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Astrometry

Solar system barycenter at O, exosystem barycenter at G. S is star
position at time t and point c is the (time-varying) position of the
centroid of a group of reference stars.

r̂S/O(t0) ≡ b3 =




cosλ cosβ
sinλ cosβ

sinβ



I

b1 =



− sinλ
cosλ

0



I
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− cosλ sinβ
− sinλ sinβ

cosβ



I

rS/sc = rS/O(t0)+rµ−rS/G(t0)+rS/G−rsc/O
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Astrometry

rµ is the motion of the exosystem barycenter, with components
approximated as constants: rµ(t) = σxb1 + σyb2 + σz r̂s(t0)

Split barycenter velocity into transverse and radial velocities:

I d

dt
rG/O(t) ≡

I d

dt

(
rG/O(t0) + rµ(t)

)
=
I d

dt
rµ(t)

=VRr̂S/O(t0) + VT where

VT =r̂S/O(t0)×
(I d

dt
rG/O(t)× r̂S/O(t0)

)

rS/sc = rS/O(t0)+rµ−rS/G(t0)+rS/G−rsc/O
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Interferometric Astrometry

Image Credit: NASA

OPD = B · r̂S/sc + k + noise

di = B (cos θi − cos(θi −∆θi))
≈ −B sin θi∆θi
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Doppler Spectroscopy

Image Credit: NOAO

Iobs(λ) = κ [IS(λ+ ∆λS)TC(λ+ ∆λC)]⊗ PSF

∆λ = ∆λS −∆λC

∆λ

λ
=

(1 + ρg)

n

√(
1 + v

c

)

1− v
c

− 1

ρg: Gravitational redshift of starlight
n: Index of refraction of air column

v � c ⇒ ∆λ

λ
≈ v

c

v = ‖IvS/sc‖
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Sometimes You Have to Be Lucky

Detectability of Extrasolar Planets 7

Figure 5. Examples of velocity curves with e = 0.5 that are (top panel)
and are not (bottom panel) detected. The dotted line in each case shows the
true orbit; the points are the observed velocities; and the solid curve shows
the best fitting orbit. In both cases, the solid curve gives a lower χ2 than
the dotted curve. The lower panel has only a single measurement during the
periastron passage, and is not a significant detection.

Figure 6. The effect of eccentricity on the velocity threshold for N = 39.
The dotted curves are for the LS periodogram; the solid curves are for Kep-
lerian fits. The rapid increase in the 99% detection efficiency (solid) curves
at e ≈ 0.8 is due to the fact that very eccentric orbits are not always de-
tected even when the signal to noise is very large.

Baliunas 1986). In this limit, the probability of detecting a signal
with mean amplitude ⟨zs⟩ for a given detection threshold zd is

Pdetect(⟨zs⟩; zd) ≈ 1

2

[
1 + erf

(
⟨zs⟩ − zd

2
√

⟨zs⟩

)]
. (24)

Setting zd = ⟨zs⟩ gives the signal to noise ratio needed to detect
the signal 50% of the time,

K0√
2σ

=

[(
M

F

)2/ν

− 1

]1/2

, (25)

or, for large N ,

K0 =
σ√
N

[
4 ln
(

M

F

)]1/2

(N ≫ 1), (26)

which shows the expected 1/
√

N behavior5. The solid lines in Fig-
ure 3 show this analytic estimate for M/F = 106. We include a
multiplicative factor of 1.7 for the 99% detection probability curve
(this factor is given by equation (24) with Pdetect = 99%).

Figure 3 shows that N ! 10–20 is required to be able to de-
tect an orbit with K ≈ 2–4σ, with N ! 50 required to reach
amplitudes as small as K ∼ σ. How does that compare to the case
where we know the noise level σ? The appropriate formula is then
equation (26) for all N . The dotted curves in Figure 3 show the
50% and 99% detection probability curves in this case. Knowing
the noise level in advance gives a significant improvement, allow-
ing a detection of the signal for N < 10. The sparse sampling
of the data may increase the detection threshold somewhat over
this estimate (Nelson & Angel 1998). It is also interesting here to
compare the detection threshold of the LS periodogram with a χ2

test for variability. The dashed line in Figure 3 shows the signal to
noise ratio that gives a χ2 exceeding the expected value 50% of
the time, assuming that the noise level σ is a known quantity. Here
we choose the detection threshold to correspond to a FAP of 0.1%.
Excess variability at the ≈ 2σ level is apparent with only a handful
of observations.

We next discuss the effect of non-zero eccentricity. Figure 4
shows the detection probability as a function of eccentricity for sig-
nal to noise ratios of K/σ = 2, 5, 10 and∞, where ∞ means that
we sample the velocity curve without adding noise. The top panel
shows results for a data set with 16 observations, the lower panel
for 39 observations. The dotted curves show the detection probabil-
ity using the LS periodogram. The solid curves show the detection
probability using the Keplerian periodogram defined in equation
(7). Not surprisingly, the LS periodogram fails to detect orbits with
large eccentricities, particularly for small N , whereas fitting Kep-
lerian orbits increases the detection probability for eccentric orbits.

Figure 4 shows that even when fitting Keplerian orbits, de-
tectability decreases for e ! 0.5. There are two reasons for this.
First, even forK/σ ≫ 1, we find detection efficiencies< 1 (≈ 80–
90%) for e = 0.9. In the cases that are not detected, the Keplerian
fitting routine fails to find the correct solution. This emphasises
the difficulty of finding the global minimum in the complicated χ2

space for these nonlinear solutions. The second effect, dominating
at lowerK/σ, is the uneven sampling of the data, which can lead to
a poorly-resolved periastron passage. An example is shown in Fig-
ure 5, in which we show two sets of observations of an orbit with
e = 0.5. Both fitted lightcurves (solid curves) have a lower χ2 than
the true solution (dotted curve), but whereas the data in the upper
panel lead to a detection, the data in the lower panel do not. In the
lower panel, only a single measurement has been made during the
periastron passage. This greatly reduces the ∆χ2 when the Keple-
rian orbit is included in the fit. An additional danger is that a single
discrepant data point might arise due to a systematic error, perhaps
making the fit in the lower panel of Figure 5 worrying in a real life
example.

Figure 6 summarizes the effect of eccentricity. We plot the
signal to noise ratio needed for a detection efficiency (DE) of 50%
or 99% as a function of eccentricity. The solid curves are for the
Keplerian periodogram, and the dotted curves are for the LS peri-
odogram. The rapid increase in K/σ for the 99% DE solid curve

5 To derive this limit, write (M/F )2/ν = 1 + x, where x ≪ 1.

c⃝ 0000 RAS, MNRAS 000, 000–000

From: Cumming et al. (2004). True orbit (dashed), Best fit (solid). Top panel detected,
bottom not.
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RV is Only Sensitive to a Subset of Keplerian Elements

Ω, ω ∼ U([0, 2π]) I ∼ cos−1 (U([−1, 1]))

SvP/S =

√
µ

`
(− sin νê + (e+ cos ν)q̂)

SvP/S · s3 =

√
µ

a

√
1

1− e2
sin (I) (e cos (ω) + cos (ν + ω))

vs ≈
(

2πG

TP

) 1
3 mP sin(I)

m
2
3
S

1√
1− e2

︸ ︷︷ ︸
,K

(e cos (ω) + cos (ν + ω))

Can independently fit

ω, ν, e, TP ,mP sin(I)
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Transit Photometry

F
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Lots of Other Effects to Model

From: Aizawa et al. (2017)
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Gravitational Microlensing

Image Credit: OGLE
Light curve of OGLE-2005-BLG-390.

Image Credit: ESO
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Exosystem Geometry

a Semi-major axis

ν True anomaly

e Eccentricity

s Projected separation

rP/S Orbital radius vector

= r (cos νê + sin νq̂)

r Orbital radius

= ‖rP/S‖ =
a(1− e2)
e cos(ν) + 1

β Phase (star-planet-observer) angle

≈ cos−1
(
rP/S · ŝ3

r

)

= cos−1 (sin(I) sin(ω + ν))

⇒ r̂sc/P ‖ r̂sc/S
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Exosystem Geometry

a Semi-major axis

ν True anomaly

e Eccentricity

s Projected separation

rP/S Orbital radius vector

= r (cos νê + sin νq̂)

r Orbital radius

= ‖rP/S‖ =
a(1− e2)
e cos(ν) + 1

β Phase (star-planet-observer) angle

≈ cos−1
(
rP/S · ŝ3

r

)

= cos−1 (sin(I) sin(ω + ν))

⇒ r̂sc/P ‖ r̂sc/S
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Imaging Constraints

Schematic of projected exosystem. Planet is sufficiently illuminated for detection in
reflected light on solid part of orbit, and observable outside the gray region.

All imaging systems have an inner/outer working angle (IWA/OWA) and a limiting
planet/star flux ratio (function of angular separation).



11/27

Reflected Light

Solar system body and isotropic-
scatterer (Lambert) phase functions.
Data from Sudarsky et al. (2005) and
De Vaucouleurs (1964)

Energy per second per unit area per unit solid angle received
by an observer =

FR2

r2

∫ π/2

β−π/2
cos(β − δ) cos δ dδ

∫ π/2

−π/2
ρ(Cµ, Cγ , ξ) cos3 α dα

For isotropic scattering, ρ = constant

Φ(β) =
E(β)

E(0)
=

sin(β) + (π − β) cos(β)

π

Fp
FS

= pΦ(β)

(
R

r

)2
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Thermal Emission

From: Marley et al. (2007). Dotted lines represent hot-start evolution and solid lines
represent core-accretion evolution.
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Clouds Complicate Things

From: Batalha et al., “Color Classification of Extrasolar Giant Planets: Prospects and
Cautions”, 2018
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Spectroscopy

Left: Ground-based
imaging spectral
library from GPIES.
Right: Transit
spectroscopy spectra
from HST and Sptizer
(Sing et al. 2016).
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Conventional Telescopes Are Not Conducive to Imaging Planets

Star

Plan
et

Telescope

Pupil

Detector

Telescope schematic: a finite-sized aperture captures
light that is focused onto a detector.
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In 1931 Astronomers Got Tired of Chasing Eclipses

Photo by Miloslav Druckmüller

The first Lyot Coronagraph.
Lyot (1939)
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In 1931 Astronomers Got Tired of Chasing Eclipses

Photo by Miloslav Druckmüller

The first Lyot Coronagraph.
Lyot (1939)
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Coronagraphy 101

Star

Planet

Telescope

Pupil Focal Plane

Mask

Lyot

Stop
Detector

Schematic of Lyot coronagraph. Based on Sivaramakrishnan (2001).

Pupil FPM FPM+Lyot
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Coronagraphy 101

Star

Planet

Telescope

Pupil Focal Plane

Mask

Lyot

Stop
Detector

Schematic of Lyot coronagraph. Based on Sivaramakrishnan (2001).

Pupil

FPM FPM+Lyot
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Coronagraphy 101
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Schematic of Lyot coronagraph. Based on Sivaramakrishnan (2001).
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Coronagraphy 101
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Schematic of Lyot coronagraph. Based on Sivaramakrishnan (2001).

Pupil FPM FPM+Lyot
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Apodized Pupil Lyot Coronagraphy

Focal Plane

Mask

Lyot

Stop
Detector

Apodizer

Schematic of Lyot coronagraph. Based on Sivaramakrishnan (2001).

Pupil FPM FPM+Lyot +Apodizer
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Pre-apodize to remove residual diffraction

L162 SOUMMER Vol. 618

Fig. 1.—Transverse cuts of the two wave fronts that subtract one another
in the Lyot stop plane (eq. [2]): the pupil wave (solid line) and the wave
diffracted by the mask (dashed line), for a clear circular aperture (top), then
for small and large obstructions. In the nonapodized case (left), the two waves
clearly do not match each other and the subtraction is not efficient. With
apodized apertures (right), the match is much better and the two curves are
proportional inside the aperture (generalized prolate solutions). The mask sizes
have been chosen for better visualization. [See the electronic edition of the
Journal for a color version of this figure.]

Fig. 2.—Throughput of the apodizer solution to the eigenvalue problem as
a function of the central obstruction and for several mask sizes. Vertical lines
indicate the geometry of existing telescopes. Apodizer throughput for large
masks saturates for smaller apertures to a lower value of throughput. [See the
electronic edition of the Journal for a color version of this figure.]

Fig. 3.—Example of apodizer transmission for the geometry of Gemini/
VLT. The minimum intensity transmission is 12% at the edges, and throughput
is high: 63%. A classical Lyot coronagraph with an undersized Lyot stop has
a typical throughput of 40%–60%. The corresponding mask has a diameter of

.4l/D

2. GENERAL PROBLEM OF CORONAGRAPHY WITH
ARBITRARY APERTURE SHAPES

Following the notation of Aime et al. (2002) and Soummer
et al. (2003b), we briefly recall the general formalism of co-
ronagraphy with apodized pupils. The telescope aperture func-
tion with the position vector is denoted by , and isr P(r) F(r)
the apodizer transmission (1 without apodization). At the en-
trance aperture, the wave front amplitude is

W (r) p P(r)F(r). (1)A

A mask of transmission is placed in the focal plane.1! eM(r)
The function M describes the mask shape, equal to 1 inside
the coronagraphic mask and 0 outside ( for Lyot ande p 1

for Roddier).e p 2
At the Lyot stop plane, the wave front is then

e r! uˆW (r) p P(r)F(r)! F(u)M du, (2)C ! ( )2 2l f lfP

where the circumflex is the Fourier transform. This general
relation is valid for any arbitrary aperture shape (rectangular,
circular, or elliptical, with or without central obstruction and
secondary mirror supports) and any mask shape.
The formal problem is to find the mask and the apodizerM(r)
that provide the best cancellation possible inside the LyotF(r)

stop, identical to the entrance pupil in this case. The above
partition of the wave front (eq. [2]) gives a physical understand-
ing of coronagraphy as a destructive interference between the
pupil wave and the wave diffracted by the mask (the con-W (r)A

volution integral). A heuristic illustration is given in Figure 1,

(a) Apodizer function
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(b) Point Spread Function

“Apodized Pupil Lyot Coronagraphs for Arbitrary Telescope Apertures”, Soummer et al. (2004)
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Shaped Pupil Coronagraphy

Alternatively, you can reshape the Point Spread Function completely:
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m
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Images courtesy of T. Groff. See: “Optimal one-dimensional apodizations and shaped
pupils for planet finding coronagraphy”, Kasdin et al. (2005)
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Phase Mask Coronagraphy

Or use a phase-shift mask to produce destructive interference of the on-axis light:

Figure: Four-quadrant phase mask and resulting PSFs. From Rouan et al. (2000)

See: “Stellar Coronagraph with Phase Mask”, Roddier and Roddier (1997)
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Phase-Induced Amplitude Apodization Coronagraphy

Or, instead of an apodizer mask, achieve
your apodization via geometrical
redistribution of the light (pupil-mapping).
“Exoplanet Imaging with a Phase-Induced
Amplitude Apodization Coronagraph”,
Guyon (2005)

Figure: Intensity and ray trace of remapping
mirrors.

Figure: PIAAC schematic.
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What If You Block the Light Outside the Telescope?
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With the Right Shape, You Get a Deep Shadow
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Why Would This Work?

Babinet’s Principle

The light passing around the occulter plus the light passing through an occulter-shaped
hole is a free-space plane wave.

You can design your occulter to produce the shadow you want at the telescope aperture
(with no Poisson spot). See Vanderbei et al. (2007).

Figure: Simulated shadow cast at the telescope pupil for separations of 18 to 100 thousand km.

Minimum angular separation is now a function only of geometry, not wavelength!
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Starshade Concepts

Figure: Starshade deployment concept. Thomson et al. (2011)

(a) THEIA starshade (b) O3 starshade
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What We Know Today
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