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The Three-Body Problem and N-Body Problem

As soon as any additional body is added to the two-body problem, we lose the ability to write down a

fully analytical solution. We have previously dealt with this by treating additional bodies as perturbers

to a two-body system, slowly modifying the Keplerian elements of the two-body orbit. There are cases,

however (e.g., when operating near the boundaries of spheres of influence) where this model ceases being

useful, as the two-body elements evolve rapidly and significantly over the course of a single orbit. Here, we

must explicitly deal with (at least) three co-orbiting bodies, which drives us towards numerical integration

in order to accurately predict how an orbit evolves. However, in the case of three bodies, if we make certain

additional assumptions, we can still find a conserved quantity that allows us to predict some of the system’s

behavior (although not the exact trajectories). Study of the three-body problem is incredibly important in

modern astrodynamics, as three-body orbital design allows us to create incredibly fuel-efficient trajectories

in cases where our spacecraft are in close proximity to multiple bodies (for example, the moon systems of

Jupiter and Saturn). Three-body analysis also opens the possibility of creating stable, periodic orbits about

empty points in space!
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The Circular Restricted Three-Body Problem (CR3BP)
• m1,m2 � mp

• m1 and m2 in mutual circular orbits,
unaffected by mp

r1/O = −µ?êr
r2/O = (1− µ?)êr

NB: Here, µ? is not the gravitational parameter—
it’s the mass of the smaller major body

Canonical units for the CR3BP are defined such that G = 1
1 MU = m1 + m2, 1 DU = ‖r1/2‖, and 2π TU = Tp,1,2 (the orbital period of
m1 and m2).

CR3BP Dynamics
FP = −Gm1mP

‖rP/1‖3
rP/1 −

Gm2mP

‖rP/2‖3
rP/2

IωB = nê3 = ê3

BaP/O + 2ê3 × BvP/O + ê3 ×
(
ê3 × rP/O

)
= −G

(
m1

‖rP/1‖3
rP/1 +

m2

‖rP/2‖3
rP/2

)
[
rP/O

]
B =

xy
z


B

FP = −∇V where V = −
(

1− µ?
r1

+
µ?

r2

)
r1 , ‖rP/1‖ =

√
(x+ µ?)2 + y2 + z2

r2 , ‖rP/2‖ =
√

(x− (1− µ?))2 + y2 + z2

ẍ− 2ẏ − x =− ∂V

∂x

ÿ + 2ẋ− y =− ∂V

∂y

z̈ =− ∂V

∂z

Remember that, just as in the Clohessy-Wiltshire equations, x, y, z are rotating frame
coordinates.
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A New Potential

Define :U , −1

2
(x2 + y2)−

(
1− µ?
r1

+
µ?

r2

)

ẍ− 2ẏ − x = −∂V
∂x

ÿ + 2ẋ− y = −∂V
∂y

z̈ = −∂V
∂z


⇒

ẍ = −∂U
∂x

+ 2ẏ

ÿ = −∂U
∂y
− 2ẋ

z̈ = −∂U
∂z

NB:
1

2

d

dt

(
ẋ2 + ẏ2 + ż2

)
= − dU

dt

The Jacobi Constant
1

2

(BvP/O · BvP/O)+ U(x, y, z) = C , Jacobi Constant

BvP/O = IvP/O − ê3 × rP/O

1

2

(IvP/O · IvP/O)− (1− µ?
r1

+
µ?

r2

)
︸ ︷︷ ︸

KE+PE

− IvP/O ·
(
ê3 × rP/O

)︸ ︷︷ ︸
ê3 · (rP/O × IvP/O) = ê3 · IhP/O

= C

E − h cos(I) =C

Total Energy
of Mass P

Angular Momentum
of Mass P

Angle between orbit of
mass P and ê1− ê2 plane

Set by initial
conditions
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Hill Curves (µ? = 0.3)

U(x, y) = U(x,−y)

U(x, y) 6= U(−x, y)

Hill Curves (µ? = 0.3)

lim
x,y→∞

U = −x
2 + y2

2

lim
x→−µ?
y→0

U = −1− µ?
r1

lim
x→1−µ?
y→0

U = −µ
?

r2
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CR3BP Equilibrium Points

∂U

∂x
= −µ

? (−µ? − x+ 1)

r32
− x− (1− µ?) (−µ? − x)

r31
= 0

∂U

∂y
=
µ?y

r32
− y +

y (1− µ?)
r31

= 0

∂U

∂z
=
µ?z

r32
+
z (1− µ?)

r31
= 0

∂U

∂z
is zero for z = 0 so we typically focus on in-plane solutions

y 6= 0: Off-Axis Equilibrium Points

1− µ?
r31

=
1− µ?
r32

⇒ r1 = r2

1− 1− µ?
r31

− µ?

r32
= 0⇒ r1 = r2 = 1

C4 = C5

= U(x =
1

2
− µ?, y = ±

√
3

2
, z = 0)

= −1

2

(
3− µ? + (µ?)2

) (x, y) =
1

2
− µ?,±

√
3

2
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y = 0: On-Axis Equilibrium Points

x−(1− µ?)(x+ µ?)

|x+ µ?|3 −µ
?(x− 1 + µ?)

|x− 1 + µ?|3 = 0

x < −µ? (L3)

−µ? < x < 1− µ? (L1)

x > 1− µ? (L2)

The Lagrange Points
L1,2,3 : x− (1− µ?)(x+ µ?)

|x+ µ?|3 −µ
?(x− 1 + µ?)

|x− 1 + µ?|3 = 0

[
L4,5

]
B =


1

2
− µ?

±
√

3

2


B
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Perturbation of L4/5 Points
Consider a small displacement αêr + βêθ from one of the equilibrium points
Li:

U , −1

2
(x2+y2)−

(
1− µ?
r1

+
µ?

r2

)
⇐⇒ ∂U

∂x
=
∂U

∂x

∣∣∣∣
Li

+α
∂2U

∂x2

∣∣∣∣
Li

+β
∂2U

∂x∂y

∣∣∣∣
Li

+· · ·

∂U

∂x

∣∣∣∣
L4/5

≈ −
(

3α

4
+

3
√

3

4
(1− 2µ?)β

)
∂U

∂y

∣∣∣∣
L4/5

≈ −
(

9β

4
+

3
√

3

4
(1− 2µ?)α

)


ẍ− 2ẏ = −∂U
∂x

=
3α

4
+

3
√

3

4
(1− 2µ?)β

ÿ + 2ẋ = −∂U
∂y

=
9β

4
+

3
√

3

4
(1− 2µ?)α

α , Aeλt

β , Beλt

}
Aλ2 − 2Bλ =

3A

4
+

3
√

3

4
(1− 2µ?)B

Bλ2 + 2Aλ =
9B

4
+

3
√

3

4
(1− 2µ?)A


λ4 + λ2 +

27

4
µ?(1− µ?) = 0⇒

λ2 = −1

2
± 1

2

√
1− 27µ?(1− µ?)

Stability of L4/5 Points

• If λ2 is complex, then at least one root will have a positive real part
• For L4/5 to be stable, we therefore require λ2 to be strictly real:

λ2 = −1

2
± 1

2

√
1− 27µ?(1− µ?)

• This imposes the condition: 1− 27µ?(1− µ?) ≥ 0 which requires:

µ? ≤ 1

2
−
√

23

108
≈ 0.0385

• L4/5 are stable when m2 /
m1

25
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Perturbation of L1...3 Points
Consider a small displacement αêr + βêθ from one of the equilibrium points
Li:

α̈− 2β̇ = −∂U
∂x

∣∣∣∣
L1...3

= α(1 + 2D)

β̈ + 2α̇ = −∂U
∂y

∣∣∣∣
L1...3

= β(1−D)

D ,
1− µ?
r31

+
µ?

r32

α , Aeλt

β , Beλt

}
λ4 + (2−D)λ2 + (1 + 2D)(1−D) = 0 =⇒

λ2 =

(
D

2
− 1

)
± 1

2

√
D(9D − 8)

x− (1− µ?)(x+ µ?)

|x+ µ?|3 − µ
?(x− 1 + µ?)

|x− 1 + µ?|3 = 0 =⇒ 1−D =
µ?(1− µ?)

x

(
1

r31
− 1

r32

)

Stability of L1...3 Points

• We again require λ2 to be strictly real and negative for stability
• D is positive by definition and we require 9D > 8 and D < 1

• However, none of the three co-linear Lagrange points allows for D < 1

• L1...3 are inherently unstable

L1 : x > 0 r2 < r1
L2 : x > 0 r2 < r1
L3 : x < 0 r1 < r2
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Earth/Moon (µ? = 1/82.3)
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CR3BP Poincaré Maps
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Stable Structures About L2
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Vertical 
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See:	Kolemen	et	al.	(2012)	
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Stable Structures About L2

Earth 

Moon Orbit L2 Point 

Quasi-Halo Lissajous 

See:	Kolemen	et	al.	(2012)	

Stable Structures About L2

See:	Kolemen	et	al.	(2012)	
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The Tisserand Criterion
1

2

(
BvP/O · BvP/O︸ ︷︷ ︸

)
− x2 + y2

2
−
(

1− µ?
r1

+
µ?

r2

)
= C

BvP/O = IvP/O − ê3 × rP/O

C =
1

2

(IvP/O · IvP/O)− ê3 · IhP/O −
(

1− µ?
r1

+
µ?

r2

)
1

2

(IvP/1 · IvP/1) =
1

r1
− 1

2a
ê3 · IhP/O =

√
a(1− e2) cos(I)

1

a
+ 2
√
a(1− e2) cos(I) + 2µ?

(
1

r2
− 1

r1

)
︸ ︷︷ ︸

small

= −2C

T ,
1

a
+ 2
√
a(1− e2) cos(I) ≈ −2C

The Tisserand Criterion and Trajectory Design

Tisserand’s Criterion can be used as a trajectory design tool:
• The conditions of the approximation (small µ? and r−12 − r−11 ) apply

when planning deep-space flybys.
• Can therefore match a, e, I pre- and post- flyby allowing for rapid

iteration on flyby trajectories
• The Tisserand criterion was explicitly used in initial TESS orbit design

when modeling lunar flybys. See Gangestad et al. (2013) and Dichmann
et al. (2016) for details
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Comet Oterma
RESONANCE AND CAPTURE OF JUPITER COMETS 29

Figure 1. (a) Orbit of comet Oterma in Sun-centered inertial frame during time interval AD
1910–1980 (ecliptic projection). (b) The homoclinic-heteroclinic chain corresponding to the Jupiter
comet Oterma. (c) The actual orbit of Oterma overlaying the chain.

3. A Few Key Features of the Three-Body Problem

3.1. PLANAR CIRCULAR RESTRICTED THREE-BODY PROBLEM

The comets of interest are mostly heliocentric, and the perturbations of their motion
away from Keplerian ellipses are dominated by Jupiter’s gravitation. Moreover,
their motion is nearly in Jupiter’s orbital plane, and Jupiter’s small eccentricity
(0.0483) plays little role during the fast resonance transition (less than or equal
to one Jupiter period in duration). The PCR3BP is therefore an adequate starting
model for illuminating the essence of the resonance transition process.

The PCR3BP describes the motion of a body moving in the gravitational field
of two main bodies that are moving in circles. The two main bodies we consider are
the Sun and Jupiter. The total mass is normalized to 1; they are denoted mS = 1−µ
and mJ = µ, where µ = 9.537 × 10−4. The Sun and Jupiter rotate in the plane of
their orbit in circles counterclockwise about their common center of mass and with
angular velocity also normalized to 1.

3.2. EQUATIONS OF MOTION

Choosing a rotating coordinate system so that the origin is at the center of mass, the
Sun and Jupiter are on the x-axis at the points (−µ, 0) and (1 − µ, 0) respectively,
that is, the distance from the Sun to Jupiter is normalized to be 1. Let (x, y) be
the position of the comet in the plane, then the equations of motion in this rotating
frame are

ẍ − 2ẏ = !x, ÿ + 2ẋ = !y,

where ! = (x2 + y2)/2 + (1 − µ)/rS + µ/rJ. Here, the subscripts of ! denote
partial differentiation in the variable. rS, rJ are the distances from the comet to the
Sun and the Jupiter, respectively. See Szebehely (1967) for the derivation.

Koon et al. (2001) Fig. 1

Flows about Equilibrium Points

30 W. S. KOON ET AL.

3.3. ENERGY MANIFOLDS

These equations are autonomous and can be put into Hamiltonian form. They have
an energy integral

E = 1
2 (ẋ2 + ẏ2) − !(x, y),

which is related to the Jacobi constant C by C = −2E. Energy manifolds are
three-dimensional surfaces foliating the four-dimensional phase space. For fixed
energy, Poincaré sections are two-dimensional and therefore easily visualizable.

3.4. EQUILIBRIUM POINTS

The PCR3BP has three collinear equilibrium (Lagrange) points which are unstable,
but for the comets of interest, we examine only L1 and L2. See Figure 2(a). Eigen-
values of the linearized equations at L1 and L2 have one real and one imaginary
pair, having a saddle × center structure.

3.5. REGION OF POSSIBLE MOTION

The projection of the energy manifold onto the position space is the region in the
xy-plane where the comet is energetically permitted to move around (known as the
‘Hill’s region’). The forbidden region is the region that is not accessible for a given
energy. See Figure 2(b).

Our main concern is the behavior of orbits whose energy is just above that
of L2, for which the Hill’s region is a connected region with an interior region
(inside Jupiter’s orbit), exterior region (outside Jupiter’s orbit), and a Jupiter (cap-
ture) region (bubble surrounding Jupiter). These regions are connected by ‘necks’

Figure 2. (a) Equilibrium points of the PCR3BP in the rotating frame. (b) Energetically forbidden
region is gray ‘C’. Hill’s region (region in white), contains a ‘neck’ about L1 and L2. (c) The flow
in the region near L2, showing a periodic orbit around L2 (labeled PO), a typical asymptotic orbit
winding onto the periodic orbit (A), two transit orbits (T) and two non-transit orbits (NT). A similar
figure holds for the region around L1.

Koon et al. (2001) Fig. 2
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Invariant Manifolds

108 4. Construction of Trajectories with Prescribed Itineraries

the case 3 energy interval,

(E2, E3) ⇡ (�1.519,�1.501).

For illustrative purposes, we will take a value e 2 (E2, E3) near the lower
end of the interval. This corresponds to necks around L1 and L2 which are
slightly open. The value we will use for the construction is e = �1.515.
A schematic of the realms of possible motion for this energy is shown in
Figure 4.4.1(a), and notice the labeling of the X, J , and S realms.

 

Forbidden
  Realm

Sun

  Initial
Condition

X Realm

S Realm

Jupiter

J Realm

Unstable
Manifold
of

  Stable
Manifold
of

 Poincare
Section

x

y

(a) (b)

Figure 4.4.1. (a) A schematic of the realms of possible motion for a case 3 energy.

The X, J , and S realms are labeled. The trajectory shown as a heavy black line is a

trajectory with an itinerary (X, J, S). (b) A close-up around the J-realm. The position

space projection of the stable and unstable manifold tubes of the Li, i = 1, 2 periodic

orbits (p.o.) are shown. The J-branch of the L1 stable (resp., L2 unstable) tubes are

labeled. We seek the intersection of the interior of these two tubes on the Poincaré

section U3. Taking an initial condition from this intersection and numerically integrating

it forward and backward in time produces the trajectory with itinerary (X, J, S).

Step 2. Computing the Location of the Equilibrium Points. Con-
sider the libration point Li, standing for either L1 or L2. Compute the loca-
tion of Li, (xe, 0, 0, 0), using the procedure in §2.5. Consider the linearized
equations of motion in a coordinate system centered on Li, Eq. (2.6.4). The
eigenvalues and eigenvectors for the linearized system are given by explicit
formulas in §2.7. One can then compute, using the general solution (2.9.1)
to (2.6.4), the initial conditions for a p.o. of x amplitude Ax > 0. In (2.9.1),
let t = ↵1 = ↵2 = 0 and � = �Ax/2. When transformed back to the origi-
nal coordinates, this yields an initial condition

x̄0 = (xe, 0, 0, 0) + 2Re(�w1),

= (xe � Ax, 0, 0, vy0), (4.4.1)

Koon et al. (2011) Fig. 4.4.1

The Hill Sphere

rL1/O = (1− µ? − γ1)êr

ForL1−3: x−
(1− µ?)(x+ µ?)

|x+ µ?|3 − µ?(x− 1 + µ?)

|x− 1 + µ?|3 = 0

=⇒ −(1− µ? − γ1) = −(1− µ?)(1− γ1)
(1− γ1)2

+
µ?

γ21

µ? � γ1 =⇒ γ31 ≈
µ?

3

RH ,

(
µ?

3

)1/3

r1/2
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