
Cornell University SIOS Lab

Masters of Engineering Final Report

Advisor: Dmitry Savransky

Geometry Cross-Calibration of Orbiting
Satellite Swarms

Authors:

Thomas Taffe

Van Cates

December 23, 2021



Contents

1 Abstract 1

2 Introduction 1

3 Methodology 1
3.1 Satellite Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

3.1.1 Dovesat Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
3.1.2 Dovesat Mass Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3.1.3 Moment of Inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.1.4 Ballistic Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2 ACS Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2.1 Magnetorquers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2.2 Reaction Wheels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2.3 Dynamics of Entire ACS with Matlab Integration . . . . . . . . . . . . . . . 6

3.3 ANSYS Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3.1 Designing Satellite in Spaceclaim . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3.2 Material Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3.3 Updating Transient Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.4 Filtering Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.5 Measurement Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.6 Measurement Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.7 Unscented Kalman Filter (UKF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Results and Discussion 10
4.1 Comparing Feature Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Varying Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Perturbing State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.5 ANSYS Results Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.6 ACS Matlab Integration Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Conclusion 21
5.1 Parameters, ACS, and ANSYS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 References 23



1 Abstract

Summary of research on Dovesat parameters, Attitude Control System (ACS), ANSYS transient
analysis, and Measurement Function.

2 Introduction

By using multiple small satellites (CubeSats) that make up a ”constellation”, the objective of
the CubeSat constellation is to produce high-resolution images of any celestial body. This idea
is based off of Planet Labs’ Flock Constellation of Dove 3U CubeSats that were used to produce
high-resolution images of Earth. The problem lies with needing ground relay for the CubeSat
constellation to produce accurate imaging. For Earth, ground relay is okay, but if this idea is to be
scaled up to be applicable to any celestial body, ground relay needs to be eliminated. This requires
good communication and cross-referencing between CubeSats within the constellation. This can
be done by using data associated with the each satellite themselves. Error satellite attitude can
be gauged by comparing feature points between images taken from different satellites and their
estimates of attitude associated with a given image.

Figure 1: Dove CubeSat scale.

3 Methodology

3.1 Satellite Parameter Estimation

3.1.1 Dovesat Subsystems

Below are the various subsystems that will be found within the CubeSats in the constellation and
what the components of those subsystems entail. The layout of subsystems is derived from the
Dove 1 CubeSat design (Cosmogia Inc.):
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1. Command and Data Handling will need at least one computer to perform computation. As
ground relay will not be an option, hardware capable of more intensive computation will be
required for the CubeSat which may mean a larger and heavier computer.

2. The Power Subsystem will be assumed to be similar to that of the Dove-1 cubesat in which
it will possess 8 Lithium Ion cells that have 20Ah combined charge full capacity. The Power
Subsystem will also have deployable solar cells for battery recharge.

3. The Attitude Control (ACS) Subsystem will use magnetometers, sun sensors, star trackers,
horizon sensors as detection mechanisms and gyroscopes and magnetorquers for attitude con-
trol.

4. The Communications Subsystem consists of a very high frequency (VHF) radio for trans-
mitting telemetry and an S-band frequency hopping spread spectrum modem for two-way
communication and data downloading.

5. The Imaging system also needs to be taken into account which is largely just the camera.

3.1.2 Dovesat Mass Estimation

Below is the estimation of the mass of componenets in each subsystem and estimating a mass for
the entire cubesat:

1. The mass of the shell of a 1U cubesat is 1.33 kg and linearly scales so a 3U cubesat shelling
can be estimated to be at roughly 4 kg (SMAD). This is assuming that the material for the
shell of the cubesat is aluminum alloy 6061.

2. Unless a heavy high-powered computer is used on the cubesat to be able to keep up with the
computation, range of masses for on-board computers averages out to about 100 g.

3. The lithium-ion batteries average from searches to be around 60 g so for 8 batteries should
be around 0.5 kg.

4. There will be 7 deployable solar cells on cubesat and be 30cm x 10cm in surface area. The mass
for a 3U solar panel is 155 g with a magnetorquer. The total mass is 1.085 kg (EnduroSat).

5. Magnetometers, Sun Sensors, Horizon sensors, and the VHF radio are very light at less than
50 g. Assume all these components total to around 150 g.

6. Assuming medium-sized CubeSats gyroscopes of 130 g are used and that there are 4 aboard
with one as a redundant one, this total mass is 0.52 kg.

7. Star trackers are a little heavier at around 250 g. It is assumed that each cubesat is equipped
with one.

8. The S-Band Transmitters are around 75 g.

9. Cameras and imaging systems range from 0.5 kg to 1.2 kg the average will be taken at 0.85
kg.

Summing all of these masses listed above, the total estimated mass of a CubeSat in the constellation
is around 7.53 kg. This is about 30 percent larger than the mass of the Dove CubeSat estimated
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mass at 5.8 kg (Eoportal). This may be due to overestimates of the mass of CubeSat components.
This may also be due to the need for heavier components such as computers because of the more
computationally heavy problem solve of not having ground relay.

3.1.3 Moment of Inertia

Calculating the moment of inertia of the system was dealt with by using parallel axis theorem and
rotation matrices. There were a few of assumptions made first before calculating the moment of
inertia:

1. The moment of inertia with respect to the body frame does not change over time.

2. The moment of inertia is being calculated for the configuration when the solar panels are fully
deployed in a ”wing” formation as can be shown in Figure 1.

3. The mass distribution of the 3U CubeSat body with combined components and frame (not
including gyroscopes) is evenly distributed or the density is constant with respect to spatial
variation.

4. The moment of inertia will be calculated with these main parts of the assembly: the 3U
CubeSat body without gyroscopes, the gyroscopes, and the solar panels.

With these assumptions, this is the process that was used to calculate the moment of inertia matrix
of the CubeSat:

1. First the center of mass with respect to all relevent components is calculated in x,y,z coordi-
nates in the body-fixed frame, β.

2. The centers of mass of the individual relevant components are identified.

3. Moment of inertia matrices with respect to β are found for all relevant components except for
the gyroscopes.

4. For the gyroscopes, the inertia matrix is calculated with respect to the gyroscope’s body
fixed frame, A. After finding the inertia matrix with respect to A, the rotation matrix, RAβ,is
found between A and β. Using the rotation matrix and its inverse, RβA, the inertia matrix
of each gyroscope can be converted to be with respect to the body fixed frame β as follows:
Iβ = RβAIARAβ

5. Then parallel axis theorem can be used on each component with respect to the center of mass
of the system. Parallel axis theorem is as follows: Ii = Icom,i +md2 where d is the distance of
the center of mass of component i from the total system center of mass.

6. The combined inertia matrix with parallel axis theorem for each component will be summed
to represent the inertia matrix for the entire system.

Here below are the moment of inertia matrices of the 3U CubeSat body and solar panels with
respect to the body frame. The parameters are:

1. The height of the CubeSat, h = 30 cm.

2. The width of the CubeSat, L = 10 cm.
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3. The thickness of the solar panels: t = 150 µm

These moment of inertia matrices are calculated with respect to the body fixed frame β:

[I]cube =
mcube

12

(h2 + L2) 0 0
0 (h2 + L2) 0
0 0 (L2 + L2)

 (1)

[I]sp =
msp

12

(h2 + t2) 0 0
0 (h2 + L2) 0
0 0 (L2 + t2)

 (2)

And here is the gyrostat inertia matrix calculated with respect to the gyrostat’s body fixed frame,
A, where r is the radius and h is the height. The actual parameter values are not definite yet:

[I]g =
mg

12

(3r2 + h2) 0 0
0 (3r2 + h2) 0
0 0 6r2

 (3)

3.1.4 Ballistic Coefficient

The ballistic coefficient is not relevant for most satellite applications in the short term but may be
relevant in the long term due to effects from the atmosphere. The ballistic coefficient was calculated
using this equation (Kilic):

BC =
m

CDAref
(4)

Where m is the mass of the ”projectile” or CubeSat estimated to be 7.53 kg, CD is the drag
coefficient estimated to be 2.3, and Aref which is the reference area interpolated to be 0.017505 m2.
Using these values the ballistic coefficient for a 3U CubeSat (neglecting deployed solar panels) is
estimated to be 187.03 kg

m2 .

3.2 ACS Subsystem

The Attitude Control system mainly consists of magnetorquers and reaction wheels. Given both
are working in tandem to adjust the attitude of the CubeSat, these two equations are the governing
equations of the system:

Itotω̇ + ω × (Itotω + hw) = −τw + Tm (5)

And:
ḣw = τw (6)

Where:

1. Itot is the total moment of inertia matrix of the system.

2. ω is the rotational speed of the body fixed frame, β, with respect to the inertial frame, F.

3. hw is the total angular momentum of the reaction wheels.

4. τw is the total torque produced by the gyrostats or reaction wheels.

4



5. Tm is the total torque produced by the magnetorquers.

Now assuming that the rotational speed of the body fixed frame with respect to the inertial frame
does not move and that the reaction wheels are perfect and have no limitations so magnetorquers
are not required in attitude calculations for the system, the governing equations simplify to this:

ω × (Itotω + hw) = −τw (7)

And:
ḣw = τw (8)

These two equations above will be used to calculate and simulate the attitude adjustment of a
CubeSat with respect to its body fixed frame, β.

3.2.1 Magnetorquers

To be consistent with the full ACS the magnetorquers should still be included to have the most
accurate prediction of the system, although the magnetorquers are not modeled in the ACS Matlab
integration just yet. This is the governing generated torque equation for a magnetorquer:

Tm = −B ×Md (9)

Where B is the magnetic field vector with respect to the body fixed frame β and Md is the magnetic
dipole moment specific to the magnetorquer which can be assumed to be around 0.2 Am2. Assuming
imperfect gyroscopes and the presence of a magnetic field, the magnetorquers can be used to help
adjust the attitude of the spacecraft.

3.2.2 Reaction Wheels

As already mentioned above, the governing ACS equation for a system when only gyrostats are
present can be below, with a little bit of elaboration:

Tw = ω × (ωItot + hw) (10)

Where Tw is the combined torque generated by all of the gyrostats or reaction wheels, ω is the
rotational speed of the body fixed frame with respect to the inertial frame, Itot is the total inertia
matrix of the system with respect to the body fixed frame, and hw is the total angular momentum
of the gyroscopes. Total angular momentum of the gyroscopes can be summarized as:

hw =
N∑
n=1

IWn
w,n

βωAn (11)

Where IWn
w,n is the inertia matrix of the gyrostat in the gyrostat body fixed frame and βωAn is the

rotational speed of the gyrostat n body fixed frame with respect to the satellite body fixed frame.
Using these governing equations a matlab integration can be made to simulate the ACS system
working to correct the attitude of a CubeSat.
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3.2.3 Dynamics of Entire ACS with Matlab Integration

The matlab integration consists of these key elements:

1. Generating the appropriate inertia matrices for the total system and the individual gyrostats
using functions.

2. Calculating the required torque needed to bring a system to zero rotational speed in the body
fixed frame using functions.

3. Using an ODE solver to generate system state values at discrete time steps.

4. Developing a plot3 animated model of the cubesat that is able to rotated. Then use the
outputed state values at discrete time steps to simulate the satellite coming to zero rotational
speed in a designated time.

Obviously if this matlab integration were completely true to the actual CubeSat ACS then magne-
torquers would be involved in the calculations. Magnetorquers should be integrated into the matlab
but not until the gyrostat-only model has been mastered.

With this model there will also be inputs needed for the system. Here are the relevant inputs:

1. Iωβ: The rotational speed vector of the body fixed frame with respect to the inertial frame.

2. βωA: The rotational speed matrix of all the gyrostat body fixed frames with respect to the
system body fixed frame.

3. A matrix of locations of all of the gyrostats’ centers of mass.

4. A matrix of direction vectors of each gyrostat body fixed frame rotation axis with respect to
the system body fixed frame, β.

5. Altitude of the CubeSat above the surface of the celestial body, in this case the test case is
above Earth. This is used to calculate the magnetic field if magnetorquers are integrated.

6. The longitude of the CubeSat above the equator of the celestial body. This is used to calculate
the magnetic field if magnetorquers are integrated.

3.3 ANSYS Modeling

The ANSYS modeling builds on work done by both Sarah Richter and Evan Wilt. The geometry
was improved from a 1U cubesat to a 3U CubeSat with deployed solar panels and the Transient
Thermal and Transient Structural simulations on the model were updated.

3.3.1 Designing Satellite in Spaceclaim

The SpaceClaim model of the CubeSat was updated to be 3U by extending the inner frame and
outer plating from a 1U to a 3U design. Deployed solar panels were also included in the design to
stay consistent with the most permenant configuration of the CubeSat. A view of the full assembly
of 3U cubesat combined with solar panel can be seen below in Figure 2:
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Figure 2: Whole CubeSat assembly.

And below in Figures 3a and 3b are different views of the CubeSat body without solar panels:

(a) CubeSat body with side plating. (b) CubeSat body with only inner frame.

Figure 3

3.3.2 Material Estimation

Through Extensive research it was determined that the frame and plating of the 3U CubeSat body
was made out of either Aluminum Alloy 7075 or Aluminum Alloy 6061. Evidence points towards
the CubeSat frame being made of the latter so the CubeSat assembly components apart from the
lens and solar panels were assigned to Al 6061.
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The material for the imaging lens on the design was determined to be a silicate glass. The corre-
sponding properties have not yet been assigned to the lens due to not knowing exactly what type
of silicate glass the lens is.

Considering solar panels are complex in that they are made of multiple different materials, it is
hard to assign one material to the solar panels to be used in the simulations. Evidence points
towards the solar panels being majority silicon more research on materials needs to be done. Also a
more intricate CAD model of the solar panels needs to be generated if the solar panels are to be as-
signed more than one material type. Because of this ambiguity of material type for the solar panels,
the solar panels were suppressed for physics in the transient thermal and structural simulations.

3.3.3 Updating Transient Simulations

The portion of the transient simulations that needs to be updated is the Transient Thermal heat
fluxes on certain faces. Since the heat fluxes are dependent on area and the CubeSat geometry has
been updated to the proper 3U model, some of the heat fluxes on the outer faces of the CubeSat
need to be updated. Below in Figure 4 is the incident heat fluxes or flows and radiation assigned
to each of the six faces of the CubeSat:

Figure 4: Transient Thermal heat flows and radiation assignments.
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As can be seen above, items B, C, E, and F have all been updated by multiplying their corresponding
values in the 1U CubeSat geometry model by 3. The Transient Structural simulation was not
tweaked but needed to be re-ran with the new data points generated by the Transient Thermal
solution over the 15500 second time span.

3.4 Filtering Simulation

43 unique images from 200 images were gathered and a time series of cropped images was extracted
from each. The position of the cropped image was changed based on the dynamics of the satellite.
The simulation does not consider the orientation of the satellite assuming nadir pointing, making the
state the 3 Earth-centered Inertial positions and their ECI velocities. The cropped images are then
shifted by the difference in longitude-latitude from the previous state. The feature points are ex-
tracted from each cropped image. The measurement model uses the (Longitude,Latitude,Altitude)
LLA of these feature to estimate the movement of the image frame from the previous. This estimate
is compared with the actual frames movement to generate the statistics. This estimate is than used
as the measurement for the UKF.

3.5 Measurement Model

The first step in the measurement model is to extract features from the time series of images. There
are 3 options for the feature detection SIFT (Scale Invariant Feature Transform), SURF(Speeded Up
Robust Features), and ORB (Oriented FAST and Rotated BRIEF). SIFT was the original feature
detector. Feature detector algorithms typically have four steps: determining scale space extrema,
key point localization, orientation determination, and descriptor creation. SIFT uses a Difference
of Gaussians (DoG) to execute the first two steps where the max and min from the DoG are the
key points or features. The orientation in SIFT is determined by the local gradient of the image
while the descriptor is a histogram of the gradient in different regions around the feature. SURF
has increased speed verses SIFT by using more efficient algorithms. The order of SURF’s four steps
are: box filter not DoG, Hessian Blob-detection not DoG, gaussian wavelets not gradient, sum of
gaussian wavelets not gradient histogram. SURF does typically detect less features than SIFT but
still manages to do so robustly. The last algorithm is ORB. ORB was developed as a free to use
alternative to SIFT and SURF. ORB uses FAST for feature detection and a multi-scale pyramid to
provide semi-scale invariant. ORB then uses BRIEF to make descriptors and an intensity centroid
to determine orientation.
After all features have been detected they are matched across images. The minimum unique match-
ing algorithm (MUM) was made rather than using MATLAB’s built in method because the MAT-
LAB algorithm struggled to keep points between matches , low unique percentage, and improperly
matched points at the edge of the image and features that looked similar. MUM was chosen rather
than similar algorithms like Gated Nearest Neighbor and Gale-Shapely because it tends to not match
outliers in the set more often. The time complexity of MUM is n∗m where n is the number of features
previously and m is the number of current features. Gale-Shapley would have a time complexity of
max(n2,m2) and nearest neighbors a prediction time complexity of max(n ∗ log(m),m ∗ log(n)).
MUM first formulates a matrix of pairwise 2-norm distances between points. The i’th column refers
to the i’th current point and the j’th refers to the j’th point. Two solutions on this matrix are
then compared. The first is a minimization along the rows, matching previous points to their best
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current point, the other does the opposite minimizing along the columns. For both solutions du-
plicates are removed so that each point has a one-one relationship or unique pair. A pair is unique
if it does not share any index with another pair. Thus the maximum number of unique points is
the minimum of the number of n and m. The solution with the least number of unique matches
or smallest cumulative distance is selected. The locations of these matched points in the image are
then subtracted and averaged. This returns the average movement of each point which is analogous
to the movement of the frame as a whole.

3.6 Measurement Function

The measurement function is simply the difference in latitude and longitude between images. This
is scaled by focal length in order for the measurement to be in pixels, like the measurement model,
rather than kilometers, like the state. When implemented in the filter the measurement function
converts the current and previous state from ECI to LLA and calculates the distance between them.
Statistics for measurement model and function were gathered by subtracting the measurement model
and measurement functions output from each other. The difference was then used to find the 4
statistical moments of the estimator using matlab built in functions for all 43 unique images.

3.7 Unscented Kalman Filter (UKF)

The UKF was chosen was because it posses the ability to deal with non-linear measurements and
dynamics. This important because satellite dynamics are non-linear. Our measurement function
is also non-linear because even though it is a linear geometric operation on the state, converting
between frames.This is the measurement compares two different non-linear states at different times.
It does however assume gaussian noise which is not something that guaranteed especially for the
measurement function. The UKF accounts for non-linearity by having multiple Sigma points around
the current estimate. It then propagates and measures these sigma points to form estimates of the
state and measurement. The UKF then uses weight matrices and these estimates to calculate
the state covariance , the measurement covariance, and the cross covariance. It then uses these
covariances and the innovation, difference in measurement and measurement estimate, to update
its state and covariance estimates. This is a similar but more complex process to the Kalman filter.
The UKF was also gated such that measurement estimates that lay outside the chi squared inverse
gate of 90% were not used.

4 Results and Discussion

4.1 Comparing Feature Detectors

The three figures below illustrate the results of using each feature detctor on the same image its
distortion and and matching points between them. MATLABs matching algorithm was used. This
algorithm uses the feature descriptor to match between points. For SIFT the algorithm identified
790 features in the first image and 939 in the second. Of those 790 182 were matched at unique
percentage of 23%. For SURF 31 features in the first image and 29 in the second identified. Of
those 31% were matched. For ORB the algorithm identified 940 features in the first image and
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662 in the second. Of those 790 22% were matched. From visual inspection it is easy to see that
in SURF and SIFT there were several erroneous matches were made. ORB seems to match more
consistently than SIFT because the lines seem to more consistently go in the same direction near
each other. ORB was the fastest of the 3 taking only 10 ms to run the feature extraction and
matching. SURF took 33 ms and SIFT took 132 ms to run.

Figure 5: SIFT matching

Figure 6: SURF matching
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Figure 7: ORB matching

Figure 8 compares the resulting statistics for ORB and SIFT at an image size 150 pixels. Both
had sub-pixel biases. SURF was not analyzed because for more than half of the images no features
were detected. SIFT also had several images where no features were detected. There were some
images where one or the other algorithm did not calculate statistics similar to other images in the
set. For most statistics the two algorithms find similar results. The x-statistics for both were about
[0.004, 0.05,−4, 20]. In y the statistics for ORB were typically [−0.1, 0.18,−0.7, 2] while for SIFT
they were [−.0.01, 0.2,−.8, 2]. The main difference here is that y-bias is much better for SIFT. The
most jaring statistic would have to be the kurtosis. The kurtosis of a normal distribution is 3. A
kurtosis of 20 in the x-direction means that the tails of the distribution are very heavy. The tails
are probably this heavy do to rounding. The typical x measurement estimate is .05 but the frame
only moves after a .5 pixel shift. This means that every tenth measurement is a 1 leading to heavy
tails. This is as opposed to the y measurement estimate of .7. Rounding makes the measurement
multi modal due to the sub-pixel movement.

Figure 8: Measurement Statistics in Pixels
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4.2 Varying Size

In figure 9 shows the result of testing ORB with images of differents sizes. Not much changes in
the statistics only the y bias is different. Increasing scale tends to smooth out any outliers bringing
all images to the same statistics. Increasing the scale tends to increase the y-bias and does not
have the smoothing effect seen in other statistics. Further analyses would be needed at larger scales
(the max being just under 2000) to see if the smoothing continued. This was not done as once the
scale pased 200 runing the simulation takes an hour. The reason for this can be seen in figure 10.
An increse in scale from 150 to 250 represented and order of magnitude increase in the number of
detections. This explains the smoothing effect as there are more points to match. Also from figure
10 5 gaps can be observed in SIFT where no detections were made.

Figure 9: Measurement Statistics in Pixels for Varying Size
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Figure 10: Detections at Varying Size

4.3 Perturbing State

Figure 11 illustrates how changing the magnitude of the velocity changes the statistics. Increasing
the velocity changes the latitude and longitude more resulting in larger shifts. These larger shifts
reduce the rounding problem discussed earlier and lead to movement on the scale of a pixel or more.
In general reducing the velocity had the same smoothing effect as increasing the scale. Reducing
velocity also reduced bias but tended to increase skewness and kurtosis. This helps explain the
low kurtosis of the y measurement vs the x measurement since the y measurement at the original
velocity is typically an order of magnitude greater than the x. Increasing the velocity also increased
the amount of bias in the y quite significantly. This may not be that bad since because of the larger
shift the percent bias may not change as much.
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Figure 11: Measurement Statistics in Pixels for Varying Magnitude of Velocity

4.4 State Estimation

In general the error of the UKF’s state estimate was on the order of 10 metetrs in position and
meters per second in velocity. For the UKF Beta was set to 2 and Kappa to 0 as recommended
while alpha was tuned. The alpha tuning in figure 13 was taken at a Q magnitude of E-7. Figure
12 was taken at an alpha of 0.5 at this alpha value none of the y biases were stable at this value.
The E-9 value is the same process noise as Sam and Nathaniel’s paper. In general in both figures 13
and 12 the filter was consistent with zero error always falling within the 2 sigma bound. The alpha
=.25 and the smallest Q magnitude are barely consistent with the bound stratilling just the other
side of zero as seen in figure 14. The larger alpha was the only one that was stable in all 6 errors
as they all get smaller over time. Notably the error in x and z velocities never change remaining
constant given the input parameters.
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Figure 12: Error for Different Magnitudes of Process Noise

Figure 13: Error for different Alpha Tuning Parameters
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Figure 14: X Error for different Alpha

4.5 ANSYS Results Updates

Updating the geometry in SpaceClaim and updating the heat flow values in Transient Thermal,
this is the final state (15500 seconds) transient thermal of the entire CubeSat body with the solar
panels suppressed for physics in Figure 15:
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Figure 15: Final state total body thermal distribution

Comparing this to the data points collected for the 1U CubeSat geometry done prior the distribution
looks different but this could be due to the geometry being large enough to where radiation effects
dominate the thermal distribution. Below is a localized thermal distribution on the imaging lens of
the CubeSat at the final state of 15500 seconds in Figure 16
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Figure 16: Final state lens thermal distribution.

The lens temperature distribution makes a little more sense.

Transferring the transient thermal solution to transient structural and then running the simula-
tion, this is the final state transient structural deformation at 15500 seconds in Figure 17:
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Figure 17: Final state lens deformation.

The deformation still aligns well with the simulation done on the 1U CubeSat. It is to be noted
that the correct material type has not been assigned for the lens as of yet. In terms of next steps
forward, the geometry could be better refined. This means more intricate parts and the addition of
the assembly of parts within the 3U CubeSat body. With a more intricate geometry, this means a
more intricate list of materials that will be assigned to the parts within the geometry assembly. The
transient thermal and structural elements can be better refined as well in terms of heat flows and
radiation emissivity for the transient thermal and better fixed support location for the transient
structural.

4.6 ACS Matlab Integration Updates

The ACS matlab integration is not quite yet finished. This is what has been tentatively completed
for the matlab integration:

1. Generating the appropriate inertia matrices for the total system and the individual gyrostats
using functions.

2. Calculating the required torque needed to bring a system to zero rotational speed in the body
fixed frame using functions.

3. Setting up ODE solver.
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That leaves these items left to be finished:

1. Creating the function for the ODE solver to use.

2. Using the ODE solver to generate system state values at discrete time steps.

3. Developing a plot3 animated model of the cubesat that is able to rotated. Then use the
outputed state values at discrete time steps to simulate the satellite coming to zero rotational
speed in a designated time.

4. Integrate the option of having magnetorquers in the governing set of equations.

Although this will give a pretty accurate prediction of how the model will act, to have a fully accurate
model other things need to be taken into account such as perturbations by other celestial bodies,
finding the true mass distribution of the system, and micro-gravity. Simplifying assumptions can no
longer be allowed if the true motion is to be simulated. Once the simplified matlab ACS integration
has been mastered, there are many other steps needed to be at a fully representative model of the
system. Especially when ground relay is not an option, accurate system state representation is
crucial.

5 Conclusion

5.1 Parameters, ACS, and ANSYS

Estimating the parameters of the CubeSat was relatively straight forward as there were many ref-
erences to help calculate them. The mass and spatial dimensions of the 3U cubesat body and solar
panels was derived from the Dove CubeSats from the Planet Labs Flock Constellation. Although
the mass of the system was overestimated by 30 percent, this estimation can be refined by having
an exact parts list of a Dove CubeSat which would be an almost identical match to the CubeSats
designed for imaging any celestial body. This desired parts list was not found in the discovery
process. The only difference from a Dove CubeSat would possibly be the larger computer due to
more complex calculations required because of no ground relay. The ballistic coefficient was pretty
straight forward to calculate but could possibly be off due to interpolation.

The ACS was straightforward identifying the mechanisms that would adjust the attitude of the
CubeSat, gyrostats and magnetorquers, but was hard to implement into a matlab master script
that could simulate the attitude adjustment of the CubeSat. Using the governing equations in an
ODE solver to generate state values of position and rotational speed for discrete time steps is not
necessarily as easy as it seems. The next steps forward is completing the ODE solver and running
an animation of the satellite coming to zero rotation speed in the body fixed frame. After that this
model is mastered, the option for magnetorquers can be implemented and perturbations that can
alter attitude over time can be implemented to fully describe the system realistically.

The ANSYS transient thermal and transient structural for the 3U CubeSat geometry was pretty
straightforward to set up as the exact same simulations have already been done on the 1U CubeSat
geometry. There are a few of things to do with this simulation moving forward. The first is to refine
the geometry to where the parts of the assembly almost exactly resemble the parts of an actual
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Dove CubeSat which will require a parts list. The assembly would need to include the parts of the
CubeSat that lie within the 3U CubeSat body as well. Secondly with more intricate parts comes
a larger list of materials that need to be assigned to parts. Especially when an assembly can have
dozens of materials, this can be painstaking. Lastly, the heat fluxes or flows on the CubeSat can be
refined when the solar panels are no longer suppressed for physics. This is because some parts of
the CubeSat will no longer be illuminated as well with the solar panels shading them from sources
of heat.

5.2 Filtering

The measurement function benefits from being a simple calculation of differences in the LLA frame
while the measurement model has several improvements or ideas that can be tested to improve
performance particularly of the skew and kurtosis. One idea for improvement is to use SURF as
the feature detector on images at larger scales. The nature of the problem formulation necessitated
smaller size images in order to shift them around the image plane. This SURF would have the
advantage of having fewer features detected and are well separated from each other. This reduction
in clutter is what allowed less bias in the y direction. As long as there are consistently detections
of the order of 100 the smoothing effect should take place without a significant loss in separation.
The increasing size will also allow for measurements to be on the order of multiple pixels. This
should have the effect of lowering the skew and kurtosis as was the case for increasing velocity. If
this does not work to make the distribution more gaussian then higher moment filters will be needed.

SURF does still have a potential problem with missed detections as it does not perform as well
as SIFT which already had several missed detections. Using ORB, which performed the best of the
three, at scale may be difficult due to high clutter. ORB at scale is also concerning since MUM and
the other matching algorithms have poor time complexity. MUM with ORB at a size of 250 took
an hour to run. To continue using ORB either a new matching algorithm must be implemented
that is fast and robust even in high clutter environments or the number of points fed into MUM
must be reduced. Removing points before processing must be done in some systematic way. When
thresholding and only keeping the first 100 points or even a random set of 100 points the bias of the
estimate oscillated wildly from 20 to even 60 pixels. Typically this would be done using the birth
and death model of some tracking algorithm, this may not work for our implementation since we
are explicitly attempting to compare only two images, the time series cropping served as an analogy
to this. A solution for removing the number of points fed into MUM is to cluster points that are
near each other in to a super feature or object. Another is to focus on only one region of the image
at a time. Alternative algorithms to MUM are to implement an information filter or visual based
SLAM and skip matching all together.

Other extensions of the measurement model should also be made. In order to relax the nadir
pointing assumption the ECI to LLA conversion should be paired with a line of sight calculation.
Adding this functionality will allow the estimate to take into account the satellite’s pointing orienta-
tion. By using a star tracker or other measurement of the angular orientation the addition of line of
sight can be used to estimate the orientation. This important because we want to be able to adjust
pointing in order to capture the same image as another satellite. Another thing this simulation is
missing is distortions to the image. This is important to test how robust the measurement model
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and function are to radial distortion and blur that are inherent to this style of imaging.
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