velocity and specific energy
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Relative Motion

Frequently, we wish to analyze the relative motion between two objects on orbit. This
is particularly useful when treating rendezvous and docking problems, for example
between an Earth-launched vehicle and a space station. Here, we will consider one
approach to this problem: the Clohessy-Wiltshire (or equivalently Euler-Hill) equa-
tions. In this formulation, we define a rotating frame based on a circular orbit, with
a coordinate origin at a particular point on this orbit (e.g., the location of a space
station). We can write the equations of motion of another object in orbit about the
same central body with respect to this point and rotating frame. Further, under the
assumption that the separation of our spacecraft and the reference point is small,
we can linearize the equations of motion to get a fully linear system. This last is
important if you are interested in applying control to this system, as the analysis
of feedback control for linear systems is significantly simpler than that of nonlinear
ones.

The Euler-Hill Frame
I

d2

dt2
r =

µ

‖r1‖3

(
r−

(‖r1‖
‖r2‖

)3

r2

)
+ f
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Small Perturbations from Circular Orbits

Assumed Small

I
d2

dt2
r =

µ

‖r1‖3

︸ ︷︷ ︸
n2


r−


 ‖r1‖
‖r2‖




3

r2


+ f

‖r2‖−3 = [(r1 + r) · (r1 + r)]−
3
2

(x+ y)r =

∞∑

k=0

(
r
k

)
xr−kyk = xr + rxr−1y + . . .

x = ‖r1‖2 y = 2r · r1 + ‖r‖2 r = −3

2

‖r2‖−3 = ‖r1‖−3

(
1− 3

2

(
2r · r1

‖r1‖2
)
+O

(
r2
))

I
d2

dt2
r ≈ n2

(
−r + 3

r1 · r
‖r1‖2

r1

)
+ f

Euler-Hill Frame Dynamics

Assumed Small

I
d2

dt2
r = n2

(
r−

(‖r1‖
‖r2‖

)3

r2

)
+ f

≈ n2

(
−r + 3

r1 · r
‖r1‖2

r1

)
+ f

H
d2

dt2
r =− 2nê3 ×

Hd

dt
r− n2 (ê3 × (ê3 × r))

− n2 (r− 3 (êr · r) êr) + f
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Euler-Hill/Clohessy-Wiltshire Equations

[r]H ,



x
y
z



H

=⇒



ẍ
ÿ
z̈



H

=




2nẏ
−2nẋ

0



H

+



n2x
n2y
0



H︸ ︷︷ ︸

Rotating Frame

−



n2x
n2y
n2z



H

+




3n2x
0
0



H︸ ︷︷ ︸

Gravity

+
[
f
]
H︸︷︷︸

Other

Perturbations

ẍ− 2nẏ − 3n2x = f · êr , fx

ÿ + 2nẋ = f · êθ , fy

z̈ + n2z = f · ê3 , fz

Natural Motion
ẍ− 2nẏ − 3n2x = 0

ÿ + 2nẋ = 0

z̈ + n2z = 0

X(s) , L{x(t)}
Ẏ (s) , L{ẏ(t)}

L
{[

ẍ− 2nẏ − 3n2x
ÿ + 2nẋ

]
= 0

}
=⇒

[
s2 − 3n2 −2n

2ns s

]

︸ ︷︷ ︸
,A

[
X(s)

Ẏ (s)

]
= 0−Initial Conditions

detA = s(s2 − 3n2) + 4n2s = 0 =⇒ s = 0,±in

x(t) = 4x0 − 3x0 cos(nt) +
ẋ0

n
sin(nt) + 2

ẏ0

n
− 2

ẏ0 cos(nt)

n

y(t) = −6x0nt+ 6x0 sin(nt) + 2 cos(nt)
ẋ0

n
− 2

ẋ0

n
+
ẏ0

n
(4 sin(nt)− 3nt) + y0

z(t) = z0 cos(nt) +
ż0

n
sin(nt)
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Mode 1: s = 0

A =

[
s2 − 3n2 −2n

2ns s

]
=

[
−3n2 −2n

0 0

]

x0 = arbitrary

y0 = arbitrary

ẋ0 = arbitrary (often set to 0)

ẏ0 =
−3nx0

2

ẋ0 = 0
=====⇒

x(t) = x0

y(t) = −3

2
x0nt+ y0

Body is on a circular orbit of radius ‖r1‖+ x0

Modes 2/3: s = ±in

A =

[
s2 − 3n2 −2n

2ns s

]
=

[
−n2 − 3n2 −2n
±2in2 ±in

]

x0 = arbitrary

y0 = arbitrary

ẋ0 = arbitrary (often set to 0)
ẏ0 = −2nx0

ẋ0 = 0
=====⇒ x(t) = x0 cos(nt)

y(t) = −2x0 sin(nt) + y0

Oscillatory motion about O in the rotating frame
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Propulsion and Launch
While the focus of this course is primarily dynamics, it is crucial for us to understand
the basic capabilities of the hardware used to enable the trajectories we design, and
see whether these orbital solutions are feasible given current capabilities. The topic
of space propulsion easily fills multiple whole courses, so our focus here will be to
develop a basic understanding of the operating principles of space propulsion systems,
along with their current and near-future capabilities. Similarly, as effectively all space
missions start from the Earth, it is important for us to understand the constraints and
capabilities of launch vehicles, and the impact of launch site location. Current space
propulsion can be roughly split into chemical and electric (although other types do
exist). In general, chemical propulsion is less fuel-mass efficient but produces higher
thrust than electric propulsion. This may change in the future as we learn to build
more powerful (i.e., MW-class) power systems for our spacecraft. For now, however,
effectively all operating launch systems are chemical-based, while more and more
in-space propulsion is utilizing electric systems.
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Chemical Rockets

Converging-Diverging
Nozzle

Throat

Exit

Grain (Fuel/Oxidizer Mix)

Combustion Chamber

Igniter

Solid-Fuel Rocket

(Compressed) Gas Storage

Valve
Cold Gas Thruster

Pressurized Gas

Fuel
Tank

Oxidizer
Tank

Combustion
Chamber

Pressure-Fed Liquid
Bi-Propellant Rocket

Fuel
Tank

Oxidizer
Tank

Turbine

Gas
Generator

Pump Pump

Pump-Fed Liquid
Bi-Propellant Rocket

Example: Space Shuttle Orbital Maneuvering System

From: https://ntrs.nasa.gov/citations/19850008634
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Rocket Propulsion

Nozzle Exit Area

Nozzle Exit Pressure

Nozzle Exit Velocity

Control Volume

Ambient Pressure

Mass Flow Rate

Thrust Force

∑
F · êx = ‖FT‖︸ ︷︷ ︸

, FT

−Ae(pe − pa)

Change in Momentum: ∆p =

∫
ṁveêx dt




FT = ṁve + Ae(pe − pa)

Effective Exhaust Velocity: veff , FT
ṁ

= ve +
Ae
ṁ

(pe − pa)

Rocket Forces

Drag Gravity
Lift

Thrust

mIaG/O =
∑

F = Fg + FL + FD + FT

= −mgêy + FLêθ − FDêr + FT (cos(θ − γ)êr + sin(θ − γ)êθ)

NB: Rocket mass (m) is
not constant
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The Tsiolkovsky (Ideal) Rocket Equation
IaG/O =

B d

dt
IvG/O︸ ︷︷ ︸
≡ vêr

+ IωB︸︷︷︸
≡ γ̇ê3

× IvG/O︸ ︷︷ ︸
≡ vêr

=
dv

dt
êr + v

dγ

dt
êθ

IaG/O · êr =
dv

dt
= −g sin γ − FD

m
+
FT
m

cos(θ − γ)

IaG/O · êθ = v
dγ

dt
= −g cos γ +

FL
m

+
FT
m

sin(θ − γ)

∆v , v(tf )− v(t0) =

∫ tf

t0

[
−g sin γ − FD

m
+
FT
m

cos(θ − γ)

]
dt

Assuming gravity and drag are negligible:
g = 0, FD = 0, θ = γ, and veff is constant:

∆v =

∫ tf

t0

FT
m

dt = veff

∫ tf

t0

ṁ

m
dt = −veff

∫ mf

m0

dm

m
∆v = veff ln

(
m0

mf

)

Specific Impulse

Specific Impulse , Isp =
1

wp

Total Impulse︷ ︸︸ ︷∫ tf

t0

FT dt =
FT
ṁg0

=
veff

g0

Propellant Weight Standard Gravity
Gravity at Earth’s Surface. g0 = 9.80665 m/s2

∆v = Ispg0 ln

(
m0

mf

)

m0 −mf = m0

(
1− exp

[
− ∆v

Ispg0

])

Assuming Constant Thrust
and Mass Flow Rate
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Efficiency vs. Thrust

10-3 10-2 10-1 100 101 102 103
100

200

300
400
500

750
1000

1500
2000

3000
4000

Monopropellants

Bipropellants

Electrostatic

Cold Gas
Thrusters

Electrosprays

Electrothermal

An Illustrative Example

• You wish to launch an H2-O2 rocket (veff = 4000 m/s) to a 600 km
circular orbit:

∆v = vcirc =

√
µ

r
=

√
3.986× 1014 m3s−2

600km + 6371km
≈ 7.5km/s

• Typically require an additional 1.5 km/s for atmospheric drag and
gravity compensation for a total of 9 km/s

∆v = veff ln

(
m0

mf

)
⇒ m0

mf

= exp [∆v/veff ] ≈ 9.5

• Your rocket must be 89.5% fuel by mass (and we still haven’t even
included all other losses)
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Staging

∆v =
n∑

i=1

∆vi =
n∑

i=1

veffi
ln

(
m0i

mfi

)

• m0i : Total mass before stage i ignition
• mfi : Total mass after stage i fuel expended but before stage i separation

If all stages have the same effective exhaust velocity:

exp (∆v/veff) =
n∏

i=1

m0i

mfi

Stages can be optimized for thrust, or efficiency, or maximized payload mass

Staging Options 4.7. FLIGHT VEHICLES 141 

I Third 

_ _ f  tage 

/ S eaC; 

oF'/ 

Sustainer stage 
(contains propellant 
for booster thrust) 

cage 
rot) 

Sustainer & Winged 
sustainer 
stage 

First 
/stage 

Four strap-on/~ 
oosters / ~  

i 1 
Booster 

Staging Partial staging Parallel staging Piggy-back 
in series staging 
or tandem 

FIGURE 4-14. Simplified schematic sketches of four geometric configurations for 
assembling individual stages into a launch vehicle. The first is very common and the 
stages are stacked vertically on top of each other, as in the Minuteman long-range 
missile or the Delta launch vehicle. Partial staging was used on early versions of the 
Atlas; it allows all engines to be started at launching, thus avoiding a start during flight, 
and it permits the shut-off of engines on the launch stand if a failure is sensed prior to 
lift-off. The two booster engines, arranged in a doughnut-shaped assembly, are dropped 
off in flight. In the third sketch there are two or more separate "strap-on" booster stages 
attached to the bottom stage of a vertical configuration and this allows an increase in 
vehicle performance. The piggy-back configuration concept on the right is used in the 
Space Shuttle. 

Sutton and Biblarz (2001) Fig. 4-14
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Another Illustrative Example
Consider a 2-stage rocket with a 6000 m/s ∆v requirement and 4500 kg total
launch mass. Both stages have the same thrusters: 300 s Isp, 3000 m/s veff ,
and 0.88 fuel mass fraction (ξ). m1,m2 are the stage wet masses (with fuel).

m01 = m1 +m2 +mpayload

mf1 = m1(1− ξ) +m2 +mpayload

m02 = m2 +mpayload

mf2 = m2(1− ξ) +mpayload

Option 1: Equal Mass stages

m1 = m2 , m and mtot = 2m+mpayload

c , exp (∆v/veff) =
mtot

m(1− ξ) +m+mpayload

(
m+mpayload

m(1− ξ) +mpayload

)

mpayload =
mtot

cξ (ξ + 1)

(
c
(
ξ2 − ξ − 1

)
+
√
c2 + 4cξ2 − 2c+ 1 + 1

)

≈ 300 kg

Option 2: Equal Mass-Ratio stages

m01

mf1

=
m02

mf2

and mtot = m1 +m2 +mpayload

mtot

mtot − ξm1

=
m2 +mpayload

m2(1− ξ) +mpayload

c , exp (∆v/veff) =

(
mtot

mtot −m1ξ

)2

mpayload =
mtot

c2ξ2

(
c2
(
ξ2 − 2ξ + 1

)
+ c+ 2

√
c3 (ξ − 1)

)

≈ 357 kg =⇒ ∼ 20% Gain!
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Launch Sites
• Launch azimuth β = sin−1

(
cos I

cosL

)
⇒ I ≥ L

• ω + ν = sin−1

(
sinL

sin I

)

• The rotation of the Earth provides an Eastward
velocity of ω⊕ × rO/G for launch site O and center
of the Earth G.
• The launch orbit crosses the equator

λu = cos−1

(
cos β

cos I

)
west of the launch site

• Launch time can be found from
θGMST = Ω + λu − λe
• Launch sites have different azimuth restrictions

Figure based on Vallado (2013)

Flavors of Electric Propulsion
Electrothermal

Electromagnetic fields generate
plasma to heat propellants expelled

via a nozzle
• Arcjet
• Resistojet
• Laser ablative

Electrostatic
Static electric fields accelerate charged

particles (Coulomb force)
• Ion thrusters
• Hall Effect thrusters
• Field Emission
• Nano-particle Field Extraction

Electromagnetic
Electromagnetic fields accelerate charged

particles (Lorentz force)
• Plasma Thrusters
• Magnetoplasmodynamic
• VASIMR

Electrodynamic
Electric potential generated by

motion through natural magnetic
field and converted to kinetic energy
• Electrodynamic Tether

8



Coulomb Force

• Inverse-square force governing attraction between two stationary,
electrically charged particles with charge magnitudes q1 and q2:
F1,2 = ke

q1q2

‖r1/2‖3
r1/2

• Equivalently, the magnitude of the electric field created by a point

charge q at a distance r: ‖E‖ = ke
|q|
r2

• ke is Coulomb’s constant: 8.99×109 N m2 C−2

Gridded Ion Thurster

electron

neutral propellant atom

positive ion

electron
gun

magnets

neutralizing electron gun

negative grid
positive grid

From: https://commons.wikimedia.org/wiki/File:Electrostatic_ion_thruster-en.svg 
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Solar Sails

• Recall that solar radiation pressure can act as a perturbing force via
momentum transfer to spacecraft
• This effect can instead by used for propulsion

• Two primary mechanisms: absorption and reflection: Pabsorb =
F�
r2

cos2 α

and Preflect = 2Pabsorb for heliocentric distance r2, solar flux pressure at 1
AU F� and incidence angle α
• For an efficiency ε and sail area A, the magnitude of force on the sail is

Fsail = 2ε
F�
r2

cos2 αA

• More complex models exist. See: Heaton and Artusio-Glimpse (2015)
and Dachwald (2005)

Solar Sailing Geometry

Earth

Sun

L2

Figure by Gabriel Soto
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Propellant Tanks

• Propellant tanks are typically designed with low ballistic coefficient
(high drag relative to mass)—typically tanks are spherical or cylindrical
• Fluid slosh induces attitude disturbances and represents unmodeled

dynamics
• Slosh-induced disturbances can mask other important dynamics

(deployments, etc.)
• Liquid motion dissipates energy (this can destabilize spacecraft)
• Slosh can be controlled via diaphragm tanks, tank shape, or propellant

management devices

Diaphragm Tanks

Chatman et al. (2007) Fig. 12
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Propellant Management Devices

From: Jaekle (1993). See also: http://www.pmdtechnology.com/Index.html

Slosh Modeling
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Dodge et al. (2002) Figs. 3.1, 3.2, 3.6

F = −
(
m0Ẍ0 +

∑

i

mi

(
m0Ẍ0 + ẍi

))
M = −

(
(
I0 +m0H

2
0

)
α̈0 +

∑

i

(miHi (ẍi +Hiα̈0))− g
∑

i

mixi

)
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Attitude Dynamics

The ability to measure and control a spacecraft’s orientation (or attitude) is equally
important to being able to measure and control its position. Our starting model
for an arbitrary spacecraft is a rigid body—one that experiences no deformation or
changes in mass distribution. Of course, real spacecraft do experience various types
of flexure, and changes in mass, especially when fuel is consumed. As usual, our
model is only a starting point, which must be validated with additional analyses.
To consider the effects of thermal and structural deformation, we typically utilize
finite element analysis (FEA). Nevertheless, in most cases, the majority of spacecraft
orientation dynamics will be well predicted by the rigid body model. Here we review
the basics of rigid body kinematics and dynamics in three dimensions, and introduce
some new formalism that will help us in our continued study of spacecraft attitude.
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Simple Rotations

Rotation axis: [n̂]A = [n̂]B =



n1

n2

n3




b =R ·a

Rotation Dyadic

b = n̂⊗n̂·a+cos θ (a− n̂(n̂ · a))+sin θn̂×a

Vector fixed in B, aligned
with a before rotation

Vector fixed in A, aligned
with b before rotation

Vector and Tensor Products
(Scalar) Dot Product
• a · b = ‖a‖‖b‖ cos θ

• a · b = b · a
• a · (b + c) = a · b + a · c
• xa · yb = xy(a · b)

(Vector) Cross Product
• a× b = ‖a‖‖b‖ sin θĉ where

c⊥ a,b

• a× b = −b× a

• a× (b + c) = a× b + a× c

• ya× b = y (a× b) = a× yb

(Tensor) Outer Product
• (a + b)⊗ c = a⊗ c + b⊗ c

• c⊗ (a + b) = c⊗ a + c⊗ b

• x(a⊗ b) = (xa)⊗ b = a⊗ (xb)

• (a⊗ b)⊗ c = a⊗ (b⊗ c)
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Remember: All Vector and Tensor Operations Can Be
Written as Matrix Multiplications

I = (O, e1, e2, e3)





a =
∑

i

aiei ⇒ ai = a · ei b =
∑

i

biei ⇒ bi = b · ei

T = a⊗ b =
∑

i

∑

j

Tijei ⊗ ej ⇒ Tij = ei · T · ej = aibj

[a]I =



a1
a2
a3



I

[b]I =



b1
b2
b3



I

[T]I =



T11 T12 T13
T21 T22 T23
T31 T32 T33



I

=



a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3



I

[a · T]I = [a]TI [T]I

[T · a]I = [T]I [a]I

[a× T]I = [a×]I [T]I

[T× a]I = −[T]I [a×]I

where

[T]I = [a⊗ b]I = [a]I [b]TI

[a×]I =




0 −a3 a2
a3 0 −a1
−a2 a1 0



I

The Rodrigues Equation

b = R · a =⇒ R = cos θU + sin θn̂× + (1− cos θ)n̂⊗ n̂

[R]A ≡ ACB = I cos θ + sin θ [n̂×]A + (1− cos θ) [n̂]A [n̂]TA
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Direction Cosine Matrices Revisited

[n̂]A = [n̂]B =



n1

n2

n3




BCA = I cos θ − sin θ [n̂×]A + (1− cos θ) [n̂]A [n̂]TA =



n21 (1− cos (θ)) + cos (θ) −n1n2 (cos (θ)− 1) + n3 sin (θ) −n1n3 (cos (θ)− 1)− n2 sin (θ)
−n1n2 (cos (θ)− 1)− n3 sin (θ) n22 (1− cos (θ)) + cos (θ) n1 sin (θ)− n2n3 (cos (θ)− 1)
−n1n3 (cos (θ)− 1) + n2 sin (θ) −n1 sin (θ)− n2n3 (cos (θ)− 1) n23 (1− cos (θ)) + cos (θ)




[BCA
]
ij

= δij cos θ + εijk︸︷︷︸
k 6=i,j

nk sin θ + ninj(1− cos θ)

Kronecker Delta

δij =

{
1 j = i

0 j 6= i

Levi-Civita Symbol

εijk =
1

2
(i− j)(j − k)(k − i) =





1 Even permutations
−1 Odd permutations
0 Repeated indices

Euler Angles and Body Rotations

BCA =




1 0 0
0 cos θ sin θ
0 − sin θ cos θ




︸ ︷︷ ︸
, C1(θ)




cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ




︸ ︷︷ ︸
, C2(θ)




cos θ sin θ 0
− sin θ cos θ 0

0 0 1




︸ ︷︷ ︸
, C3(θ)

Any DCM can be decomposed into three rotations about non-repeating
frame axes.
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Body-2 3-2-3 (ψ, θ, φ)IB rotation

ACI =




cosψ sinψ 0
− sinψ cosψ 0

0 0 1


 CCA =




cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ


 BCC =




cosφ sinφ 0
− sinφ cosφ 0

0 0 1




BCI = BCCCCAACI =

− sin (φ) sin (ψ) + cos (φ) cos (ψ) cos (θ) sin (φ) cos (ψ) + sin (ψ) cos (φ) cos (θ) − sin (θ) cos (φ)
− sin (φ) cos (ψ) cos (θ)− sin (ψ) cos (φ) − sin (φ) sin (ψ) cos (θ) + cos (φ) cos (ψ) sin (φ) sin (θ)

sin (θ) cos (ψ) sin (ψ) sin (θ) cos (θ)




Space Rotations
Rather than rotating about body-fixed axes (body rotations), we can choose to al-
ways rotate about the axes of our original (presumably inertial) reference frame.
These are called space rotations. Consider a rotation about the third axis of some
frame A, followed by a rotation about the first axis of the original A frame (produc-
ing intermediate frame B and C, respectively):

BCA =




cos (θ1) sin (θ1) 0
− sin (θ1) cos (θ1) 0

0 0 1


 [n̂2]B = BCA [n̂2]A =




cos θ1
− sin θ1

0



B5



Space Rotations Continued

CCB =



(− cos (θ2) + 1) cos2 (θ1) + cos (θ2) (cos (θ2)− 1) sin (θ1) cos (θ1) sin (θ1) sin (θ2)

(cos (θ2)− 1) sin (θ1) cos (θ1) (− cos (θ2) + 1) sin2 (θ1) + cos (θ2) sin (θ2) cos (θ1)
− sin (θ1) sin (θ2) − sin (θ2) cos (θ1) cos (θ2)




CCA = CCBBCA =




cos (θ1) sin (θ1) cos (θ2) sin (θ1) sin (θ2)
− sin (θ1) cos (θ1) cos (θ2) sin (θ2) cos (θ1)

0 − sin (θ2) cos (θ2)




≡ CT
3 (−θ1)CT

1 (−θ2) = C3(θ1)C1(θ2)

So, the DCMs for space rotations can be calculated exactly in the same way
as those for body rotation, except with the order of rotations reversed!

Gimbal Lock
While Euler angles are the most efficient encoding of orientation (carrying the min-
imum number of required variables), they have one serious drawback. It is always
possible to find a particular orientation which causes a mathematical singularity
within a particular Euler angle encoding, corresponding to the loss of a degree of
freedom in the system. For example, consider the case where the intermediate ro-
tation in a 3-1-3 Euler angle set is zero. This results in two subsequent rotations
about the same third axis, meaning that the first and third angles of the set cannot
be disambiguated (note that we’ve already seen this condition when studying two-
body orbits, in the case where orbital inclination is zero). The name comes from
gyroscopes based on mechanical gimbals—when this condition is encountered, two
of the gimbals become aligned with one another, therefore causing the gyroscope to
lose its ability to track the full three-dimensional orientation. In this case, the gim-
bals aren’t actually locked together - there is just nothing causing them to become
unaligned. To deal with this, you can carry multiple Euler angle sets and switch
between them as gimbal lock conditions are approached. Alternatively, you can add
a fourth parameter to the encoding, which eliminates the gimbal lock condition.
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Euler Parameters

ε , sin

(
θ

2

)
n̂ ε4 , cos

(
θ

2

)

ACB = I cos θ + sin θ [n̂×]A + (1− cos θ) [n̂]A [n̂]TA

= I
(
ε24 − [ε]TA [ε]A

)
+ 2ε4 [ε×]A + 2 [ε]A [ε]TA

=



ε21 − ε22 − ε23 + ε24 2ε1ε2 − 2ε3ε4 2ε1ε3 + 2ε2ε4

2ε1ε2 + 2ε3ε4 −ε21 + ε22 − ε23 + ε24 −2ε1ε4 + 2ε2ε3
2ε1ε3 − 2ε2ε4 2ε1ε4 + 2ε2ε3 −ε21 − ε22 + ε23 + ε24




ε =
1

4ε4



ACB32 − ACB23
ACB13 − ACB31
ACB21 − ACB12




A

ε4 =
1

2

(
1 + Tr

[ACB
]) 1

2

b = R · a =⇒ b = a + 2 (ε4ε× a + ε× (ε× a))

Rodrigues Parameters

ρ , tan

(
θ

2

)
n̂

ρi ≡
εi
ε4

ACB = (I + [ρ×]) (I − [ρ×])−1

a− b = (a + b)× ρ
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Quaternions
Define a new basis set, i, j,k, s. t. i2 = j2 = k2 = −1. Products of basis

elements are anti-commutative: ij = k jk = i ki = j
ji = −k kj = −i ik = −j

A quaternion is a vector in this basis and a scalar:

q ,
[
v
r

]
=

[
v1i + v2j + v3k

r

]

Quaternion product:

q1 =

[
v1

r1

]
, q2 =

[
v2

r2

]
=⇒ q1q2 =

[
r1v2 + r2v1 + v1 × v2

r1r2 − v1 · v2

]

Markely & Crassidis call this q1�q2 and define:

q1⊗q2 =

[
r1v2 + r2v1 − v1 × v2

r1r2 − v1 · v2

]

Not to be confused with outer product

Quaternion Products

q1 ⊗ q2 =
[
q1⊗

]
q2

[
q⊗
]
,





rI − [v×]

−vT




︸ ︷︷ ︸


v

r




︸︷︷︸




, Ψ(q) q

q1 � q2 =
[
q1�

]
q2

[
q�
]
,





rI + [v×]

−vT




︸ ︷︷ ︸


v

r




︸︷︷︸




, Ξ(q) q

q1 ⊗ q2 = q2 � q1
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Quaternion Representation of Rotations

q(n̂, θ) =




sin

(
θ

2

)
n̂

cos

(
θ

2

)




b = R · a =⇒ b = q⊗ a⊗ q?

= [q�]T [q⊗]

[
a
0

]

q? =

[
−v
r

]
for q =

[
v
r

]

See Markely & Crassidis (2014), Sec. 2.7 & 2.9.3 for lots more details

Small Rotations

Recall: b = n̂⊗ n̂ · a + cos θ (a− n̂(n̂ · a)) + sin θn̂× a

Assume θ � 1:

b ≈ a + θn̂× a ⇒ ACB ≈ I + θ [n̂×]A

q ≈



θ

2
n̂

1


 ⇒ ACB ≈ I + 2 [q1:3×]A

ρ ≈ θ

2
n̂ ⇒ AρB ≈ AρC + CρB
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The Angular Velocity Matrix

ω̃ , BCAAĊB

AĊB , d

dt
ACB

1
(BCA

)−1
ω̃ =

(BCA
)−1 BCAAĊB = AĊB =⇒ AĊB = ACBω̃

2 ω̃T + ω̃ =
(
BCAAĊB

)T
+
(
BCAAĊB

)

︸ ︷︷ ︸
≡ d

dt

(BCAACB
)

=
d

dt
(I)

= 0

The angular velocity matrix must be skew-symmetric.

Components of Angular Velocity Matrix



0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 =



ACB11

ACB21
ACB31

ACB12
ACB22

ACB32
ACB13

ACB23
ACB33





AĊB11

AĊB12
AĊB13

AĊB21
AĊB22

AĊB23
AĊB31

AĊB32
AĊB33




ω1 = AĊB12
ACB13 + AĊB22

ACB23 + AĊB32
ACB33

ω2 = AĊB13
ACB11 + AĊB23

ACB21 + AĊB33
ACB31

ω3 = AĊB11
ACB12 + AĊB21

ACB22 + AĊB31
ACB32




ωi =

1

2
εigh(εigh + 1)ACBjh

AĊBjg

Poisson’s Kinematic Equations
AĊBij = εghjωh

ACBig
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The Angular Velocity Vector

b̂i =
3∑

j=1

(b̂i · âj)âj

Ad

dt
b̂i =

3∑

j=1

d

dt

(
b̂i · âj

)

︸ ︷︷ ︸
≡ BCAij

âj





ω1 =
Ad

dt
b̂2·b̂3 ω2 =

Ad

dt
b̂3·b̂1 ω3 =

Ad

dt
b̂1·b̂2

Recall :

ACB = I cos θ + sin θ [n̂×]B + (1− cos θ) [n̂]B [n̂]TB

ωi =
1

2
εigh(εigh + 1)ACBjh

AĊBjg

=⇒
ω1 = n1θ̇

ω2 = n2θ̇

ω3 = n3θ̇





AωB , ω1b̂1 + ω2b̂2 + ω3b̂3

= θ̇n̂

The Transport Equation

r = [r]TA




â1

â2

â3


 = [r]TB




b̂1

b̂2

b̂3







â1

â2

a3


 = ACB




b̂1

b̂2

b3


 [r]A = ACB [r]B

Unit Vectors of Frame A and Frame B

Ad

dt
r =

d

dt

(
[r]TA

)



â1

â2

â3


 =

(
d

dt

(
[r]TB

)
BCA + [r]TB

BĊA
)


â1

â2

â3




=
d

dt

(
[r]TB

)



b̂1

b̂2

b̂3


+ [r]TB ω̃

T




b̂1

b̂2

b̂3


⇒

Ad

dt
r =

B d

dt
r + AωB × r
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Kinematics of the 3-2-3 (ψ, θ, φ)IB rotation

IωB = ψ̇â3 + θ̇ĉ2 + φ̇b̂3

= ω1b̂1 + ω2b̂2 + ω3b̂3

ω1 = θ̇ sinφ− ψ̇ sin θ cosφ

ω2 = θ̇ cosφ+ ψ̇ sin θ sinφ

ω3 = φ̇+ ψ̇ cos θ

ψ̇ = (−ω1 cosφ+ ω2 sinφ) csc θ

θ̇ = ω1 sinφ+ ω2 cosφ

φ̇ = (ω1 cosφ− ω2 sinφ) cot θ + ω3

Kinematics of Euler Parameters (and Quaternions)

AωB = 2

(
ε4

B d

dt
ε− ε̇4ε− ε×

B d

dt
ε

)

B d

dt
ε =

1

2

(
ε4
AωB + ε× AωB

)
ε̇4 = −1

2
AωB · ε




ω1

ω2

ω3

0


 = 2




ε4 ε3 −ε2 −ε1
−ε3 ε4 ε1 −ε2
ε2 −ε1 ε4 −ε3
ε1 ε2 ε3 ε4




︸ ︷︷ ︸
Inverse ≡ Transpose




ε̇1
ε̇2
ε̇3
ε̇4




q =

[
ε
ε4

]
=⇒

B d

dt
q =

1

2
q�

[AωB
0

]
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Kinematics of Rodrigues Parameters

AωB =
2

1 + ρ · ρ

(B d

dt
ρ− ρ×

B d

dt
ρ

)

B d

dt
ρ =

1

2

(AωB + ρ× AωB + ρ⊗ ρ · AωB
)

Attitude Dynamics

So far, we have only been looking at attitude (orientation) kinematics, but now we
will turn to the dynamics side of things and introduce Euler’s Laws. At first glance,
it appears that Euler’s laws are just a restatement of Newton’s second law, which
equivalently gives you a linear momentum relationship and an angular momentum
relationship. Recall, however, that Newton’s second law applies explicitly to ideal
particles, whereas Euler’s laws describe extended, rigid bodies. It is true that you can
derive Euler’s first law by applying Newton’s second law to an infinite collection of
infinitesimal particles, and so it is not, strictly speaking, encoding any new physics.
Euler’s second law, however, has hidden within it a very specific postulate about
rigid bodies, as we shall see shortly.
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Euler’s Laws

I. The product of the inertial acceleration of the center of mass of
a rigid body and its total mass is equal to the total external force
applied to the body

FG = mG
IaG/O

II. The rate of change of the inertial angular momentum of a rigid
body about a fixed point O in the inertial frame is equal to the
total external moment applied to the body about O

I d

dt
IhO = MO

Center of Mass (A Quick Reminder)

rG/O =
1

mG

N∑

i=1

ri/Omi

• As N →∞: mi → 0

rG/O =
1

mG

∫

B

r dm/O dm

• If the density is given by ρ(r dm/O):

rG/O =
1

mG

∫

B

r dm/Oρ(r dm/O) dV

• The center of mass corollary becomes:
∫

B

r dm/Gρ(r dm/G) dV = 0
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Example: Center of Mass of a Hemispherical Shell
rdm/O = r cos θ sinφb̂1 + r sin θ sinφb̂2 + r cosφb̂3

rG/O =
ρ

mG

∫∫∫

B

r dm/O dV

mG = ρV = ρ

∫∫∫

B

dV

rG/O =
3 (R4

1 −R4
2)

8 (R3
1 −R3

2)
b̂3

Angular Momentum of a Rigid Body

IhO =
N∑

i=1

miri/O × Ivi/O
mi → dm
========⇒
N →∞

IhO =

∫

B

rdm/O × Iv dm/O dm

Internal forces between i and j
I d

dt

(IhO

)
=

N∑

i=1

ri/O × F
(ext)
i

︸ ︷︷ ︸
, M

(ext)
O

+
1

2

N∑

i=1

N∑

j=1

(ri/O − rj/O)× Fi,j

︸ ︷︷ ︸
Equals zero for rigid bodies

This is known as the internal moment assumption
NB: The internal moment assumption for rigid bodies is effectively the only
additional postulate added by Euler’s laws to Newton’s laws. It is possible to
define internal forces within a collection of particles that violate this
assumption, therefore, we take its applicability to rigid bodies as a new law.
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The Separation Principle

IhO =

IhG/O︸ ︷︷ ︸
Angular Momentum of COM

about an Inertially Fixed Point
+

IhG︸︷︷︸
Angular Momentum of
Body about its COM

IhG/O , mGrG/O × IvG/O =⇒
I d

dt

(IhG/O

)
= MG/O , rG/O × FG

IhG ,





N∑

i=1

miri/G × Ivi/G Particles

∫

B

r dm/G × Ivdm/G dm Continuous Bodies

I d

dt

(IhG

)
= MG ,





N∑

i=1

ri/G × F
(ext)
i

Contact Forces
(N = # contacts for rigid bodies)

∫

B

r dm/G × f dm dm Field Forces

Moment of Inertia

IhG = IG · IωB

IG ,





N∑

i=1

mi

[
(ri/G · ri/G)U− (ri/G ⊗ ri/G)

]
Collection of Particles

∫

B

[
(rdm/G · rdm/G)U− (rdm/G ⊗ rdm/G)

]
dm Rigid Body
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Matrix of Inertia

IG =
3∑

i=1

3∑

j=1

Iijb̂i ⊗ b̂j

[IG]B =



I11 I12 I13
I21 I22 I23
I31 I32 I33



B

=
N∑

i=1

mi

(
([ri/G]TB [ri/G]B)I − [ri/G]B[ri/G]TB

)

=

∫

B

(
‖rdm/G‖2I − [rdm/G]B[rdm/G]TB

)
dm

=

∫

B

(
‖rdm/G‖2I − [rdm/G]B[rdm/G]TB

)
ρ(rdm/G) dV

Diagonal elements of the inertia matrix are called moments of inertia, while
off-diagonal entries are known as products of inertia.

Example: Moment of Inertia of a Hemispherical Shell

[IO]B =
2mG (R5

1 −R5
2)

5 (R3
1 −R3

2)
I

[IO]B =
mG

V︸︷︷︸
≡ ρ

∫∫∫

B

(
‖rdm/O‖2I − [rdm/O]B[rdm/O]TB

)
dV
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Moments and Angular Momentum about an
Arbitrary Point Q fixed to a Rigid Body

MQ = MG − rQ/G ×
N∑

i=1

F
(ext)
i

I d

dt

(IhQ

)
=
B d

dt

(IhQ

)
+ IωB × IhQ = MQ + rQ/G ×mG

IaQ/O

IhQ = IQ · IωB IQ ,
N∑

i=1

mi

(
(ri/Q · ri/Q))U− (ri/Q ⊗ ri/Q)

)
· IωB

The Parallel Axis Theorem
IQ = IG +mG

[
(rQ/G · rQ/G)U− (rQ/G ⊗ rQ/G)

]

Rigid Body Dynamics

I d

dt
IhG = IG ·

Bd

dt
IωB + IωB ×

(
IG · IωB

)
= MG

[IG]B

[Bd
dt
IωB
]

B
+
[IωB×

]
B [IG]B

[IωB
]
B = [MG]B
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Diagonalization
For any tensor T : [T]B = BCA [T]A

ACB︸︷︷︸
≡
(BCA

)T

Recall the eigendecomposition of a symmetric matrix

A = AT ⇒ Avi = λivi ⇒ λi ∈ R ∀i, vi · vj = 0 ∀i, j

Let P ,
[
vi v2 · · · vn

]
⇒ A = PDP−1, P−1 = P T

D = diag ({λi}) = P TAP

[IG]BP = BPCA [IG]A
ACBP

Eigenvectors of [IG]A

Principal Axis Frame (Bp) and Euler’s Equations
[IG]Bp =



I1 0 0
0 I2 0
0 0 I3



Bp

[IG]Bp

[B d

dt
IωB

]

Bp
+
[IωB×

]
Bp [IG]Bp

[IωB
]
Bp = [MG]Bp =⇒



I1 0 0
0 I2 0
0 0 I3



Bp



ω̇1

ω̇2

ω̇3



Bp

+




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



Bp



I1 0 0
0 I2 0
0 0 I3



Bp



ω1

ω2

ω3



Bp

=



M1

M2

M3



Bp

Euler’s Equations
I1ω̇1 + (I3 − I2)ω2ω3 = M1

I2ω̇2 + (I1 − I3)ω1ω3 = M2

I3ω̇3 + (I2 − I1)ω1ω2 = M3
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Every Rigid Body Always Has a Principal Axis Frame

NB: Moment of inertia matrices are real and symmetric, and so are always diago-
nizable. The eigendecomposition of the moment of inertia matrix for any arbitrary
body-fixed frame gives the MOI matrix in the principal axis frame (the diagonal
matrix whose non-zero entries are the eigenvalues) and the DCM rotating between
the two frames (the matrix whose columns are the eigenvectors).

Torque Free Motion
IωB = ω1b̂1 + ω2b̂2 + ω3b̂3

I1ω̇1 + (I3 − I2)ω2ω3 = 0
I2ω̇2 + (I1 − I3)ω1ω3 = 0
I3ω̇3 + (I2 − I1)ω1ω2 = 0

I1 = I2
I1ω̇1 + (I3 − I2)ω2ω3 = 0

I2ω̇2 + (I1 − I3)ω1ω3 = 0

I3ω̇3 = 0

ω3 � ω1, ω2

I1ω̇1 + (I3 − I2)ω2ω3 = 0

I2ω̇2 + (I1 − I3)ω1ω3 = 0

I3ω̇3 ≈ 0

ω̇1 = −I3 − I2
I1

ω2ω3

ω̇2 = −I1 − I3
I2

ω1ω3





ω̈1 = −I3 − I2
I1

ω̇2ω3

ω̈2 = −I1 − I3
I2

ω̇1ω3





ω̈1 + ω2
nω1 = 0

ω̈2 + ω2
nω2 = 0

ω2
n , (I3 − I2)(I3 − I1)ω2

3

I1I2
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Solid Ellipsoids

[IG]B =
m

5




(b2 + c2) 0 0
0 (a2 + c2) 0
0 0 (a2 + b2)



B

a > b > c =⇒ I3 > I2 > I1

Major Axis Minor Axis

From this matrix, we can also see a general property of all inertia matrices:
the sum of any two moments of inertia is greater than or equal to the third.

Torque Free Motion Conserved Quantities

IωB = ω1b̂1+ω2b̂2+ω3b̂3 [IG]B =



I1 0 0
0 I2 0
0 0 I3



B

I1ω̇1 + (I3 − I2)ω2ω3 = 0
I2ω̇2 + (I1 − I3)ω1ω3 = 0
I3ω̇3 + (I2 − I1)ω1ω2 = 0

IhG = IG · IωB = I1ω1b̂1 + I2ω2b̂2 + I3ω3b̂3

TG =
1

2
IωB · IG · IωB =

1

2

(
I1ω

2
1 + I2ω

2
2 + I3ω

2
3

)



Constant

I3 > I2 > I1

{
maxT = spin about minor axis(I1)
minT = spin about major axis(I3)
√

2TI1 < ‖IhG‖ <
√

2TI3
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Torque Free Motion Conserved Quantities (again)

TG =
1

2

(
I1ω

2
1 + I2ω

2
2 + I3ω

2
3

)
=⇒ ω2

1

2TG/I1
+

ω2
2

2TG/I2
+

ω2
3

2TG/I3
= 1

‖IhG‖2 , h2G = ‖IG · IωB‖2 =⇒ ω2
1

h2G/I
2
1

+
ω2
2

h2G/I
2
2

+
ω2
3

h2G/I
2
3

= 1

These two equations describe two ellipsoids. The intersection of these two
ellipsoids traces the path of the angular velocity vector in the body-fixed
frame (polhode). The contact point between the inertia ellipsoid and an
invariant plane orthogonal to the angular momentum vector traces the path
of the angular velocity vector in the inertial frame (herpolohode). This is
called the Poinsot construction.

The Poinsot Construction

Polhode

Herpolhode
Invariant

Plane

The polholde rolls without
slipping on the herpolhode
in the invariable plane.

- Goldstein (1980)
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Spinning Symmetric Rigid Body (The Setup)
Frame C is fixed to a symmetric rigid body with symmetry axis ĉ2.
The orientation of C is given by a 3-1-2 (ψ, θ, φ)IC Body-3 Rotation

Intermediate frame B is defined with
orientation 3-1 (ψ, θ)IB such that b̂2 ≡ ĉ2

BCA =




1 0 0
0 cos (θ) sin (θ)
0 − sin (θ) cos (θ)




IωB = ψ̇â3 + θ̇b̂1

= θ̇b̂1 + ψ̇ sin θb̂2 + ψ̇ cos θb̂3

BωC = Ωb̂2

IωC = IωB + BωC

NB: b̂2 ≡ ĉ2 is the symmetry axis of the body, which means that [IG]B = [IG]C.

Spinning Symmetric Rigid Body (The Dynamics)

[IhG

]
B = [IG]B

[IωC
]
B =




I1θ̇

I2

(
Ω + ψ̇ sin (θ)

)

I1ψ̇ cos (θ)



B

NB: This is not a typo

[I d

dt
IhG

]

B
=

[B d

dt
IhG

]

B
+
[IωB×

]
B
[IhG

]
B

=




I1ψ̇
2 sin (θ) cos (θ) + I1θ̈ − I2ψ̇

(
Ω + ψ̇ sin (θ)

)
cos (θ)

I2

(
ψ̈ sin (θ) + ψ̇θ̇ cos (θ)

)

I1ψ̈ cos (θ)− 2I1ψ̇θ̇ sin (θ) + I2θ̇
(

Ω + ψ̇ sin (θ)
)



B

The first line defines the inertial angular momentum, and so the angular velocity
used must be of the body-fixed frame (C). The second line is the application of the
transport equation for frame B, so the angular velocity used there is IωB.
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Spinning Symmetric Rigid Body (The Solution)
Note: (IωB × IhG) · b̂2 = 0

Therefore: BhG · b̂2 = 0 =⇒ I2
d

dt

(
Ω + ψ̇ sin θ

)
= 0

=⇒ Ω + ψ̇ sin θ = C (constant)

Assume: MG = −M1b̂1. Then:

θ̈ =
1

I1

(
CI2ψ̇ cos (θ)− I1ψ̇

2

2
sin (2θ)−M1

)

ψ̈ =
θ̇

I1

(
− CI2

cos (θ)
+ 2I1ψ̇ tan (θ)

)

Torqued, Spinning, Symmetric Rigid Body Motion
In general, a torqued spinning, symmetric, rigid body
will display two bulk types of motion: Precession:
the (relatively) slow rotation of the spin/symmetry
axis about the inertially fixed axis orthogonal to the
axis about which torque is applied (ê3 in the pre-
ceding example); and nutation: the (relatively) fast
secondary rotation of the spin/symmetry axis along
its precessing trajectory.

Remember that Ω (the spin
rate) is not constant in time.
Only the quantity Ω + ψ̇ sin θ
is conserved.
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Attitude Determination and Control
Now that we have established the basics of attitude dynamics, we can turn our
attention to the control of the orientation of our spacecraft. Just as we did with
propulsion, we will briefly look at the hardware that is available to us for controlling
spacecraft orientation, and then look into specific approaches to attitude control.
We will discuss both passive and active control methods and will look at some basic
attitude control laws. While the full study of feedback control is beyond the scope
of this class, it is a vital component in the attitude control toolbox, and anyone
wishing to work in this area must study booth classical feedback control, as well as
modern and optimal control (the latter is also required for trajectory planning and
optimization). Finally, it is equally important to be able to measure a spacecraft’s
attitude as to control it, and, in fact, you cannot control attitude until you have
a way of estimating it. Therefore, we will also take a quick look at some basic
attitude estimation algorithms, as well as the hardware typically used for attitude
determination.
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Attitude Alphabet Soup

ACS Attitude Control System
ADCS Attitude Determination and Control System

ADCNS Attitude Determination, Control, and Navigation System
GNC Guidance, Navigation, and Control

Attitude Perturbations

• Atmospheric Drag - Typically dominant for Low Earth Orbits
• Solar Radiation Pressure - Only significant perturbation when operating

away from planetary masses
• Magnetic Field Torque - Typically only significant below GEO
• Gravity Gradient - Typically only significant at LEO/MEO

2



Attitude Control Technologies

Passive Active

Spin Gravity
Gradient

Aerodynamic
Drag

Magnetic
Field

Magnetorquers

Thrusters Wheels

Reaction
Wheels

Control
Moment
Gyros

Magnetorquers

N

S

Magnetic
Control
Torque

Geomagnetic
Field
Vector

M = −B×N

Magnetic Dipole Moment
due to Magnetorquer
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International Geomagnetic Reference Field (IGRF13)

From: http://www.geomag.bgs.ac.uk/research/modelling/IGRF.html.
See also: https://www.ngdc.noaa.gov/IAGA/vmod/igrf.html

Magnetorquers and Reaction Wheels
526 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 23, NO. 2, MARCH 2015

for the attitude dynamics that exactly follows the response
induced by the prescribed attitude stabilizer. This paper’s
contributions are summarized as follows.

First, our contribution is to provide a rigorous interpretation
(inspired by the formalization of [23], where only magnetor-
quers are considered) of the architecture behind the cross-
product control law. The treatment helps formalizing this
approach by highlighting its hidden assumptions. Second, we
propose a revisited version of the cross-product control law,
which is shown to be valid in a wider range of practical
situations. In particular, we show a peculiar feedback structure
arising from this controller, which can be converted (using
the proposed revisited law) into a more convenient cascaded
form consisting of an upper subsystem whose state is the
total angular momentum and a lower subsystem whose state
is the satellite attitude (position and speed). We discuss and
show by simulations that the above cascaded structure is not
desirable due to the fact that the regulation of the angular
momentum of the wheels perturbs the attitude control system.
Third, our main contribution is then given and consists in a
novel control scheme that is capable of reversing the cascaded
scheme by way of static input allocation. Input allocation
techniques address the problem of suitably assigning the low
level actuators input, based on a higher level control effort
requested by the control system [18]. Their use is especially
suited in the presence of redundant plant inputs from the point
of view of the main control task. Then, the allocation can be
performed in such a way to optimize a cost function related
to a lower priority secondary task (see [31] for an interesting
collection of results in the aerospace, marine, and terrestrial
vehicles). Within the attitude control setting described above,
it appears natural to regard the primary goal as the attitude
stabilization goal and the secondary goal as the reaction
wheels desaturation goal. To this end, the employed allocation
scheme may be selected as a static one (this is the structure
of most of the existing techniques, well surveyed in [18])
or a dynamic one (following, e.g., the paradigm in [39] or
the more recent developments in [11] and [30]). Note that
the use of an allocation strategy for the engineering problem
described here has been also proposed in [10]. However,
the suggested distribution of the total control effort does not
address the dynamics of the angular momentum of the wheels,
which is instead the goal of the allocation scheme proposed in
this paper.

In a nutshell, the allocation-based control scheme proposed
here completely decouples the attitude stabilization task from
the angular momentum of the wheels and is therefore capable
of stabilizing the attitude dynamics following a prescribed law
that can be designed disregarding the momentum dumping
task. This goal is achieved by the cascaded structure of the new
scheme where the upper subsystem, consisting in the (undis-
turbed) attitude stabilization loop, drives the lower subsystem,
which performs the (lower priority) task of desaturating the
reaction wheels. A preliminary version of this paper was
presented in [35]. Here, as compared with [35], we treat a
more general scenario with nonperiodic local geomagnetic
fields, we provide several statements and proofs of the stability
properties of the proposed schemes, and we provide revised

Fig. 1. Inertially pointing satellite orbiting around the Earth and equipped
with reaction wheels and magnetorquers.

and improved simulation tests based on realistic data from
satellite missions.

This paper is structured as follows. In Section II, we intro-
duce the satellite model, some preliminary facts about global
attitude stabilization, and formalize our problem statement.
In Section III, we explain and interpret the cross-product
control law, provide a revisited version of it, and establish
its formal properties. In Section IV, we propose the new
control strategy based on static allocation. In Section V, we
provide comparative simulation results for the two controllers
introduced in Sections III and IV. Finally, in Section VI, we
give some concluding remarks.

Notation : Given any vectors v,w ∈ R3, the matrix v× ∈
R3×3 is a skew-symmetric matrix defined in such a way that
the vector product between v and w satisfies v × w = v×w

v× =
⎡
⎣

0 −vz vy
vz 0 −vx

−vy vx 0

⎤
⎦ for v =

[
vx vy vz

]T
.

The identity quaternion is denoted by q ◦ = [0 0 0 1]T . The
set R≥0 denotes the non-negative reals while Z≥0 denotes the
non-negative integers. The identity matrix of size n × n is
written 1n . Depending on its argument, the bars | · | refer to
the absolute value of a scalar, the Euclidean norm of a vector,
or the induced l2/spectral-norm of a matrix. The superscript
[I ] indicates that the related vector is expressed in the inertial
frame. Otherwise, the body-fixed frame is considered.

II. PRELIMINARIES AND PROBLEM STATEMENT

Fig. 1 represents the scenario addressed in this paper,
namely an inertially pointing satellite equipped with two
actuator sets:

1) the reaction wheels that are capable of exerting a triple
of torques spanning all the degrees of freedom of the
attitude dynamics but suffer from the drawback of pos-
sibly experiencing a gradual increase of their spinning
speed, due to their inability to alter the total momentum
of the satellite affected by external disturbances;

2) the magnetorquers that are capable of exerting a rank
deficient torque on two out of the three degrees of
freedom of the attitude dynamics due to the fact that they

Trégouët et al. (2015) Fig. 1
Magnetorquers are often used to do momentum offloading from reaction wheels. However, this is typically

only feasible for low and mid-Earth orbits.
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Reaction Control Systems

RCS works on the basis of force couples: firing thrusters, in pairs, in opposite
directions, will produce a pure torque. In this example, the thrusters are all
equidistant from the COM in each direction, so firing any pair would produce a
pure rotation about a single axis, with no accompanying translation.

Gemini RCS

Credit: Gemini/NASA
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Space Shuttle Propulsion and Attitude Control

From http://history.nasa.gov/rogersrep/v1p46.jpg

Gyrostats

Carrier/Platform (B) +
Rotors/Gyros/Wheels (Wi) =
Gyrostat

m = mB +mW

rG/O =
mB

m
rGB/O +

mW

m
rGW /O

mBrGB/G = −mW rGW /G

IG = IBG + IWG = IBGB
+mB

[
(rG/GB

· rG/GB
)U− (rG/GB

⊗ rG/GB
)
]

+

IWGW
+mW

[
(rG/GW

· rG/GW
)U− (rG/GW

⊗ rG/GW
)
]

NB: Here, IG is the gyrostat total MOI about the net center of mass. IBG , IWG are
the MOIs of the carrier and wheel about the net COM, while IBGB

, IWGW
are their

MOIs about their own COMs. 6



Gyrostat Kinematics

I
htot
G =

I
hB
G +

I
hW
G

=
I
hB
G +

I
hW
GW /G +

I
hW
GW

=
︷ ︸︸ ︷
IBG · IωB+

︷ ︸︸ ︷
mW rGW /G × IvGW /G +

︷ ︸︸ ︷
IWGW
· IωA

NB: This is not a typo

I
htot
G = IG · IωB + IWGW

· BωA

Gyrostat Dynamics
I d

dt

(
IG · IωB + Isωsâ3

)
= M

(ext)
G

IG ·
B d

dt

(IωB
)

+ Isωs

B d

dt
(â3)

︸ ︷︷ ︸
+IωB × IG · IωB + Isωs

IωB × â3 = M
(ext)
G

Zero for â3 fixed in B

Torque on the wheel about â3 due to the carrier:

h3 ,
I
hW
GW
· â3 = Is

(IωB · â3

)
+ Isωs

d

dt
h3 = MW /B · â3

7



Kelvin’s Gyrostat

If Isωs is constant: Is
B d

dt
IωB · â3 = MW /B · â3

IG ·
B d

dt
IωB + IωB × IG · IωB + Isωs

IωB × â3 = MG

Corresponds to constant h3!

Multiple Wheels

I
htot
G = IG · IωB +

N∑

i=1

Isi ωsi︸︷︷︸ â3i︸︷︷︸

Controlled by wheels Controlled by CMGs

8



Dynamic Balance (the setup)
We can use ACS components to cancel the effects of non-zero products of
inertia to achieve equilibrium orientation conditions.
• Consider a gyrostat with N wheels, and define a carrier-fixed frame
B =

(
G, b̂1, b̂2, b̂3

)
for total center of mass G

Body-fixed frame of wheel Wi

• Total angular momentum contribution of the wheels: h ,
N∑

i=1

IWi
GWi
· BωAi

Center of mass of wheel Wi

• Total spacecraft moment of inertia matrix: [IG]B =



Is I12 I13
I12 It 0
I13 0 It



B

• Given: IωB = ωsb̂1, Want:
I d

dt
I
htot
G =

B d

dt
h =

B d

dt
IωB = 0

Dynamic Balance (the solution)

Want:
I d

dt
I
htot
G =

B d

dt
h =

B d

dt
IωB = 0

Ihtot
G = IG·IωB+h =⇒

I d

dt
Ihtot

G = IG·
B d

dt
IωB+IωB×IG·IωB+

B d

dt
h+IωB×h

In equilibrium condition: IωB × IG · IωB + IωB × h = 0

[h]B ,



h1
h2
h3



B

⇒




0 0 0
0 0 −ωs

0 ωs 0



B



Is I12 I13
I12 It 0
I13 0 It



B



ωs

0
0



B

+




0 0 0
0 0 −ωs

0 ωs 0



B



h1
h2
h3



B

= 0




0
−I13ω2

s

I12ω
2
s



B

+




0
−h3ωs

h2ωs



B

= 0 =⇒
h1 = Arbitrary Constant
h2 = −I12ωs

h3 = −I13ωs
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Nutation Dampers
[
ItotG

]
B =



IT 0 0
0 IS 0
0 0 IT



B

[
Iwheel
GW

]
B =



I1 0 0
0 I1 0
0 0 IW



B

Recall:

I
htot
G = IG · IωB + IWGW

· BωA

= ItotG · IωB + IWΩb̂3

Frame attached to wheel

Nutation dampers are mechanical devices capable of dissipating energy used to
damp out disturbances the perturb a spinning spacecraft off of its symmetry axis.
The version shown here consists of a small wheel mounted orthogonally to the spin
axis, which has a friction torque of magnitude −DΩ for a spin rate Ω.

Nutation Damper Equations of Motion

ω̇1 = ω2

((
IS
IT
− 1

)
ω3 − Ω

IW
IT

)

ω̇2 = Ω
IW
IS
ω1

ω̇3 =

[
Ω
D

IT
− ω1ω2

(
IS
IT
− 1

)](
1− IW

IT

)−1

Ω̇ =

[
−Ω

D

IT

IT
IW

+ ω1ω2

(
IS
IT
− 1

)](
1− IW

IT

)−1

Note that all of the equations are functions of three ratios:
IS
IT
,
IW
IT
, and

D

IT
.
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Nutation Dampers in Action

0 50 100 150 200 250 300 350 400
2

2.002

2.004

0 50 100 150 200 250 300 350 400
-0.2

0

0.2

(r
ad

)

0 50 100 150 200 250 300 350 400
Time (s)

-0.02

0

0.02

An initial disturbance torque (about b̂1) causes the nutation damper to spin up. It
then spins down again due to the viscous damping. Note that the spin rate about
b̂2 does not return to its original value—the added angular momentum results in a
slightly increased steady state spin about the symmetry axis.

Nutation Dampers in Action (Is < It)

0 50 100 150 200 250 300 350 400

1.6

1.8

2

0 50 100 150 200 250 300 350 400
-1

0

1

(r
ad

)

0 50 100 150 200 250 300 350 400
Time (s)

-0.05

0

0.05

A nutation damper on a minor axis spinner has the exact opposite effect—any
disturbance gets magnified and the damper spin rate continuously increases instead
of damping out.
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Recall Torque Free Motion
I1ω̇1 + (I3 − I2)ω2ω3 = 0

I2ω̇2 + (I1 − I3)ω1ω3 = 0

I3ω̇3 + (I2 − I1)ω1ω2 = 0

[IG]B =



It 0 0
0 It 0
0 0 Is



B

IωB = ω1b̂1 + ω2b̂2 + ω3b̂3

ω3 ≡ ωs � ω1, ω2

ω̈1 + ω2
nω1 = 0

ω̈2 + ω2
nω2 = 0

ω2
n , (I3 − I2)(I3 − I1)ω2

3

I1I2
=

(
Is − It
It

ωs

)2

ωn is called the nutation frequency

Nutation Angle and Coning

Assuming
ω1(t = 0) = ω0

ω2(t = 0) = 0
=⇒ ω̇1 = −ωnω2

ω̇2 = ωnω1

}
ω1 = ω0 cos(ωnt)
ω2 = ω0 sin(ωnt)

[IhG

]
B = [IG]B

[IωB
]
B =



Itω0 cos(ωnt)
Itω0 sin(ωnt)

Isωs



B

cos θ ,
IhG

‖IhG‖
· b̂3 =

Isωs√
I2t ω

2
0 + I2sω

2
s
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Recall the Body-2 3-2-3 (ψ, θ, φ)IB rotation

BCI = BCCCCAACI =


− sin (φ) sin (ψ) + cos (φ) cos (ψ) cos (θ) sin (φ) cos (ψ) + sin (ψ) cos (φ) cos (θ) − sin (θ) cos (φ)
− sin (φ) cos (ψ) cos (θ)− sin (ψ) cos (φ) − sin (φ) sin (ψ) cos (θ) + cos (φ) cos (ψ) sin (φ) sin (θ)

sin (θ) cos (ψ) sin (ψ) sin (θ) cos (θ)




Torque Free 3-2-3 rotation Kinematics

IωB = ψ̇â3 + θ̇ĉ2 + φ̇b̂3

= ω1b̂1 + ω2b̂2 + ω3b̂3

ω1 = θ̇ sinφ− ψ̇ sin θ cosφ = ω0 cos(ωnt)
}

ω2 = θ̇ cosφ+ ψ̇ sin θ sinφ = ω0 sin(ωnt)

ω3 = φ̇+ ψ̇ cos θ = ωs

ω2
1 + ω2

2 = ψ̇2 sin2 θ = ω2
0 =⇒ ψ̇ =

ω0

sin θ

13



Torque-Free 3-2-3 rotation Kinematics Continued
[IhG

]
B = [hGê3]B = hG



− sin θ cosφ
sin θ sinφ

cos θ︸︷︷︸




B
(1)

= [IG]B
[IωB

]
B =




−Itψ̇ sin θ cosφ

Itψ̇ sin θ sinφ

Is

(
φ̇+ ψ̇ cos θ

)

︸ ︷︷ ︸



B

(2)

}

}
ψ̇ =

hG
It

(1) ≡ (2) =⇒ hG cos θ = Is

(
φ̇+ ψ̇ cos θ

)

ωs = ω3 = φ̇+ ψ̇ cos θ



 φ̇ =

It − Is
It

ωs

Body and Space ConesMULTIPARTICLE AND RIGID-BODY DYNAMICS IN THREE DIMENSIONS 519

G G

(a) (b)

Body cone Body cone

Space cone

Space cone

I I

B

Bθ θ
e3 e3

b3

b3

Ih G
Ih G

IωB
IωB

Figure 11.21 Space and body cones for the precession of a rigid body. (a) Prolate case IO > J .
(b) Oblate case IO < J .

(a) (b)

Figure 11.22 Example of a commercially available ship-stabilizing gyroscope for private
yachts. (a) The gyroscope and gimbal mounted to the hull. (b) Cutaway view of the rotor.
Images courtesy of Seakeeper, Inc.

large ships because of the large torques imposed on the superstructure, such a system
is available for small yachts (see Figure 11.22). It is an excellent example of using a
gyrostat to stabilize a vehicle. In this tutorial, we explore how it works.

Figure 11.23 shows the front view of a ship in inertial frame I = (O, e1, e2, e3),
whose orientation is described by the single Euler angle φ about the e1 axis. Attached
to the hull of the ship is a spinning disk (the rotor) that is allowed to pitch forward
and backward about pivots attached to the rotor and the ship. The angle that the plane
of the rotor makes with the hull is given by coordinate ϵ.

We consider the simple situation where the ship is traveling straight ahead and
rolling back and forth because of wave action. We solve this problem by separating
the ship and the rotor and including constraint torques at the pivot. Figure 11.24 shows
the two body frames, frame B = (G, b1, b2, b3) attached to the ship at its center of

It > Is It < Is

Kasdin & Paley (2009) Fig. 11.21
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An Arbitrary Rigid Body in Orbit

First Order Gravitational Effects
FG = −µ

∫

B

r dm/O

‖r dm/O‖3
dm

rdm/O = rdm/G+rG/O

r , ‖r dm/G‖
rG , ‖rG/O‖

}
r

rG
� 1

ms ,
∫

B

dm

FG ≈ −µ
ms

r3G
rG/O

MG = −µ
∫

B

rdm/G ×
r dm/O

‖r dm/O‖3
dm

≈ −µ 3

r5G
rG/O ×

∫

B

r dm/G ⊗ r dm/G dm · rG/O

MG ≈ µ
3

r3G
ên × IG · ên

15



Some Helpful Auxiliary Frames
A = (G, êt, ên, êz)

B = (G, b̂1, b̂2, b̂3)

ên ≡ −r̂G/O

[IG]B =



I1 0 0
0 I2 0
0 0 I3



B

Torque on Spacecraft Due to Planet

MG ≈ µ
3

r3G
ên × IG · ên

[MG]B =
3µ

r3G
[ên×]B [IG]B [ên]B︸︷︷︸

BCA




0
1
0



A

[MG]B =
3µ

r3G



BCA22

BCA32 (−I2 + I3)
BCA12

BCA32 (I1 − I3)
BCA12

BCA22 (−I1 + I2)



B
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Back to Euler’s Equations
[IG]Bp

[B d

dt
IωB

]

Bp
+
[IωB×

]
Bp [IG]Bp

[IωB
]
Bp = [MG]Bp =⇒



I1 0 0
0 I2 0
0 0 I3



B



ω̇1

ω̇2

ω̇3



B

+




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



B



I1 0 0
0 I2 0
0 0 I3



B



ω1

ω2

ω3



B

= 3
µ

r3G



BCA

22
BCA

32 (−I2 + I3)
BCA

12
BCA

32 (I1 − I3)
BCA

12
BCA

22 (−I1 + I2)



B

I1ω̇1 = (I2 − I3)
(
ω2ω3 −

3µ

r3G

BCA22
BCA32

)

I2ω̇2 = (I3 − I1)
(
ω1ω3 −

3µ

r3G

BCA12
BCA32

)

I3ω̇3 = (I1 − I2)
(
ω1ω2 −

3µ

r3G

BCA12
BCA22

)

We now have equations of motion for the components of IωB, but they are functions
of components of the DCM BCA, which themselves are changing in time. So, in
order to numerically integrate this system, we have to augment our state with at
least some subset of the elements of BCA.

Circular Orbit Case

I1ω̇1 = (I2 − I3)
(
ω2ω3 − 3n2BCA22

BCA32
)

I2ω̇2 = (I3 − I1)
(
ω1ω3 − 3n2BCA12

BCA32
)

I3ω̇3 = (I1 − I2)
(
ω1ω2 − 3n2BCA12

BCA22
)

GωA = nĥ =⇒
[AωB

]
B =



ω1

ω2

ω3



B

− BCA



0
0
n



A

BĊA = −
[AωB×

]
B
BCA

BĊAi2 =



−BCA22

(
nBCA33 − ω3

)
+ BCA32

(
nBCA23 − ω2

)
BCA12

(
nBCA33 − ω3

)
− BCA32

(
nBCA13 − ω1

)

−BCA12
(
nBCA23 − ω2

)
+ BCA22

(
nBCA13 − ω1

)
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Circular Orbit Case using Euler Parameters

• At this point, we need to keep track of two full columns of BCA—six
scalar elements, which include many redundancies
• Numerical integrators will often add noise to your state which will

violate the inherent constraints between DCM components, leading to
much larger errors in the overall integration
• Instead, we can use Euler Parameters/Quaternions and only carry four

elements with only one constraint between them
• Recall that BCA = ΞT (q)Ψ(q)

• Similarly
B d

dt
q =

1

2
q�

[AωB
0

]
=

1

2
Ξ(q)AωB

• We can replace all instances of DCM components in our attitude
equations of motion with quaternion components!

Gravity-Gradient Stabilization

UniCubeSat-GG (2012)
From: https://eoportal.org/web/eoportal/satellite-

missions/content/-/article/unicubesat

Transit (1963)
From:

https://www.gpsworld.com/origins-
gps-part-1/
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Attitude Control Maneuvers

External
Torques/Wheels Thrusters Magnetorquers

Regulation Tracking 3-axis
Control

Detumbling Momentum
Dumping

Regulation vs. Tracking

While often synonymous in classical control, for spacecraft attitude control, regula-
tion typically refers to maintaining a specific orientation (rejecting disturbances) and
tracking typically means following a prescribed orientation trajectory. Regulation to
a desired inertial orientation can often be accomplished with classical feedback con-
trol techniques, while more complex orientation control is often implemented via
optimal and modern control techniques.
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Regulation

Dynamics





IG ·
B d

dt
IωB + IωB ×

(
IG · IωB

)
= MG

BĊI = −
[IωB×

]
B
BCI

∆C︸︷︷︸ ,
BCI Cd︸︷︷︸

−1 =⇒ d

dt
∆C = BĊIC−1d

Error DCM Desired DCM

Positive Constants

Control Law: MG = −
︷︸︸︷
kp ∆ε︸︷︷︸ −

︷︸︸︷
kd

IωB

Vector part of quaternion representiation of ∆C

Regulation Continued

Control Law: MG = −kp∆ε− kdIωB
⇓

IG ·
B d

dt
IωB =MG − IωB ×

(
IG · IωB

)

⇒
B d

dt
IωB = I−1G ·

[
−kp∆ε− kdIωB − IωB ×

(
IG · IωB

)]

Need: ∆ε · IωB = 0
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Gyrostat Control
I
htot
G = IG · IωB + IWGW

· BωA
︸ ︷︷ ︸

, h

IG ·
B d

dt
IωB = −IωB ×

(
IG · IωB + h

)
︸ ︷︷ ︸

Conserved

−
B d

dt
h

︸ ︷︷ ︸
Wheel Torque

Wheel input torque
B d

dt
h = −IωB × h−

︷︸︸︷
MW

IG ·
B d

dt
IωB = −IωB ×

(
IG · IωB

)
+ MW

MW = −kp∆ε− kdIωB

Quaternion Feedback
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large angle motion, the stability can be easily studied using
phase-plane plot, as discussed before. However, for three-axis
large angle motion, it is not obvious whether such control
laws can provide global closed-loop stability or not.

The Liapunov second method (also known as the Liapunov
direct method) to be used in this paper may be the most
general method for the determination of stability of nonlinear
systems. Using the Liapunov second method, we can deter-
mine the stability of a system without solving the state
equations. Only the inertially fixed commanded attitude
quaternion is considered here.

First, consider control law 1 . After substituting Eqs. (4) and
(7) into the Euler equations, multiply each equation by co;, co2,
and u3, respectively. After multiplying each of Eqs. (3) by
TcK(Qj - 2, ), TCK(Q2 - Q2), TCK(Q3 -Q3), and
TK(Q-Q), respectively, add these equations to the
previously modified Euler equations. We can then define

Kt<*}<0.

A positive definite Liapunov function, V, then can be found
as

(10)

Thus, the closed-loop system with control law 1 is asymp-
totically stable in the large, since V< 0

lim V(x)=0  and lim V(x)=oo
/—oo llxll — oo

where x is the state vector. The stable equilibrium point with
this control law is: Uj=u2 = u3=0 and Q/ = Q/ (/= 1,2,3,4).
Thus, this control law reorients the spacecraft to the desired
attitude from an arbitrary initial orientation. Similarly, for
control law 2, substitute Eqs. (5) and (7) into the Euler
equations, then multiply each equation by 2co7, 2u2> and 2co5,
respectively. Multiply each of Eqs. (3) by -TcK(Qi +
2Qj/q3

4), /= 1,2,3,4. Add these equations to the previously
modified Euler equations to define

V=2 Qi)+2TcK(l-2q4-3)q4

(11)

provides a shorter path and least action to reach the desired
equilibrium point.

For small angles, the three control laws provide the same
linear performance. However, for large angles, they provide
significantly different performances. The q4 becomes zero as

the Euler rotation angle </> becomes 180 deg. Thus, the second
control law can result in a nearly infinite control signal for
certain initial orientations. The first control law, however,
never results in such a situation since the magnitude of qf
(/= 1,2,3) is never greater than one. For an initial orientation
with <5k<0, however, the second control law provides more
efficient reorientation maneuvers, as discussed previously.
The third control law also provides an efficient reorientation
maneuver for an arbitrary initial orientation without the
possibility of an infinite control signal.

In the previous stability analysis, the position gain has been
restricted to be the same in each axis. Such a restriction
resulted in an easy determination of the Liapunov function. It
does not mean that the control laws jdiscussed previously
become unstable without such a constraint. Asymptotic
stability in the large has not yet been proven when a different
position gain is used in each axis. Although nothing can be
concluded about global stability from the stability of
linearized system, it is known that when a linearized system is
asymptotically stable, the nonlinear system from which it is
derived is also asymptotically stable.18

Consider control law 1 with different position gain in each
axis. When the closed-loop system is linearized near the

300.0 __600.0
TIME (SECONDS)

Fig. 5 Digital simulation results (quaternions).

A positive definite Liapunov function,  V, then can be found
as

(since 10,1 <7) (12)

Thus, the closed-loop system with control law 2 is also
asymptotically stable in the large, since F<0

lim V(x)=0 and lim V(x)=oo

Note that there exist two asymptotically stable equilibrium
points with the second control law] Qf = ± Qit i= 1,2,3,4. The
equilibrium point with Q/=-Q/ is physically the same
orientation with Q/ = Q/. For an initial error of q4<Q,  the
second control law becomes positive position feedback; it
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large angle motion, the stability can be easily studied using
phase-plane plot, as discussed before. However, for three-axis
large angle motion, it is not obvious whether such control
laws can provide global closed-loop stability or not.

The Liapunov second method (also known as the Liapunov
direct method) to be used in this paper may be the most
general method for the determination of stability of nonlinear
systems. Using the Liapunov second method, we can deter-
mine the stability of a system without solving the state
equations. Only the inertially fixed commanded attitude
quaternion is considered here.

First, consider control law 1 . After substituting Eqs. (4) and
(7) into the Euler equations, multiply each equation by co;, co2,
and u3, respectively. After multiplying each of Eqs. (3) by
TcK(Qj - 2, ), TCK(Q2 - Q2), TCK(Q3 -Q3), and
TK(Q-Q), respectively, add these equations to the
previously modified Euler equations. We can then define

Kt<*}<0.

A positive definite Liapunov function, V, then can be found
as

(10)

Thus, the closed-loop system with control law 1 is asymp-
totically stable in the large, since V< 0

lim V(x)=0  and lim V(x)=oo
/—oo llxll — oo

where x is the state vector. The stable equilibrium point with
this control law is: Uj=u2 = u3=0 and Q/ = Q/ (/= 1,2,3,4).
Thus, this control law reorients the spacecraft to the desired
attitude from an arbitrary initial orientation. Similarly, for
control law 2, substitute Eqs. (5) and (7) into the Euler
equations, then multiply each equation by 2co7, 2u2> and 2co5,
respectively. Multiply each of Eqs. (3) by -TcK(Qi +
2Qj/q3

4), /= 1,2,3,4. Add these equations to the previously
modified Euler equations to define

V=2 Qi)+2TcK(l-2q4-3)q4

(11)

provides a shorter path and least action to reach the desired
equilibrium point.

For small angles, the three control laws provide the same
linear performance. However, for large angles, they provide
significantly different performances. The q4 becomes zero as

the Euler rotation angle </> becomes 180 deg. Thus, the second
control law can result in a nearly infinite control signal for
certain initial orientations. The first control law, however,
never results in such a situation since the magnitude of qf
(/= 1,2,3) is never greater than one. For an initial orientation
with <5k<0, however, the second control law provides more
efficient reorientation maneuvers, as discussed previously.
The third control law also provides an efficient reorientation
maneuver for an arbitrary initial orientation without the
possibility of an infinite control signal.

In the previous stability analysis, the position gain has been
restricted to be the same in each axis. Such a restriction
resulted in an easy determination of the Liapunov function. It
does not mean that the control laws jdiscussed previously
become unstable without such a constraint. Asymptotic
stability in the large has not yet been proven when a different
position gain is used in each axis. Although nothing can be
concluded about global stability from the stability of
linearized system, it is known that when a linearized system is
asymptotically stable, the nonlinear system from which it is
derived is also asymptotically stable.18

Consider control law 1 with different position gain in each
axis. When the closed-loop system is linearized near the

300.0 __600.0
TIME (SECONDS)

Fig. 5 Digital simulation results (quaternions).

A positive definite Liapunov function,  V, then can be found
as

(since 10,1 <7) (12)

Thus, the closed-loop system with control law 2 is also
asymptotically stable in the large, since F<0

lim V(x)=0 and lim V(x)=oo

Note that there exist two asymptotically stable equilibrium
points with the second control law] Qf = ± Qit i= 1,2,3,4. The
equilibrium point with Q/=-Q/ is physically the same
orientation with Q/ = Q/. For an initial error of q4<Q, the
second control law becomes positive position feedback; it
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Detumbling with Magnetorquers
Magnetic Control Torque Geomagnetic Field Vector

Recall : M = −B×N

Magnetic Dipole Moment due to Magnetorquer

Control Law: N =
k

‖B‖
IωB × B

‖B‖ for positive gain k

M =
k

‖B‖

(
IωB × B

‖B‖

)
= k

(
IωB × B̂

)
× B̂ ⇒ Control torque is ⊥ B̂

For magnetorquer i (of N) producing dipole min̂i, can write a bang-bang
detumbling control:

mi = −max(mi) sgn

(
n̂i ·

B d

dt
B

)

Momentum Dumping

Wheel angular momentum

Control Law: N =
k

‖B‖h × B

‖B‖ for positive gain k

M =
k

‖B‖

(
h× B

‖B‖

)
= k

(
h× B̂

)
× B̂ ⇒ Control torque is ⊥ B̂
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Attitude Sensing

Absolute Relative

Star
Trackers

Sun/Earth
Sensors

Horizon
Sensors

Magnetometers GNSS

Gyros
Inertial

Measurement
Units

Rate
Rate-

Integrating

Attitude Sensors

Sensor Raw Accuracy
Magnetometer ±0.5◦ − 5◦

Sun Sensor (coarse) ±1◦ − 5◦

Sun Sensor (spinning slit) ±0.1◦ − 0.5◦

Sun Sensor (fine) ±0.01◦ − 0.05◦

Star Tracker ±0.1− 5 arcsec/star
Gyro ±0.001− 1◦/hour
MEMS Gyro ±0.01− 1◦/hour
Ring Laser Gyro ±0.001− 0.1◦/hour
Fiber Optic Gyro ±0.01 arcsec/hour− 0.1◦/hour
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Attitude Control Scenarios

Required
Pointing
Accuracy

ACS Approach ADCS Hardware

> 5◦
Gravity Gradient
Stabilization Possible

No sensing needs; boom and
associated hardware

1− 5◦
Spin Stabilization
Possible

Sun/Earth/Horizon sensors;
magnetorquer/magnetometer
possible

0.1− 1◦
3-Axis Control likely
needed

Star Trackers/Gyros; Reaction
wheels/RCS/Magnetorquers

< 0.1◦
3-Axis Control
Required

Precise Star Trackers/Gyros;
Reaction wheels/RCS

Image Geometry

Pupil Plane

Image Plane
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Star Tracker Software

• Star trackers rely heavily on post-processing to identify and match stars
to catalog data
• Many different algorithms and implementations exist (most proprietary)
• More recently, many university projects have been open sourcing their

work. For example: http://openstartracker.org/

Tri-Axial Attitude Determination (TRIAD)
• Given: [r̂1]B , [r̂2]B , [r̂1]I , [r̂2]I , Find:

ICB

• Typically assume that one measurement ([r̂1]B) is more precise than the
other
• For 3 mutually orthogonal unit vectors v̂1 ⊥ v̂2 ⊥ v̂3:[

v̂1 v̂2 v̂3

]
B = BCI

[
v̂1 v̂2 v̂3

]
I

BCI =
[
v̂1 v̂2 v̂3

]
B
([

v̂1 v̂2 v̂3

]
I
)−1

︸ ︷︷ ︸([
v̂1 v̂2 v̂3

]
I
)T

• For both frames, the mutually orthogonal unit vectors are formed as:

v̂1 = r̂1

v̂2 = (r̂1 × r̂2) (‖r̂1 × r̂2‖)−1

v̂3 = (r̂1 × (r̂1 × r̂2)) (‖r̂1 × (r̂1 × r̂2) ‖)−1

25



Wahba’s Problem
• Find the orthogonal matrix A with determinant 1 that minimizes the

cost function:

J(A) =
1

2

N∑

i=1

ai‖bi − Ari‖2 where ai ≥ 0

• For the attitude determination problem, A = BCI , bi = [ri]B, and
ri = [ri]I :

J(BCI) =
1

2

N∑

i=1

ai
∥∥[ri]B − BCI [ri]I

∥∥2

=
N∑

i=1

ai

︸ ︷︷ ︸
, λ0

−Tr
(BCIBT

)
where B ,

N∑

i=1

ai [ri]B [ri]
T
I

︸ ︷︷ ︸
Attitude Profile Matrix

Whaba’s problem is a generalization of TRIAD, allowing for measurement of
arbitrary numbers of unit vectors, and the incorporation of knowledge of the
precision of different measurements.

Singular Value Decomposition and Wahba’s Problem

B = U



s1 0 0
0 s2 0
0 0 s3




︸ ︷︷ ︸
, Σ

V T =




1 0 0
0 1 0
0 0 |U |




︸ ︷︷ ︸
, U+



s1 0 0
0 s2 0
0 0 s3|U ||V |




︸ ︷︷ ︸
, Σ′




1 0 0
0 1 0
0 0 |V |



T

︸ ︷︷ ︸
, V T

+

Define a rotation matrix:
W , UT

+
BCIV+ = I cos θ − sin θ [n̂×]I + (1− cos θ) [n̂]I [n̂]TI

Tr
(BCIBT

)
= Tr(WΣ′) = [n̂]TI Σ′ [n̂]I + cos θ

(
Tr(Σ′)− [n̂]TI Σ′ [n̂]I

)

This is maximized for θ = 0 (W = I) and therefore:

BCI ≈ U+V
T
+ = U




1 0 0
0 1 0
0 0 |U ||V |


V T
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The Three-Body Problem and N-Body Problem
As soon as any additional body is added to the two-body problem, we lose the ability to write down a

fully analytical solution. We have previously dealt with this by treating additional bodies as perturbers

to a two-body system, slowly modifying the Keplerian elements of the two-body orbit. There are cases,

however (e.g., when operating near the boundaries of spheres of influence) where this model ceases being

useful, as the two-body elements evolve rapidly and significantly over the course of a single orbit. Here, we

must explicitly deal with (at least) three co-orbiting bodies, which drives us towards numerical integration

in order to accurately predict how an orbit evolves. However, in the case of three bodies, if we make certain

additional assumptions, we can still find a conserved quantity that allows us to predict some of the system’s

behavior (although not the exact trajectories). Study of the three-body problem is incredibly important in

modern astrodynamics, as three-body orbital design allows us to create incredibly fuel-efficient trajectories

in cases where our spacecraft are in close proximity to multiple bodies (for example, the moon systems of

Jupiter and Saturn). Three-body analysis also opens the possibility of creating stable, periodic orbits about

empty points in space! In the case of an N-body system, we still have conservation of energy and momentum

(assuming no forces other than gravity), but to track the exact trajectory of any one particle in the system,

we are forced to rely on numerical integration.
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The Circular Restricted Three-Body Problem (CR3BP)
• m1,m2 � mp

• m1 and m2 in mutual circular orbits,
unaffected by mp

r1/O = −µ?êr
r2/O = (1− µ?)êr

NB: Here, µ? is not the gravitational parameter—
it’s the mass of the smaller major body

Canonical units for the CR3BP are defined such that G = 1
1 MU = m1 +m2, 1 DU = ‖r1/2‖, and 2π TU = Tp,1,2 (the orbital period of
m1 and m2).

CR3BP Dynamics
FP = −Gm1mP

‖rP/1‖3
rP/1 −

Gm2mP

‖rP/2‖3
rP/2

IωB = nê3 = ê3

BaP/O + 2ê3 × BvP/O + ê3 ×
(
ê3 × rP/O

)
= −G

(
m1

‖rP/1‖3
rP/1 +

m2

‖rP/2‖3
rP/2

)

[
rP/O

]
B =



x
y
z



B

FP = −∇V where V = −
(
1− µ?
r1

+
µ?

r2

)

r1 , ‖rP/1‖ =
√
(x+ µ?)2 + y2 + z2

r2 , ‖rP/2‖ =
√
(x− (1− µ?))2 + y2 + z2

ẍ− 2ẏ − x =− ∂V

∂x

ÿ + 2ẋ− y =− ∂V

∂y

z̈ =− ∂V

∂z

Remember that, just as in the Clohessy-Wiltshire equations, x, y, z are rotating frame
coordinates.
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A New Potential

U , −1

2
(x2 + y2)−

(
1− µ?
r1

+
µ?

r2

)

ẍ− 2ẏ − x = −∂V
∂x

ÿ + 2ẋ− y = −∂V
∂y

z̈ = −∂V
∂z





=⇒
ẍ =− ∂U

∂x
+ 2ẏ

ÿ =− ∂U

∂y
− 2ẋ

z̈ =− ∂U

∂z

NB: U is not a true potential, as it incorporates both elements related to gravitational
forces, as well as the fictitious forces that arise whenever we do dynamics in rotating
frame. It is incredibly useful, however, for simplifying the CR3BP equations.

The Jacobi Constant
1

2

(BvP/O · BvP/O
)
+ U(x, y, z) = C , Jacobi Constant

BvP/O = IvP/O − ê3 × rP/O

1

2

(IvP/O · IvP/O
)
−
(
1− µ?
r1

+
µ?

r2

)

︸ ︷︷ ︸
KE+PE

− IvP/O ·
(
ê3 × rP/O

)
︸ ︷︷ ︸

ê3 · (rP/O × IvP/O) = ê3 · IhP/O

= C

E − h cos(I) =C

Total Energy
of Mass P

Angular Momentum
of Mass P

Angle between orbit of
mass P and ê1− ê2 plane

Set by initial
conditions
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The Jacobi Constant

C is the only conserved quantity in the CR3BP, but its definition is not unique. In
many texts, you will find it defined as -2 times the version we define here. By the
governing equation (12

∥∥BvP/O
∥∥2 + U(x, y, z) = C), C represents an upper bound on

U (since the first term is positive, C ≥ U , with the equality holding in cases of zero
rotating-frame velocities). This means that contours of U are zero velocity curves in
the rotating frame for given values of C—-that is, for a given value of C, the particle
in a 3-body system can only be located within the corresponding region of smaller
or equal U . A particle with a given C value cannot cross a larger contour of U—in
the rotating frame, when the particle approaches such a contour line, it appears to
turn around.

Hill Curves (µ? = 0.3)

U(x, y) = U(x,−y)

U(x, y) 6= U(−x, y)

4



Hill Curves (µ? = 0.3)

lim
x,y→∞

U = −x
2 + y2

2

lim
x→−µ?
y→0

U = −1− µ?
r1

lim
x→1−µ?
y→0

U = −µ
?

r2

CR3BP Equilibrium Points

∂U

∂x
= −µ

? (−µ? − x+ 1)

r32
− x− (1− µ?) (−µ? − x)

r31
= 0

∂U

∂y
=
µ?y

r32
− y + y (1− µ?)

r31
= 0

∂U

∂z
=
µ?z

r32
+
z (1− µ?)

r31
= 0

∂U

∂z
is zero for z = 0 so we typically focus on in-plane solutions
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y = 0: On-Axis Equilibrium Points

x−(1− µ?)(x+ µ?)

|x+ µ?|3 −µ
?(x− 1 + µ?)

|x− 1 + µ?|3 = 0

x < −µ? (L3)

−µ? < x < 1− µ? (L1)

x > 1− µ? (L2)

y 6= 0: Off-Axis Equilibrium Points

1− µ?
r31

=
1− µ?
r32

⇒ r1 = r2

1− 1− µ?
r31

− µ?

r32
= 0⇒ r1 = r2 = 1

C4 = C5

= U(x =
1

2
− µ?, y = ±

√
3

2
, z = 0)

= −1

2

(
3− µ? + (µ?)2

) (x, y) =
1

2
− µ?,±

√
3

2
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The Lagrange Points
L1,2,3 : x−

(1− µ?)(x+ µ?)

|x+ µ?|3 −µ
?(x− 1 + µ?)

|x− 1 + µ?|3 = 0

[
L4,5

]
B =




1

2
− µ?

±
√
3

2



B

Perturbation of L4/5 Points
Consider a small displacement αêr + βêθ from one of the equilibrium points
Li:

U , −1

2
(x2+y2)−

(
1− µ?
r1

+
µ?

r2

)
⇐⇒ ∂U

∂x
=
∂U

∂x

∣∣∣∣
Li

+α
∂2U

∂x2

∣∣∣∣
Li

+β
∂2U

∂x∂y

∣∣∣∣
Li

+· · ·

∂U

∂x

∣∣∣∣
L4/5

≈ −
(
3α

4
+

3
√
3

4
(1− 2µ?)β

)

∂U

∂y

∣∣∣∣
L4/5

≈ −
(
9β

4
+

3
√
3

4
(1− 2µ?)α

)





ẍ− 2ẏ = −∂U
∂x

=
3α

4
+

3
√
3

4
(1− 2µ?)β

ÿ + 2ẋ = −∂U
∂y

=
9β

4
+

3
√
3

4
(1− 2µ?)α

α , Aeλt

β , Beλt

}
Aλ2 − 2Bλ =

3A

4
+

3
√
3

4
(1− 2µ?)B

Bλ2 + 2Aλ =
9B

4
+

3
√
3

4
(1− 2µ?)A





λ4 + λ2 +
27

4
µ?(1− µ?) = 0⇒

λ2 = −1

2
± 1

2

√
1− 27µ?(1− µ?)

7



Stability of L4/5 Points

• If λ2 is complex, then at least one root will have a positive real part
• For L4/5 to be stable, we therefore required λ2 to be strictly real:

λ2 = −1

2
± 1

2

√
1− 27µ?(1− µ?)

• This imposes the condition: 1− 27µ?(1− µ?) ≥ 0 which requires:

µ? ≤ 1

2
−
√

23

108
≈ 0.0385

• L4/5 are stable when m2 /
m1

25

Perturbation of L1...3 Points
Consider a small displacement αêr + βêθ from one of the equilibrium points
Li:

α̈− 2β̇ = −∂U
∂x

∣∣∣∣
L1...3

= α(1 + 2D)

β̈ + 2α̇ = −∂U
∂y

∣∣∣∣
L1...3

= β(1−D)

D , 1− µ?
r31

+
µ?

r32

α , Aeλt

β , Beλt

}
λ4 + (2−D)λ2 + (1 + 2D)(1−D) = 0 =⇒

λ2 =

(
D

2
− 1

)
± 1

2

√
D(9D − 8)

x− (1− µ?)(x+ µ?)

|x+ µ?|3 − µ
?(x− 1 + µ?)

|x− 1 + µ?|3 = 0 =⇒ 1−D =
µ?(1− µ?)

x

(
1

r31
− 1

r32

)
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Stability of L1...3 Points

• We again require λ2 to be strictly real and negative for stability
• D is positive by definition and we require 9D > 8 and D < 1

• However, none of the three co-linear Lagrange points allows for D < 1

• L1...3 are inherently unstable

L1 : x > 0 r2 < r1
L2 : x > 0 r2 < r1
L3 : x < 0 r1 < r2

The Tisserand Criterion
1

2

(
BvP/O · BvP/O︸ ︷︷ ︸

)
− x2 + y2

2
−
(
1− µ?
r1

+
µ?

r2

)
= C

BvP/O = IvP/O − ê3 × rP/O

C =
1

2

(IvP/O · IvP/O
)
− ê3 · IhP −

(
1− µ?
r1

+
µ?

r2

)

1

2

(IvP/1 · IvP/1
)
=

1

r1
− 1

2a
ê3 · IhP =

√
a(1− e2) cos(I)

1

a
+ 2
√
a(1− e2) cos(I) + 2µ?

(
1

r2
− 1

r1

)

︸ ︷︷ ︸
small

= −2C

T , 1

a
+ 2
√
a(1− e2) cos(I) ≈ −2C
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The Tisserand Criterion and Trajectory Design

Tisserand’s Criterion can be used as a trajectory design tool:
• The conditions of the approximation (small µ? and r−12 − r−11 ) apply

when planning deep-space flybys.
• Can therefore match a, e, I pre- and post- flyby allowing for rapid

iteration on flyby trajectories
• The Tisserand criterion was explicitly used in initial TESS orbit design

when modeling lunar flybys. See Gangestad et al. (2013) and Dichmann
et al. (2016) for details

The N-Body Problem

I
d2

dt2
ri/O = −G

N∑

j=1
j 6=i

mj

‖ri/j‖3
ri/j
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Center of Mass

i

rG/O , 1

mG

N∑

i=1

miri/O

mG ,
N∑

i=1

mi

Inner Solar System over 100,000 Years
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Outer Solar System over 100,000 Years

Earth Orbital Elements over 100,000 Years
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