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Math and Dynamics Review

The study of astrodynamics, or orbital mechanics, is essentially the study of classical
mechanics (sometimes known as Newtonian mechanics). While we now know that
these are only approximations, with a more accurate model available via Einstein’s
general relativity, for the majority of cases we rely on the laws first postulated by
Isaac Newton and later expanded by Leonhard Euler. As with any study, the first
step is to make sure that we have the appropriate tools and language to describe
the phenomena under consideration. Since the early 20th century, thanks to the
efforts of Josiah Willard Gibbs, the standard tools for studying classical mechanics
are vector algebra and vector calculus, which we will review here. Remember that
these handouts are not complete on their own. They are intended to accompany the
recorded lectures, and to help in your note-taking and studying.

1



Newton’s Laws of Motion
1 Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in
directum, nisi quatenus a viribus impressis cogitur statum illum mutare
Every body preserves in its state of rest, or of uniform motion in a right
line, unless it is compelled to change that state by forces impressed
thereon

2 Mutationem motus proportionalem esse vi motrici impressae; et fieri secundum
lineam rectam qua vis illa imprimitur
The alteration of motion is ever proportional to the motive force
impressed; and is made in the direction of the right line in which that
force is impressed

3 Actioni contrariam semper et aequalem esse reactionem: sive corporum duorum
actiones in se mutuo semper esse aequales et in partes contrarias dirigi
To every action there is always opposed an equal reaction; or the mutual
actions of two bodies upon each other are always equal, and directed to
contrary parts

A Vector is an Element of a Vector Space
A vector space is a collection of vectors over a field of scalars. . .

A field (F) is a set of scalars (x, y, z, . . . ∈ F), with two binary operators:
Addition and Multiplication, obeying field axioms: ∀x, y, z ∈ F

1 Both operators are associative x+ (y + z) = (x+ y) + z and
x(yz) = (xy)z

2 Both operators are commutative x+ y = y + x and xy = yx

3 Every field contains an additive identity element (0) such that:
x+ 0 = x

4 Every field contains a multiplicative identity element (1) such that:
1x = x

5 Every element x has an additive inverse (−x) such that: x+−x = 0

6 Every element x has a multiplicative inverse (x−1) such that:
xx−1 = 1

7 Addition is distributive over multiplication: x(y + z) = xy + xz
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A Vector is an Element of a Vector Space
A vector space (V ) is a collection of vectors (a,b, c . . . ∈ V ) over a field of
scalars (x, y, z, . . . ∈ F), with two operators: Vector Addition and Scalar
Multiplication with the following properties: ∀a,b, c ∈ V, x, y ∈ F

1 Commutativity of vector addition: a+ b = b+ a

2 Associativity of vector addition: (a+ b) + c = a+ (b+ c)

3 Identity element of vector addition: ∃0 ∈ V s.t. a+ 0 = a

4 Inverse elements of vector addition: ∃−a ∈ V s.t. a+ (−a) = 0

5 Compatibility of scalar multiplication: x(ya) = (xy)a

6 Distributivity of scalar multiplication over vector addition:
x(a+ b) = xa+ xb

7 Distributivity of scalar multiplication over scalar addition:
(x+ y)a = xa+ ya

8 Identity element of scalar multiplication: ∃1 ∈ F s.t. 1a = a

Euclidean (Geometric) Vectors

A Euclidean vector has a magnitude and a direction. A position vector rB/A
has a magnitude of the distance between points A and B and a direction
pointing from A to B.

Norm (magnitude)

Unit Vector
(direction)
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The basis of a vector space is:

1 A linearly independent set of vectors spanning the vector space
2 A subset of vectors in the space such that all vectors in the space may
be written as a weighted sum of the subset

3 Non-unique

Define set S = {v1,v2, . . . ,vn} for vi ∈ V for vector space V .
• S is linearly independent if

∑
aivi = 0⇔ ai ≡ 0 ∀i, ai ∈ F

• S spans V if ∃ ai ∈ F such that b =
∑

aivi ∀b ∈ V

Reference Frames (Bases) and Vector Components

Reference
 Frame

Origin

I , (O, ê1, ê2, ê3)

rP/O = x1ê1 + x2ê2 + x3ê3

xi are Cartesian coordinates

[
rP/O

]
I =

x1x2
x3


I
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Coordinate Systems
A single reference frame can have an infinite number of coordinate systems

Polar/Cylindrical Coordinates
θ - Azimuthal Angle

[
rP/O

]
I =

ρ cos θρ sin θ
z


I

Spherical Coordinates
φ - Polar (Zenith) Angle

[
rP/O

]
I = r

cos θ sinφsin θ sinφ
cosφ


I

NB: θ and φ definitions are frequently reversed. Spherical coordinates are
sometimes defined with an elevation angle (the complement to the zenith)

Spherical Trigonometry

Adapted from Green (1985)

• A plane passing through a sphere’s center intersects the sphere in a
great circle, which has poles perpendicular to the plane.

• The spherical angle between intersecting great circle
arcs is the angle between their planes:

Spherical Angle XZQ ≡ ∠XOQ ≡ θ

≡ Great Circle Arc X̄Q

• A plane that does not pass through the sphere’s
center intersects the sphere in a small circle.

[
r̂P/O

]
I =

cos X̃Psin Ỹ P

cos Z̃P


I
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Vector Products
(Scalar) Dot Product

• a · b = ‖a‖‖b‖ cos θ
• a · b = b · a
• a · (b+ c) = a · b+ a · c
• xa · yb = xy(a · b)

(Vector) Cross Product
• a× b = ‖a‖‖b‖ sin θĉ
• a× b = −b× a

• a× (b+ c) = a× b+ a× c

• ya× b = y (a× b) = a× yb

a · a = ‖a‖‖a‖ cos(0) = ‖a‖2

More Vector Products

If vector a is perpendicular to vector b
(a ⊥ b):

1 a · b = 0

2 â, b̂, â× b̂ is a reference frame

• Scalar Triple Product: a · (b× c) = b · (c× a) = c · (a× b)

• Vector Triple Product: a× (b× c) = b(a · c)− c (a · b)
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Tensors and the Outer Product
A rank-2 tensor (dyadic) is defined as the outer product of two vectors:
T , a⊗ b

I = (O, ê1, ê2, ê3)


a =

∑
i

aiêi ⇒ ai = a · êi b =
∑
i

biêi ⇒ bi = b · êi

T =
∑
i

∑
j

Tij êi ⊗ êj ⇒ Tij = êi · T · êj = aibj

(Tensor) Outer Product
• (a+ b)⊗ c = a⊗ c+ b⊗ c

• c⊗ (a+ b) = c⊗ a+ c⊗ b

• x(a⊗ b) = (xa)⊗ b = a⊗ (xb)

• (a⊗ b)⊗ c = a⊗ (b⊗ c)

All Vector and Tensor Operations Can Be Written
as Matrix Multiplications

[a]I =

a1a2
a3


I

[b]I =

b1b2
b3


I

[T]I =

T11 T12 T13
T21 T22 T23
T31 T32 T33


I

=

a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3


I

[a · b]I = [a]TI [b]I

[a× b]I = [a×]I [b]I
[b× a]I = [b×]I [a]I

= −[a×]I [b]I

[a · T]I =
(
[a]TI [T]I

)T
[T · a]I = [T]I [a]I
[a× T]I = [a×]I [T]I
[T× a]I = [T]I [a×]I

[T]I = [a⊗ b]I = [a]I [b]
T
I

[a×]I ,

 0 −a3 a2
a3 0 −a1
−a2 a1 0


I

a · a = ‖a‖2 =⇒ [a · a]I = [a]TI [a]I = a21 + a22 + a23 so ‖a‖ =
»
a21 + a22 + a23
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Multiple Reference Frames and Direction Cosine Matrices

[r]B =
BCA [r]A

Direction Cosine Matrix (DCM)
• DCMs are Orthogonal Matrices:

ACB =
(BCA)−1 = (BCA)T

• DCMs are Composed by Multiplication:

ICF1F1CF2F2CF3 . . . FN−1CFN = ICFN

[T]B =
BCA [T]A

ACB

Simple Direction Cosine Matrices

BCA =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ


︸ ︷︷ ︸

, C1(θ)

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ


︸ ︷︷ ︸

, C2(θ)

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


︸ ︷︷ ︸

, C3(θ)

Any DCM can be decomposed into three rotations about non-repeating
frame axes.
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More on DCMs
Each entry of a DCM is the cosine of the angle between each pair of unit
vectors of the two frames the DCM maps between:

A = (O, â1, â2, â3)

B = (O, b̂1, b̂2, b̂3)

´ [ACB]
ij
= âi · b̂j =⇒ BCA =

(ACB)T =⇒
[BCA]

ij
= b̂i · âj

b̂1 · â1 = cos θ

b̂1 · â2 = cos
(π
2
− θ
)
= sin θ

b̂2 · â1 = cos
(
θ +

π

2
− θ + θ

)
= − sin θ

b̂2 · â2 = cos θ

b̂3 · â3 = 1

b̂1 · â3 = b̂2 · â3 = b̂3 · â1 = b̂3 · â2 = cos
(π
2

)
= 0

Polar/Cylindrical Reference Frames
P = (O, êr, êθ, ê3)

PCI ≡ C3(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


[
rP/O

]
P︸ ︷︷ ︸ρ0

z


P

= PCI
[
rP/O

]
I︸ ︷︷ ︸xy

z


Iρ0

z


P

= PCI

xy
z


I

=

 x cos (θ) + y sin (θ)
−x sin (θ) + y cos (θ)

z


Pxy

z


I

= ICP︸︷︷︸(PCI)T
ρ0
z


P

=

ρ cos (θ)ρ sin (θ)
z


I

Useful for tracking an object moving in-plane whose position is most easily
described in polar coordinates. êr will always point at the object.
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Spherical Reference Frames

S = (O, êφ, êθ, r̂)

SCI = C2(φ)C3(θ) =

cos (φ) cos (θ) sin (θ) cos (φ) − sin (φ)
− sin (θ) cos (θ) 0

sin (φ) cos (θ) sin (φ) sin (θ) cos (φ)



xy
z


I︸ ︷︷ ︸[

rP/O
]
I

= ICS︸︷︷︸(SCI)T
00
r


S︸ ︷︷ ︸[

rP/O
]
S

= r

cos θ sinφsin θ sinφ
cosφ


I

Useful for tracking an object moving in 3D whose position is most easily
described in spherical coordinates. r̂ will always point at the object.

Vector Derivatives in Time

• A vector rP/O = a1â1 + a2â2 + a3â3 is differentiable in time at a time t1
with respect to frame A = (O, â1, â2, â3) if a1(t), a2(t), a3(t) are
differentiable at t = t1. Then:

Ad

dt
rP/O

∣∣∣∣∣
t=t1

=
da1
dt

∣∣∣∣
t=t1

â1 +
da2
dt

∣∣∣∣
t=t1

â2 +
da3
dt

∣∣∣∣
t=t1

â3

• The unit vectors defining a frame always have zero time derivatives
with respect to that frame (but not necessarily to other frames)
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Vector Differentiation Across Reference Frames
Angular Velocity of B in A: AωB , θ̇ n̂

Positive for CCW rotation
IωFN = IωF1 + F1ωF2 + F2ωF3 + . . .+ FN−1ωFN

Rotation axis: [n̂]A = [n̂]B =

n1

n2

n3



The Transport Equation

Ad

dt
c =

B d

dt
c+ AωB × c

NB: Counter-clockwise is defined by looking down along the axis of rotation.

Newton’s Second Law

Inertial Frame Derivative Inertially Fixed Point Mass (Assumed Constant)

FP =
I d

dt

ÄIpP/Oä = I ddt ÄmP
IvP/O

ä
=mP

IaP/O

Resultant Force on P Linear Momentum Inertial Velocity and Acceleration

MP/O =
I d

dt

(I
hP/O

)
=
I d

dt

Ä
rP/O × IpP/O

ä
= rP/O × FP

Net Moment (Torque) about O Angular Momentum of P about O
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Euler’s Laws

I. The product of the inertial acceleration of the center of mass of
a rigid body and its total mass is equal to the total external force
applied to the body

FG = mG
IaG/O

II. The rate of change of the inertial angular momentum of a rigid
body about a fixed point O in the inertial frame is equal to the
total external moment applied to the body about O

I d

dt
IhO = MO

Center of Mass

rG/O =
1

mG

N∑
i=1

ri/Omi

• As N →∞: mi → 0

rG/O =
1

mG

∫
B

r dm/O dm

• If the density is given by ρ(r dm/O):

rG/O =
1

mG

∫
B

r dm/Oρ(r dm/O) dV

• The center of mass corollary:
N∑
i=1

miri/G = 0 or
∫

B

r dm/Gρ(r dm/G) dV = 0
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Angular Momentum of a Rigid Body

IhO =
N∑
i=1

miri/O × Ivi/O
mi → dm
========⇒
N →∞

IhO =

∫
B

rdm/O × Iv dm/O dm

Internal forces between i and j
I d

dt

(IhO) = N∑
i=1

ri/O × F
(ext)
i︸ ︷︷ ︸

, M
(ext)
O

+
1

2

N∑
i=1

N∑
j=1

(ri/O − rj/O)× Fi,j︸ ︷︷ ︸
Equals zero for rigid bodies

This is known as the internal moment assumption
NB: The internal moment assumption for rigid bodies is effectively the only
additional postulate added by Euler’s laws to Newton’s laws. It is possible to
define internal forces within a collection of particles that violate this
assumption, therefore, we take its applicability to rigid bodies as a new law.

The Separation Principle

IhO =

IhG/O︸ ︷︷ ︸
Angular Momentum of COM

about an Inertially Fixed Point
+

IhG︸︷︷︸
Angular Momentum of
Body about its COM

IhG/O , mGrG/O × IvG/O =⇒
I d

dt

(IhG/O) = MG/O , rG/O × FG

IhG ,


N∑
i=1

miri/G × Ivi/G Particles∫
B

r dm/G × Ivdm/G dm ContinuousBodies

I d

dt

(IhG) = MG ,


N∑
i=1

ri/G × F
(ext)
i

Contact Forces
(N = # contacts for rigid bodies)∫

B

r dm/G × f dm dm Field Forces
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Moment of Inertia

IhG = IG · IωB

IG ,



N∑
i=1

mi

[
(ri/G · ri/G)U− (ri/G ⊗ ri/G)

]
Collection of Particles

∫
B

[
(rdm/G · rdm/G)U− (rdm/G ⊗ rdm/G)

]
dm Rigid Body

Matrix of Inertia

IG =
3∑
i=1

3∑
j=1

Iijbi ⊗ bj

[IG]B =

 I11 I12 I13
I21 I22 I23
I31 I32 I33


B

=
N∑
i=1

mi

(
([ri/G]

T
B [ri/G]B)I − [ri/G]B[ri/G]

T
B
)

=

∫
B

(
‖rdm/G‖2I − [rdm/G]B[rdm/G]

T
B
)
dm

=

∫
B

(
‖rdm/G‖2I − [rdm/G]B[rdm/G]

T
B
)
ρ(rdm/G) dV
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Moments and Angular Momentum about an
Arbitrary Point Q fixed to a Rigid Body

MQ = MG − rQ/G ×
N∑
i=1

F
(ext)
i

I d

dt

(IhQ) = B d

dt

(IhQ)+ IωB × IhQ = MQ + rQ/G ×mG
IaQ/O

IhQ = IQ · IωB IQ ,
N∑
i=1

mi

(
(ri/Q · ri/Q))U− (ri/Q ⊗ ri/Q)

)
· IωB

The Parallel Axis Theorem
IQ = IG +mG

[
(rQ/G · rQ/G)U− (rQ/G ⊗ rQ/G)

]

Work and Energy
• A force (FP ) does work (W ) on a particle P when it displaces the particle

along a trajectory (γP ): WFP
P (rP/O; γP ) ,

∫
γP

FP · IdrP/O
Path Integral over trajectory

• The Kinetic Energy of particle P is defined as: TP/O ,
1

2
mp(

IvP/O · IvP/O)
• The change in kinetic energy from time t1 to time t2 is equal to the total

work done on the particle during that time
• The work done by Conservative Forces depends only on the endpoints of

the trajectory.
∮
FP · IdrP/O = 0 means that FP is conservative.

Closed Path Integral
• Conservative Forces can always be written as the gradient of a scalar

Potential (U): F(cons)
P = −∇U

(FP )
P/O so

U
(FP )
P/O (t2) = U

(FP )
P/O (t1)−W (FP )

P (t1, t2)
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Total Work and Energy

• Total Energy: EP/O(t) , TP/O(t) + UP/O(t)

• Total Work: W tot
P (rP/O; γP ) = W c

P (t1, t2)︸ ︷︷ ︸ + W nc
P (rP/O; γP )︸ ︷︷ ︸

Work due to conservative forces Work due to non-conservative forces
= negative change in potential energy = change in total energy

• Conservation of Energy: no non-conservative forces ≡ constant total energy

EP/O(t2) = EP/O(t1) +W
(nc)
P (rP/O; γP )

Hamilton’s Principle and the Euler-Lagrange Equations
• Define the Lagrangian as KE - PE: L , T − V
• Define the action of a system as: I ,

∫ t2

t1

L dt

• Hamilton’s Principle: the motion of a system is a stationary point of the
action:

δI = 0

• Hamilton’s Principle and Newton’s 2nd law lead directly to the

Euler-Lagrange Equations:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 ∀i
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