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Perturbations from Circular and Elliptic Orbits

Now that we have deeply explored two-body orbits, it is time to go beyond them.
While two-body orbits are an excellent initial approximation to many real systems,
we can gain a lot of fidelity by incorporating additional effects as perturbations
to the two-body model—that is, allowing the orbital elements that are constants
in two-body systems to gradually evolve in time in response to various additional
gravitational and non-gravitational forces. As an initial step towards a completely
general treatment of perturbations, we will consider small deviations from circular
orbits. We will also review the basic impulsive model of orbital control (i.e., the
instantaneous change in orbital velocity while preserving orbital radius) that serves
as a key tool in preliminary orbital maneuver design.
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Small Perturbations from Circular Orbits

Assumed Small
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Euler-Hill/Clohessy-Wiltshire Equations
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ẍÿ
z̈


H

=

 2nẏ
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0


H

+

n2x
n2y
0


H︸ ︷︷ ︸

Rotating Frame

−

n2x
n2y
n2z


H

+

3n2x
0
0


H︸ ︷︷ ︸

Gravity Perturbations
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Other Perturbations
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Natural Motion
ẍ− 2nẏ − 3n2x = 0
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detA = s(s2 − 3n2) + 4n2s = 0 =⇒ s = 0,±in
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y(t) = −6x0nt+ 6x0 sin(nt) + 2 cos(nt)
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Mode 1: s = 0

A =

[
s2 − 3n2 −2n

2ns s

]
=

[
−3n2 −2n

0 0

]

x0 = arbitrary

y0 = arbitrary

ẋ0 = arbitrary (often set to 0)

ẏ0 =
−3nx0

2

ẋ0 = 0
=====⇒

x(t) = x0

y(t) = −3

2
x0nt+ y0

Body is on a circular orbit of radius ‖r1‖+ x0
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Modes 2/3: s = ±in

A =

[
s2 − 3n2 −2n

2ns s

]
=

[
−n2 − 3n2 −2n
±2in2 ±in

]

x0 = arbitrary

y0 = arbitrary

ẋ0 = arbitrary (often set to 0)
ẏ0 = −2nx0

ẋ0 = 0
=====⇒

x(t) = x0 cos(nt)

y(t) = −2x0 sin(nt) + y0

Oscillatory motion about O in the rotating frame

Flight Path Angle

φfpa: The angle
between the local
horizontal and the
velocity vector such
that
h = ‖r× v‖

= rv cos(φfpa)

cosφfpa =
rν̇

v
=

1 + e cos ν√
1 + 2e cos ν + e2

sinφfpa =
ṙ

v
=

e sin ν√
1 + 2e cos ν + e2
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Tangential Burns
• v2 = µ

(
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r
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• But at φfpa = 0, r · v = 0 so:

e =
|rv2 − µ|

µ
• Increasing velocity at turning points also

increases the semi-major axis and
eccentricity

NB: As eccentricity cannot go below zero, burning from a circular orbit will always
result in an increase in eccentricity, regardless of whether the semi-major axis
increases or decreases.

Hohmann Transfers A Hohmann transfer requires
two tangential burns.

atransfer ≡ at =
ri + rf

2

ttransfer =
1

2
T transfer
P = π
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at︸ ︷︷ ︸
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Bi-Elliptic Transfers

Hohmann vs. Bi-Elliptic
Hohmann :
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Hohmann maximum (for η > 1)
occurs at η = 15.5817

Hohmann and η =∞ intersect
at η = 11.93876±1
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Inclination Changes (Super Costly!)

Burn Point

∆v = 2vi cos(φfpa) sin

(
∆I

2

)

• NB: ∆v ∝ vi. For elliptical orbits,
one of the two nodes will be less
costly
• For ∆I = 60◦, ∆v = vi
• To leave Ω unchanged, burn must

occur on the line of nodes

Ascending Node Change

Burn Point

• In general, elliptical orbits require
multiple burns to change only Ω,
but circular orbits can do it in one
• The burn occurs on the original

orbit at argument of latitude
θi = ωi + νi resulting with the
spacecraft on the final orbit at θf ,
with a burn angle α

cos(θi) = tan I

(
cos(∆Ω)− cosα

sinα

)
cos(θf ) = cos I sin I

(
1− cos(∆Ω)

sinα

)
cos(α) = cos2 I + sin2 I cos(∆Ω)

∆vcirc = 2vi sin
(α

2

)
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Ascending Node and Inclination Change

Burn Point

For circular orbits:

cos(θi) =
sin(If ) cos(∆Ω)− cos(α) sin(Ii)

sin(α) cos(Ii)

cos(θf ) =
cos(Ii) sin(If )− sin(Ii) cos(If ) cos(∆Ω)

sin(α)

cos(α) = cos(Ii) cos(If ) + sin(Ii) sin(If ) cos(∆Ω)

∆vcirc = 2vi sin
(α

2

)

Hohmann Transfer + Inclination Change

For a total inclination change of ∆I:

• Change by x∆I on initial burn
• Change by (1− x)∆I on final

burn

• Select x to minimize total ∆v:

sin(x∆I) =
∆vivfvtf sin((1− x)∆I)

∆vfvivti

• A good approximation is:

x ≈ 1

∆I
tan−1

 sin(∆I)
vivti
vfvtf

+ cos(∆I)


• ∆vs for the combined maneuvers

are:

∆vi =
√
v2
i + v2

ti − 2vivti cos (x∆I)

∆vf =
√
v2
f + v2

tf
− 2vfvtf cos ((1− x)∆I)
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General Impulsive Maneuvers

• Remember: a, e, I, ω,Ω, ν(t)⇐⇒ r(t),v(t)

• Before Burn:
ri

vi

}
ai, ei, Ii, ωi,Ωi, νi(t)

• After Burn:
rf ≡ ri

vf = vi + ∆v

}
af , ef , If , ωf ,Ωf , νf (t)

• You can always solve for the ∆v to produce the desired change in
orbital elements as long as the initial and final orbits intersect at the
burn location
• These maneuvers are not guaranteed to be feasible or optimal
• Typical approach is numerical optimization

Hyperbolic Flyby

Turning
Angle

A
sy

m
pt

ot
e

Asymptote
Incoming Velocity
at infinite distance

Impact
Parameter

e =

√
1 +
‖v∞,in‖4D2

µ2
F

D = rp

√
1 +

2µF
rp‖v∞,in‖2

θ = cos−1

(
−1

e

)
φ = 2 sin−1

((
1 +

rp‖v∞,in‖2

µF

)−1
)
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Gravity Assist Effects
• The v∞ vectors are with respect to the flyby body (v∞ ≡ v∞/F )
• For a flyby occurring between times t1 and t2:

v∞,in/� = v∞,in + vF/�(t1) and v∞,out/� = v∞,out + vF/�(t2)

• Assuming vF/�(t1) ≈ vF/�(t2), the heliocentric ∆v is:

∆v , ‖v∞,out/� − v∞,in/�‖ = 2‖v∞‖ sin

(
φ

2

)
=

2‖v∞‖
1 + rp‖v∞‖2/µF

• Maximum ∆v will be when d∆v/d‖v∞‖ = 0 =⇒ φ = 60◦ and
‖v∞‖ =

√
µF/rp

• rp must be greater than the flyby body’s radius (RF ) therefore:

∆vmax =

√
µF
RF

=
vesc,F√

2

Flybys can be used to speed up or slow down

• Passing behind the flyby body (with
respect to its heliocentric velocity)
increases your heliocentric velocity
and specific energy
• Passing in front of the flyby body

(with respect to its heliocentric
velocity) decreases your heliocentric
velocity and specific energy
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