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Orbit Determination

A two-body orbit is fully determined by its Keplerian orbital elements, or a simulta-
neous measurement of the orbiting body’s position and velocity with respect to the
central body. However, such a measurement is often non-trivial and it is frequently
difficult or impossible to accurately establish the distances to distant objects. On the
other hand, measuring angles on the sky (which can then be converted to unit vectors
of positions and velocities) is much easier, and so there exist multiple methods for
using multiple position vectors (or unit vectors) to estimate an orbit’s parameters.
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Gauss’s Method
ri , rP/G(ti) ri , ‖ri‖
ρi , rP/O(ti) ρi , ‖ρi‖

c1r1 + c2r2 + c3r3 = 0

c1 (r1 × r3) = −c2 (r2 × r3)

c3 (r1 × r3) = −c2 (r1 × r2)

r1 = f1r2 + g1v2

r3 = f3r2 + g3v2

c2 , −1

c1 =
g3

f1g3 − f3g1
c3 =

g1
f3g1 − f1g3

Recall The Series Solutions to f and g Functions

σ ,
µ

r3
=⇒


f = 1− σ

2
(∆t)2 . . .

g = ∆t− σ

6
(∆t)3 . . .

∆t1 , t1 − t2 ∆t3 , t3 − t2

c1 =
∆t3

∆t3 −∆t1︸ ︷︷ ︸
, a1

+
∆t3 ((∆t3 −∆t1)

2 −∆t23)

6(∆t3 −∆t1)︸ ︷︷ ︸
, b1

σ +O(∆t3i )

c3 =
−∆t1

∆t3 −∆t1︸ ︷︷ ︸
, a3

+
−∆t1 ((∆t3 −∆t1)

2 −∆t21)

6(∆t3 −∆t1)︸ ︷︷ ︸
, b3

σ +O(∆t3i )
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Back to Gauss’s Method
rP/G(ti) = rP/O(ti) + rO/G(ti) =⇒ ri = ρi + rO/G(ti)

c1r1+c2r2+c3r3 = 0 =⇒ c1ρ1+c2ρ2+c3ρ3 = −
(
c1rO/G(t1) + c2rO/G(t2) + c3rO/G(t3)

)
[
ρ̂1 ρ̂2 ρ̂3

]︸ ︷︷ ︸
, A

c1ρ1c2ρ2
c3ρ3

 =
[
rO/G(t1) rO/G(t2) rO/G(t3)

] −c1−c2
−c3


c1ρ1c2ρ2
c3ρ3

 = A−1
[
rO/G(t1) rO/G(t2) rO/G(t3)

]︸ ︷︷ ︸
, B

−c1−c2
−c3


c2 = −1 =⇒ ρ2 = B21a1 −B22 +B23a3︸ ︷︷ ︸

, d1

+(B21b1 +B23b3︸ ︷︷ ︸
, d2

)σ

r82 =
(
d21 + 2d1ρ̂2 · rO/G(t2) + ‖rO/G(t2)‖2

)
r62 + 2µ

(
d2ρ̂2 · rO/G(t2) + d1d2

)
r32 + µ2d22

Gibbs Method
∑
i

ciri = 0


c2 (r1 × r2) = c3 (r3 × r1)

c1 (r1 × r2) = c3 (r2 × r3)

c1 (r3 × r1) = c2 (r2 × r3)

(∑
i

ciri

)
· e = 0

= c1(`− r1) + c2(`− r2) + c3(`− r3)

`(r1 × r2 + r2 × r3 + r3 × r1︸ ︷︷ ︸
, d

) = r3(r1 × r2) + r1(r2 × r3) + r2(r3 × r1)︸ ︷︷ ︸
, n = `d

n× e = `[(r2 − r3)r1 + (r3 − r1)r2 + (r1 − r2)r3︸ ︷︷ ︸
, s

]

n ‖ d ‖ ĥ s ‖ q̂ e =
‖s‖
‖d‖

` =
‖n‖
‖d‖
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Orbit Boundary Value Problem

Unlike the previous two methods, Lambert’s problem, which is a boundary value
problem between two points in space and time, does not yield a unique solution.
Rather, it allows us to explore all of the possible two-body orbits about a central
body that connect these points in space. As such, Lambert solvers (codes to solve
arbitrary Lambert problems) are an incredibly important aspect of trajectory design.

Lambert’s Problem

Trajectory 
Origin

At Time of 
Departure

Destination
At Time of Arrival

Central Body of
Transfer Trajectory

Assuming a Keplerian orbit between P1 and
P2 with central body at F , there must exist
a vacant focus at F ?

If the transfer between P1 and P2 is an ellipse, we know r′ + r = 2a so:

P1F + P1F ?

P2F + P2F ?

}
= 2a =⇒ P1F ? = 2a− ‖r1‖

P2F ? = 2a− ‖r2‖
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Lambert’s Problem: Location of the Vacant Focus
• Vacant focus must be at

intersection of two circles
centered at P1 and P2 with
radii of 2a− ‖r1‖ and
2a− ‖r2‖, respectively

• Selecting transfer orbit a
determines the possible
locations of the vacant focus
and sets the transfer orbit
specific energy (E = − µ

2a
)

and period

Lambert’s Problem: Transfer Orbit Eccentricity
Selecting one of the two possible
vacant foci sets the transfer orbit
eccentricity:

FF ? = 2ae
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Lambert’s Problem: Closed Transfer Orbits
There are four possible transfer paths
for each semi-major axis: 2 vacant
foci, and 2 directions of travel for each

Lambert’s Problem: Minimum Energy Transfer
There is always a unique
elliptical orbit minimizing
energy, where the vacant
focus lies on the chord P1P2

amin =
s

2

emin =

√
1− 2`min

s

`min =
‖r1‖‖r2‖
‖r1/2‖

(1− cos(∆ν))

s ,
‖r1‖+ ‖r2‖+ ‖r1/2‖

2
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Lambert’s Problem: Location of Vacant Focus
Location of the vacant focus is
given by the hyperbola:

aF = −
∣∣∣∣‖r1‖ − ‖r2‖2

∣∣∣∣
eF =

∣∣∣∣ ‖r1/2‖
‖r1‖ − ‖r2‖

∣∣∣∣
NB: This is not a transfer

orbit itself.

Based on Kaplan (1976)

Lambert’s Problem: All Possible Transfers
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Lambert’s Time of Flight Theorem

t =
1
√
µ

∫ s

s−c

r√
2r − r2/a

dr `

E1/4
TP
2π

[(α− sinα)∓ (β − sin β)]
4a(s− r1)(s− r2)

c2
sin2

(
α± β

2

)
E2/3 TP −

TP
2π

[(α− sinα)± (β − sin β)]
4a(s− r1)(s− r2)

c2
sin2

(
α∓ β

2

)
Parabolas

1

3

√
2

µ

[
s

3
2 ∓ (s− c)

3
2

] 4(s− r1)(s− r2)
c2

[√
s

2
±
√
s− c

2

]2
H1/2

√
−a3
µ

[(sinh γ − γ)∓ (sinh δ − δ)] −4a(s− r1)(s− r2)
c2

sinh2

(
γ ± δ

2

)
c = ‖r1/2‖ r1 = ‖r1‖ r2 = ‖r2‖ 2s = ‖r1‖+ ‖r2‖+ ‖r1/2‖

sin
(α

2

)
=

√
s

2a
sin

(
β

2

)
=

√
s− c

2a
sinh

(γ
2

)
=

√
s

−2a
sinh

(
δ

2

)
=

√
s− c
−2a

Lambert’s Problem Non-Dimensionalized
E? , −amin

a

T ? ,
√

µ

a3min

t

K , 1−
‖r1/2‖
s

Based on Kaplan (1976)
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Recall Universal Variables
r2 = fr1 + gv1

v2 = ḟr1 + ġv1

}
fġ − ḟ g = 1

r1 , ‖r1‖
r2 , ‖r2‖

χ̇ ,
√
µ

r
ψ ,

χ2

a

c2 ,


1− cos

(√
ψ
)

ψ
ψ ≥ 0

1− cosh
(√
−ψ
)

ψ
ψ < 0

c3 ,


√
ψ − sin

(√
ψ
)

√
ψ
3 ψ ≥ 0

sinh
(√
−ψ
)
−
√
−ψ

√
−ψ3 ψ < 0

f = 1− χ2

r1
c2 = 1− r2

`
(1− cos(∆ν))

g = ∆t− χ3

√
µ
c3 =

r2r1√
µ`

sin(∆ν)

ḟ =

√
µ

r2r1
χ(ψc3 − 1) =

√
µ

`
tan

(
∆ν

2

)(
1− cos(∆ν)

`
− 1

r1
− 1

r2

)
ġ = 1− χ2

r2
c2 = 1− r1

`
(1− cos(∆ν))

Lambert’s Problem: Universal Variables

f : χ2 =
r1r2
`c2

(1− cos(∆ν)) =
y

c2

ḟ :
r1r2
`

(1− cos(∆ν))︸ ︷︷ ︸
, y

= r1 + r2 +

(
r1r2

sin2(∆ν)

1− cos(∆ν)

)1/2

︸ ︷︷ ︸
, A

ψc3 − 1
√
c2

g : ∆t− χ3

√
µ
c3 = A

√
y

µ

f = 1− y

r1
g = A

√
y

µ
ġ = 1− y

r2

v1 =
r2 − fr1

g
v2 =

ġr2 − r1
g
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