5 - Perturbations from Circular and Elliptic Orbits

Dmitry Savransky

Cornell University
MAE 6720/ASTRO 6579, Spring 2022
© Dmitry Savransky 2019-2022

Perturbations from Circular and Elliptic Orbits

Now that we have deeply explored two-body orbits, it is time to go beyond them. While two-body orbits are an excellent initial approximation to many real systems, we can gain a lot of fidelity by incorporating additional effects as perturbations to the two-body model - that is, allowing the orbital elements that are constants in two-body systems to gradually evolve in time in response to various additional gravitational and non-gravitational forces. As an initial step towards a completely general treatment of perturbations, we will consider small deviations from circular orbits. We will also review the basic impulsive model of orbital control (i.e., the instantaneous change in orbital velocity while preserving orbital radius) that serves as a key tool in preliminary orbital maneuver design.

Small Perturbations from Circular Orbits

Euler-Hill/Clohessy-Wiltshire Equations

$$
\frac{{ }^{\mathcal{H}} \mathrm{d}^{2}}{\mathrm{~d} t^{2}} \mathbf{r} \approx-2 n \hat{\mathbf{e}}_{\mathbf{3}} \times \frac{{ }^{\mathcal{H}} \mathrm{d}}{\mathrm{~d} t} \mathbf{r}-n^{2}\left(\hat{\mathbf{e}}_{\mathbf{3}} \times\left(\hat{\mathbf{e}}_{\mathbf{3}} \times \mathbf{r}\right)\right)-n^{2}\left(\mathbf{r}-3\left(\hat{\mathbf{e}}_{\mathbf{r}} \cdot \mathbf{r}\right) \hat{\mathbf{e}}_{\mathbf{r}}\right)+\mathbf{f}
$$

$$
\left[\begin{array}{c}
\ddot{x} \\
\ddot{y} \\
\ddot{z}
\end{array}\right]_{\mathcal{H}}=\underbrace{\left[\begin{array}{c}
2 n \dot{y} \\
-2 n \dot{x} \\
0
\end{array}\right]_{\mathcal{H}}+\left[\begin{array}{c}
n^{2} x \\
n^{2} y \\
0
\end{array}\right]_{\mathcal{H}}}_{\text {Rotating Frame }}-\underbrace{\left[\begin{array}{c}
n^{2} x \\
n^{2} y \\
n^{2} z
\end{array}\right]_{\mathcal{H}}+\left[\begin{array}{c}
3 n^{2} x \\
0 \\
0
\end{array}\right]_{\mathcal{H}}}_{\text {Gravity Perturbations }}+\underbrace{[\mathbf{f}]_{\mathcal{H}}}_{\text {Other Perturbations }}
$$

$$
\begin{aligned}
\ddot{x}-2 n \dot{y}-3 n^{2} x & =\mathbf{f} \cdot \hat{\mathbf{e}}_{\mathbf{r}} \triangleq f_{x} \\
\ddot{y}+2 n \dot{x} & =\mathbf{f} \cdot \hat{\mathbf{e}}_{\theta} \triangleq f_{y} \\
\ddot{z}+n^{2} z & =\mathbf{f} \cdot \hat{\mathbf{e}}_{\mathbf{3}} \triangleq f_{z}
\end{aligned}
$$

Natural Motion

$$
\begin{array}{rlr}
\ddot{x}-2 n \dot{y}-3 n^{2} x=0 & X(s) \triangleq \mathcal{L}\{x(t)\} \\
\ddot{y}+2 n \dot{x}=0 & \dot{Y}(s) \triangleq \mathcal{L}\{\dot{y}(t)\} \\
\ddot{z}+n^{2} z=0 &
\end{array}
$$

$\mathcal{L}\left\{\left[\begin{array}{c}\ddot{x}-2 n \dot{y}-3 n^{2} x \\ \ddot{y}+2 n \dot{x}\end{array}\right]=0\right\} \Longrightarrow \underbrace{\left[\begin{array}{cc}s^{2}-3 n^{2} & -2 n \\ 2 n s & s\end{array}\right]}_{\triangleq A}\left[\begin{array}{c}X(s) \\ \dot{Y}(s)\end{array}\right]=0$-Initial Conditions

$$
\operatorname{det} A=s\left(s^{2}-3 n^{2}\right)+4 n^{2} s=0 \Longrightarrow s=0, \pm i n
$$

$$
\begin{aligned}
& x(t)=4 x_{0}-3 x_{0} \cos (n t)+\frac{\dot{x}_{0}}{n} \sin (n t)+2 \frac{\dot{y}_{0}}{n}-2 \frac{\dot{y}_{0} \cos (n t)}{n} \\
& y(t)=-6 x_{0} n t+6 x_{0} \sin (n t)+2 \cos (n t) \frac{\dot{x}_{0}}{n}-2 \frac{\dot{x}_{0}}{n}+\frac{\dot{y}_{0}}{n}(4 \sin (n t)-3 n t)+y_{0} \\
& z(t)=z_{0} \cos (n t)+\frac{\dot{z}_{0}}{n} \sin (n t)
\end{aligned}
$$

Mode 1: $s=0$

$$
A=\left[\begin{array}{cc}
s^{2}-3 n^{2} & -2 n \\
2 n s & s
\end{array}\right]=\left[\begin{array}{cc}
-3 n^{2} & -2 n \\
0 & 0
\end{array}\right]
$$

$x_{0}=$ arbitrary
$y_{0}=$ arbitrary $\quad \xlongequal{\dot{x}_{0}=0} \quad x(t)=x_{0}$
$\begin{aligned} \dot{x}_{0}= & \text { arbitrary (often set to } 0) \quad \stackrel{x_{0}=0}{ } \quad-3 n x_{0}\end{aligned} \quad y(t)=-\frac{3}{2} x_{0} n t+y_{0}$
$\dot{y}_{0}=\frac{-3 n x_{0}}{2}$

Body is on a circular orbit of radius $\left\|\mathbf{r}_{1}\right\|+x_{0}$

Modes 2/3: $s= \pm i n$

$$
A=\left[\begin{array}{cc}
s^{2}-3 n^{2} & -2 n \\
2 n s & s
\end{array}\right]=\left[\begin{array}{cc}
-n^{2}-3 n^{2} & -2 n \\
\pm 2 i n^{2} & \pm i n
\end{array}\right]
$$

$x_{0}=$ arbitrary

$$
\begin{array}{lll}
y_{0}=\text { arbitrary } & \stackrel{\dot{x}_{0}=0}{ } & \begin{array}{l}
x(t)=x_{0} \cos (n t) \\
\left.\dot{x}_{0}=\text { arbitrary (often set to } 0\right)
\end{array} \\
y(t)=-2 x_{0} \sin (n t)+y_{0}
\end{array}
$$

$$
\dot{y}_{0}=-2 n x_{0}
$$

Oscillatory motion about O in the rotating frame

Flight Path Angle

Tangential Burns

- $v^{2}=\mu\left(\frac{2}{r}-\frac{1}{a}\right) \quad \Longrightarrow \quad a=\frac{\mu r}{2 \mu-r v^{2}}$
$\bullet e^{2}=\mathbf{e} \cdot \mathbf{e}=\left\|\frac{\mathbf{v} \times \mathbf{h}}{\mu}-\frac{\mathbf{r}}{r}\right\|^{2}=\frac{\left(r v^{2}-\mu\right)^{2}}{\mu^{2}}+\frac{(\mathbf{r} \cdot \mathbf{v})^{2} v^{2}}{\mu^{2}}-\frac{2(\mathbf{r} \cdot \mathbf{v})^{2}\left(r v^{2}-\mu\right)}{\mu^{2} r}$

NB: As eccentricity cannot go below zero, burning from a circular orbit will always result in an increase in eccentricity, regardless of whether the semi-major axis increases or decreases.

Hohmann Transfers

A Hohmann transfer requires two tangential burns.

$$
\begin{aligned}
& a_{\text {transfer }} \equiv a_{t}=\frac{r_{i}+r_{f}}{2} \\
& t_{\text {transfer }}=\frac{1}{2} T_{P}^{\text {transfer }}=\pi \sqrt{\frac{a_{t}^{3}}{\mu}} \\
& \Delta v=\left|\Delta v_{i}\right|+\left|\Delta v_{f}\right| \\
& \left\{\begin{array}{l}
\Delta v_{i}=\underbrace{\sqrt{\frac{2 \mu}{r_{i}}-\frac{\mu}{a_{t}}}}_{v_{f}}-\underbrace{\sqrt{\frac{2 \mu}{r_{i}}-\frac{\mu}{a_{i}}}}_{v_{t_{i}}} \\
\Delta v_{f}=\underbrace{\sqrt{\frac{2 \mu}{r_{f}}-\frac{\mu}{a_{f}}}}_{v_{t_{f}}}-\underbrace{\sqrt{\frac{2 \mu}{r_{f}}-\frac{\mu}{a_{t}}}}_{v_{f}}
\end{array}\right.
\end{aligned}
$$

Bi-Elliptic Transfers

Hohmann vs. Bi-Elliptic

$$
\text { Hohmann : } \quad \frac{\left\|\Delta v_{i}\right\|+\left\|\Delta v_{f}\right\|}{v_{i}}=\left|\sqrt{\frac{2 \eta}{1+\eta}}+\sqrt{\frac{1}{\eta}}-\left(1+\sqrt{\frac{2}{\eta(1+\eta)}}\right)\right|
$$

$$
\mathrm{Bi}-\text { Elliptic }: \frac{\left\|\Delta v_{i}\right\|+\left\|\Delta v_{t}\right\|+\left\|\Delta v_{f}\right\|}{v_{i}}=\left|\sqrt{\frac{2 \xi}{1+\xi}}-1\right|+\left|\sqrt{\frac{2 \eta}{\xi(\eta+\xi)}}-\sqrt{\frac{2}{\xi(1+\xi)}}\right|+\left|\sqrt{\frac{1}{\eta}}-\sqrt{\frac{2 \xi}{\eta(\eta+\xi)}}\right|
$$

$$
\Rightarrow \lim _{r_{t} \rightarrow \infty}\left(\frac{\left\|\Delta v_{i}\right\|+\left\|\Delta v_{t}\right\|+\left\|\Delta v_{f}\right\|}{v_{i}}\right)=
$$

$$
\sqrt{2}-1+\left|\sqrt{\frac{1}{\eta}}-\sqrt{\frac{2}{\eta}}\right|
$$

Hohmann maximum (for $\eta>1$) occurs at $\eta=15.5817$

Hohmann and $\eta=\infty$ intersect at $\eta=11.93876^{ \pm 1}$

Inclination Changes (Super Costly!)

$$
\Delta v=2 v_{i} \cos \left(\phi_{f p a}\right) \sin \left(\frac{\Delta I}{2}\right)
$$

- $\mathrm{NB}: \Delta \mathrm{v} \propto v_{i}$. For elliptical orbits, one of the two nodes will be less costly
- For $\Delta I=60^{\circ}, \Delta v=v_{i}$
- To leave Ω unchanged, burn must occur on the line of nodes

Ascending Node Change

- In general, elliptical orbits require multiple burns to change only Ω, but circular orbits can do it in one
- The burn occurs on the original orbit at argument of latitude $\theta_{i}=\omega_{i}+\nu_{i}$ resulting with the spacecraft on the final orbit at θ_{f}, with a burn angle α

$$
\begin{aligned}
\cos \left(\theta_{i}\right) & =\tan I\left(\frac{\cos (\Delta \Omega)-\cos \alpha}{\sin \alpha}\right) \\
\cos \left(\theta_{f}\right) & =\cos I \sin I\left(\frac{1-\cos (\Delta \Omega)}{\sin \alpha}\right) \\
\cos (\alpha) & =\cos ^{2} I+\sin ^{2} I \cos (\Delta \Omega) \\
\Delta v^{\text {circ }} & =2 v_{i} \sin \left(\frac{\alpha}{2}\right)
\end{aligned}
$$

Ascending Node and Inclination Change
For circular orbits:

Hohmann Transfer + Inclination Change

For a total inclination change of ΔI :

- Change by $x \Delta I$ on initial burn
- Change by $(1-x) \Delta I$ on final burn
- Select x to minimize total Δv :
$\sin (x \Delta I)=\frac{\Delta v_{i} v_{f} v_{t_{f}} \sin ((1-x) \Delta I)}{\Delta v_{f} v_{i} v_{t_{i}}}$
- A good approximation is:
$x \approx \frac{1}{\Delta I} \tan ^{-1}\left(\frac{\sin (\Delta I)}{\frac{v_{i} v_{t_{i}}}{v_{f} v_{t_{f}}}+\cos (\Delta I)}\right)$
- Δv s for the combined maneuvers are:

$$
\begin{aligned}
\Delta v_{i} & =\sqrt{v_{i}^{2}+v_{t_{i}}^{2}-2 v_{i} v_{t_{i}} \cos (x \Delta I)} \\
\Delta v_{f} & =\sqrt{v_{f}^{2}+v_{t_{f}}^{2}-2 v_{f} v_{t_{f}} \cos ((1-x) \Delta I)}
\end{aligned}
$$

General Impulsive Maneuvers

- Remember: $a, e, I, \omega, \Omega, \nu(t) \Longleftrightarrow \mathbf{r}(t), \mathbf{v}(t)$
- Before Burn: $\left.\begin{array}{c}\mathbf{r}_{i} \\ \mathbf{v}_{i}\end{array}\right\} a_{i}, e_{i}, I_{i}, \omega_{i}, \Omega_{i}, \nu_{i}(t)$
- After Burn: $\left.\begin{array}{l}\mathbf{r}_{f} \equiv \mathbf{r}_{i} \\ \mathbf{v}_{f}=\mathbf{v}_{i}+\boldsymbol{\Delta} \mathbf{v}\end{array}\right\} a_{f}, e_{f}, I_{f}, \omega_{f}, \Omega_{f}, \nu_{f}(t)$
- You can always solve for the $\boldsymbol{\Delta} \mathbf{v}$ to produce the desired change in orbital elements as long as the initial and final orbits intersect at the burn location
- These maneuvers are not guaranteed to be feasible or optimal
- Typical approach is numerical optimization

Hyperbolic Flyby

Gravity Assist Effects

- The \mathbf{v}_{∞} vectors are with respect to the flyby body $\left(\mathbf{v}_{\infty} \equiv \mathbf{v}_{\infty / F}\right)$
- For a flyby occurring between times t_{1} and t_{2} :

$$
\mathbf{v}_{\infty, \text { in } / \odot}=\mathbf{v}_{\infty, \text { in }}+\mathbf{v}_{F / \odot}\left(t_{1}\right) \quad \text { and } \quad \mathbf{v}_{\infty, \text { out } / \odot}=\mathbf{v}_{\infty, \text { out }}+\mathbf{v}_{F / \odot}\left(t_{2}\right)
$$

- Assuming $\mathbf{v}_{F / \odot}\left(t_{1}\right) \approx \mathbf{v}_{F / \odot}\left(t_{2}\right)$, the heliocentric Δv is:

$$
\Delta v \triangleq\left\|\mathbf{v}_{\infty, \text { out } / \odot}-\mathbf{v}_{\infty, \text { in } / \odot}\right\|=2\left\|\mathbf{v}_{\infty}\right\| \sin \left(\frac{\phi}{2}\right)=\frac{2\left\|\mathbf{v}_{\infty}\right\|}{1+r_{p}\left\|\mathbf{v}_{\infty}\right\|^{2} / \mu_{F}}
$$

- Maximum Δv will be when $\mathrm{d} \Delta v / \mathrm{d}\left\|\mathbf{v}_{\infty}\right\|=0 \Longrightarrow \phi=60^{\circ}$ and $\left\|\mathbf{v}_{\infty}\right\|=\sqrt{\mu_{F} / r_{p}}$
- r_{p} must be greater than the flyby body's radius $\left(R_{F}\right)$ therefore:

$$
\Delta v_{\max }=\sqrt{\frac{\mu_{F}}{R_{F}}}=\frac{v_{\mathrm{esc}, F}}{\sqrt{2}}
$$

Flybys can be used to speed up or slow down

- Passing behind the flyby body (with respect to its heliocentric velocity) increases your heliocentric velocity and specific energy
- Passing in front of the flyby body (with respect to its heliocentric velocity) decreases your heliocentric velocity and specific energy

