2 - The Two Body Problem

Dmitry Savransky

Cornell University
MAE 6720/ASTRO 6579, Spring 2022
(C)Dmitry Savransky 2019-2022

The Two-Body Problem

The two-body problem (two point masses interacting via gravity, with no other forces present) is the fundamental building block of celestial mechanics. In fact, the twobody problem is the only orbital mechanics problem with an exact solution, allowing you to express the positions of both bodies in the past, present, and future via a single analytical expression. Although in practice you are unlikely to ever deal with an exact two-body system, many complex systems (including the solar system) behave like collections of two-body orbits that gradually change over time, making two-body concepts broadly applicable to a variety of other cases.

Newton's Law of Gravity and the Two Body Problem

Gravitational Constant

$$
\mathbf{F}_{1}=-\mathbf{F}_{2}=-\frac{G m_{1} m_{2}}{\left\|\mathbf{r}_{1 / 2}\right\|^{3}} \mathbf{r}_{1 / 2}
$$

Orbital Radius: $\mathbf{r} \equiv \mathbf{r}_{1 / 2}\left(\right.$ or $\left.\mathbf{r}_{2 / 1}\right)$
Gravitational Parameter: $\mu \triangleq G\left(m_{1}+m_{2}\right)$

$$
\frac{{ }^{I} \mathrm{~d}^{2}}{\mathrm{~d} t^{2}} \mathbf{r}+\frac{\mu}{\|\mathbf{r}\|^{3}} \mathbf{r}=0
$$

Conserved Quantities in the Two Body Problem

$$
\begin{aligned}
& \text { Specific Angular Momentum: } \mathbf{h} \triangleq \mathbf{r} \times \frac{{ }^{\mathcal{I}} \mathrm{d}}{\mathrm{~d} t} \mathbf{r} \\
& \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}} \mathbf{r}+\frac{\mu}{\|\mathbf{r}\|^{3}} \mathbf{r}=0 \Rightarrow \frac{{ }^{\mathcal{I}} \mathrm{d}^{2}}{\mathrm{~d} t^{2}} \mathbf{r} \times \mathbf{h}=\frac{\mathcal{I}}{\mathrm{d}}\left(\frac{\mu}{\|\mathbf{r}\|} \mathbf{r}\right)
\end{aligned}
$$

$$
\Rightarrow \quad \frac{{ }^{\mathcal{I}} \mathrm{d}}{\mathrm{~d} t} \mathbf{r} \times \mathbf{h}=\mu\left(\frac{\mathbf{r}}{\|\mathbf{r}\|}+\underset{\uparrow}{\mathbf{e}}\right)
$$

Constant of Integration

$$
r \triangleq\|\mathbf{r}\|=\frac{h^{2} / \mu}{1+e \cos (\nu)}
$$

$$
h \triangleq\|\mathbf{h}\| \quad e \triangleq\|\mathbf{e}\| \quad \mathbf{r} \cdot \mathbf{e}=r e \cos \nu
$$

\mathbf{e} is the eccentricity (Laplace-Runge-Lenz) vector. ν is the angle between \mathbf{e} and \mathbf{r}.

The Perifocal Frame

$$
\mathbf{r}=r \cos (\nu) \hat{\mathbf{e}}+r \sin (\nu) \hat{\mathbf{q}}
$$

$$
\mathbf{v} \triangleq \frac{\mathcal{I}}{\mathrm{d}} \mathbf{r} \mathbf{r}=[\dot{r} \cos (\nu)-r \dot{\nu} \sin (\nu)] \hat{\mathbf{e}}+[\dot{r} \sin (\nu)+r \dot{\nu} \cos (\nu)] \hat{\mathbf{q}}
$$

$$
\mathcal{P} \triangleq(O, \hat{\mathbf{e}}, \hat{\mathbf{q}}, \hat{\mathbf{h}})
$$

$$
=\frac{\mu}{h}[-\sin (\nu) \hat{\mathbf{e}}+(e+\cos (\nu)) \hat{\mathbf{q}}]
$$

$$
r=\|\mathbf{r}\|=\frac{h^{2} / \mu}{1+e \cos (\nu)}
$$

$$
e=\|\mathbf{e}\|=\left\|\frac{\mathbf{v} \times \mathbf{h}}{\mu}-\frac{\mathbf{r}}{r}\right\|
$$

$$
h=\|\mathbf{h}\|=\|\mathbf{r} \times \mathbf{v}\|
$$

$$
h=r^{2} \dot{\nu}
$$

$\hat{\mathbf{e}}, \hat{\mathbf{q}}, \mathbf{r}$, and \mathbf{v} all lie within the perifocal plane

Kepler's Laws of Planetary Motion

(1) The orbit of a planet is an ellipse (conic section) with the Sun at a focus
(2) A line segment joining a planet and the Sun sweeps out equal areas in equal time
(3) The square of the orbital period is proportional to the cube of the semi-major axis

Conic Sections

Kepler's First Law

Elliptical Orbits

$$
\begin{gathered}
r^{\prime}+r=2 a \\
r=\frac{a\left(1-e^{2}\right)}{1+e \cos (\nu)} \\
=\frac{h^{2} / \mu}{1+e \cos (\nu)} \\
=\frac{\ell}{1+e \cos (\nu)} \\
\begin{array}{c}
* \text { This last equa- } \\
\text { tion applies for all } \\
\text { conic sections. }
\end{array}
\end{gathered}
$$

Parabolic and Hyperbolic Orbits

Conic Section Parameters

$\ell=r(\nu=\pi / 2)=$ semi-parameter: height above focus
$c=a e=$ linear eccentricity: distance from center to focus
$p=\ell / e$ focal parameter: distance from focus to directrix

NB: p and ℓ frequently have reversed definitions, depending on the text.

	Definition	e	c	ℓ	p
circle	$x^{2}+y^{2}=a^{2}$	0	0	a	∞
ellipse	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$	$\sqrt{1-\frac{b^{2}}{a^{2}}}$	$\sqrt{a^{2}-b^{2}}$	$\frac{b^{2}}{a}$	$\frac{b^{2}}{\sqrt{a^{2}-b^{2}}}$
parabola	$y^{2}=4 a x$	1	∞	$2 a$	$2 a^{*}$
hyperbola	$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$	$\sqrt{1+\frac{b^{2}}{a^{2}}}$	$\sqrt{a^{2}+b^{2}}$	$\frac{b^{2}}{\|a\|}$	$\frac{b^{2}}{\sqrt{a^{2}+b^{2}}}$

[^0]
Kepler's Second and Third Laws

$$
\begin{gathered}
r \dot{\nu}=\frac{h}{r} \Longrightarrow \mathrm{~d} A=\frac{1}{2} r(r \mathrm{~d} \nu)=\frac{1}{2} \underbrace{r^{2} \frac{\mathrm{~d} \nu}{\mathrm{~d} t}}_{h} \mathrm{~d} t \\
\frac{\mathrm{~d} A}{\mathrm{~d} t}=\frac{h}{2}
\end{gathered}
$$

$\int_{0}^{T_{P}} \frac{\mathrm{~d} A}{\mathrm{~d} t} \mathrm{~d} t=\int_{0}^{T_{P}} \frac{h}{2} \mathrm{~d} t \quad \Longrightarrow \quad A=\frac{h}{2} T_{P}$
For an ellipse: $A=\pi a b=\pi a^{\frac{3}{2}} \sqrt{\ell}=\frac{h}{2} T_{P}$

$$
T_{P}=\frac{2 \pi}{\sqrt{\mu}} a^{\frac{3}{2}}
$$

Specific Energy and Effective Potential

$$
\begin{array}{r}
\qquad \begin{array}{r}
\mathcal{E}=\frac{v^{2}}{2}-\frac{\mu}{r}=\text { constant } \\
\mathcal{E}=-\frac{\mu}{2 a} \\
\text { The Vis-Viva Equation } \\
v^{2}=\mu\left(\frac{2}{r}-\frac{1}{a}\right) \\
\mathcal{E}=\frac{\dot{r}^{2}}{2}+\underbrace{U(r)+\frac{h^{2}}{2 r^{2}}}_{\triangleq U_{\text {eff }}}
\end{array} .
\end{array}
$$

[^0]: ${ }^{*} a$ is the focus to vertex distance for a parabola

