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The Two-Body Problem

The two-body problem (two point masses interacting via gravity, with no other forces
present) is the fundamental building block of celestial mechanics. In fact, the two-
body problem is the only orbital mechanics problem with an exact solution, allowing
you to express the positions of both bodies in the past, present, and future via
a single analytical expression. Although in practice you are unlikely to ever deal
with an exact two-body system, many complex systems (including the solar system)
behave like collections of two-body orbits that gradually change over time, making
two-body concepts broadly applicable to a variety of other cases.



Newton’s Law of Gravity and the Two Body Problem
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Orbital Radius: r = ry/5 (or ry/)
Gravitational Parameter: p 2 G(m +ms)
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Generalization to N bodies (The N-Body Problem)
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Conserved Quantities in the Two Body Problem .
d

Specific Angular Momentum: h £r x —r
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e is the eccentricity (Laplace-Runge—Lenz) vector. v is the angle between e
and r.

The Perifocal Frame
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e,q,r, and v all lie within the perifocal plane
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Kepler’s Laws of Planetary Motion

1 The orbit of a planet is an ellipse (conic section) with the Sun at a focus

2 A line segment joining a planet and the Sun sweeps out equal areas in
equal time

3 The square of the orbital period is proportional to the cube of the
semi-major axis

Conic Sections

Hyperbola




Kepler’s First Law

Elliptical Orbits

Two body orbits are conic sections
with the central body at a focus
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*This last equa-

tion applies for all

conic sections.



Parabolic and Hyperbolic Orbits

Conic Section Parameters

¢ = r(v = 7/2) = semi-parameter: height above focus
¢ = ae = linear eccentricity: distance from center to focus
p = Y/e focal parameter: distance from focus to directrix

NB: p and / frequently have reversed definitions, depending on the

text.
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*a is the focus to vertex distance for a parabola



Kepler’s Second and Third Laws
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