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Why study satellite relative motion?

General applications

▶ Rendezvous/docking

▶ Inspection

▶ Servicing/refueling

Scientific applications
▶ Required large separation of instruments

▶ Magnetosphere Multi-Scale mission
(Roscoe et al. 2011)

▶ Starshade-based exoplanet imaging
(Gaudi et al. 2020)

Other benefits

▶ Redundancy

▶ Cost reductions
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Outline
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Calculating state transition tensors
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Dynamical Systems Preliminaries

▶ State vector x ∈ Rn

▶ Dynamics/vector field F:

d

dt
x = F(x)

▶ Flow map φt : x0 → xt

d

dt
φt(x) = F(φt(x)), φ0(x) = x
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Taylor Expansion of the Flow Map

Application of high order expansion began in astrodynamics uncertainty propagation
(Park and Scheeres 2006)

xf + δxf = φtf (x0 + δx0) =
∞∑
n=0

1

n!

∂nφtf

∂xn

∣∣∣∣
x0

δxn0
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State Transition Matrix

Applied to satellite relative motion since (Clohessy and Wiltshire 1960)

The state transition matrix gives the linear approximation

δxf ≈
∂φtf

∂x

∣∣∣∣
x0

δx0 = Φ(tf , t0)δx0
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Calculating the State Transition Matrix

Assuming sufficient smoothness of φt(x) (Clairaut’s Theorem)

dΦ(t, 0)

dt
=

d

dt

∂φt

∂x
=

∂

∂x

dφt

dt
=

∂

∂x
F(φt(x)) =

∂F(x)

∂x

∣∣∣∣
φt(x)

Φ(t, 0)

Φ̇ = DF · Φ, Φ(0, 0) = In
First order variational equations yield the state transition matrix.

▶ Integrate alongside original dynamical system.

▶ Higher order variational equations yield state transition tensors.
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Calculating the Second-Order State Transition Tensor

Ψ is a 1-2 tensor.

δxf ≈ Φ(tf , 0)δx0 +Ψ(tf , 0)δx
2
0

The second order variational equations:

dΨi
j ,k(t, 0)

dt
=

∂2Fi (x)

∂xl∂xq
Φl
j(t, 0)Φ

q
k(t, 0) +

∂Fi (x)

∂xl
Ψl

j ,k(t, 0), Ψi
j ,k(0, 0) = 0
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Rendezvous

What initial velocity leads the deputy satellite to meet the chief (reference) satellite?
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Relative Transfer

Partition the state into position and velocity (Mullins 1992)

δx =
[
δrT δvT

]
Φ(t, 0) =

[
Φr
r Φr

v

Φv
r Φv

v

]
Initial relative velocity δv0 to change relative position δr0 → δrt

δrt ≈ Φr
rδr0 + Φr

vδv0 =⇒
δv0 ≈ (Φr

v)
−1(δrt − Φr

rδr0)
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Continuous Thrust Control

Minimize cost J =
∫ tf
t0

1
2u

Tu dt under boundary conditions x(t0) = x0, x(tf ) = xf :

d

dt
x = F(x) + u,

d

dt
λ = −

(
∂F(x)

∂x

)T

λ

Two point boundary value problem with twelve equations for states and costates.
(Bryson and Ho 2018)
Optimal control given by u = −(0, 0, 0, λ4, λ5, λ6)

T
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Continuous Thrust Relative Transfers

Define the augmented state vector z = [xT λT J]T and its dynamics

d

dt
z = G(z) =

[(
F(x)T +

[
0 uT

])
−λT

(
∂F(x)

∂x

)
1

2
uTu

]T
Initial costates are given by STM associated with G

δλ0 ≈ (Φx
λ)

−1(δxt − Φx
xδx0)

Previous works have only applied to 2-body dynamics (Lembeck and Prussing 1993;
Carter and Humi 1987)
Energy cost approximation from second order state transition tensor:

δJ ≈ ∂2Jf
∂x20

δx20 +
∂2Jf
∂λ2

0

δλ2
0
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Three Body Problem Example

Rendezvous onto an Earth-Sun L2 Halo Orbit from a sphere of initial relative positions
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Rendezvous on SEL2 Halo: Two Weeks from 10,000km Sphere

J(cm2/s3) |∆J|(cm2/s3)

The rendezvous control cost approximated by second order state transition tensor and
the error in its approximation versus numerical integration.
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Problems with Practical Computation

Fast calculations once we have Φ and potentially higher order state transition tensors.
What about calculating Φ?
▶ Analytical solutions:

▶ Clohessy-Wiltshire
▶ Yamanaka-Ankersen
▶ Their respective adjoint equations

▶ Numerical integration:
▶ High fidelity two body motion with perturbations
▶ Three body motion
▶ Costate equations

Second order STT for optimal control requires integration of 133 equations!
Likely infeasible for online computations
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Question:

Given prior knowledge of this reference trajectory,

how do we quickly compute the STTs along any arc?
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Cocycle Conditions

Φ(t, 0) = Φ(t, t2)Φ(t2, t1)Φ(t1, 0)
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Interpolation

Let (a, b) ⊆ ∆, then an entrywise linear interpolant of Φ is given by

Φ(b, a) ≈ I +
b − a

|∆|
(Φ(∆)− I )
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Building Up The State Transition Matrix



21/45

Binary Search Construction

∆m,j =

(
T0 +

Tf − T0

2m
j ,T0 +

Tf − T0

2m
(j + 1)

)
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Conclusion

Contributions:

▶ First linearized optimal control outside of Keplerian dynamics

▶ Novel use of STT to compute energy cost metric

▶ Precomputation and interpolation algorithm

Benefits:

▶ 2-3 order of magnitude speedup in STM and STT calculation

▶ Order of megabytes of precomputed data

▶ Achieves order 0.1 to 1 percent error in energy estimates

Future directions:

▶ Explore Lunar Halo analogs

▶ Fast computation for path constrained optimal relative control

▶ Fuel optimal control
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Angles-Only Space to Space Orbit Determination

Can a satellite determine another satellite’s state with just a camera?
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The Problem
Given relative position line of sight with QUEST measurement model (Shuster and Oh
1981)

lti =
rti
|rti |

+ vti

E (vti ) = 0, E (vtiv
T
ti
) =

σ2

2

(
I3 −

rti r
T
ti

||rti ||2

)
Find an initial relative state that fits

argminδx0∈R6

{
n∑

i=1

||lti × rti ||2

||rti ||2

}

≈ argminδx0∈R6

{∑n
i=1 ||lti × rti ||2

||δx0||2

}
= argminδx0∈R6

{∑n
i=1 ||lti × (φr

ti
(x0 + δx0)− φr

ti
(x0))||2

||δx0||2

}
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Linear Unobservable Range
Linear dynamics of two satellites relative to a reference satellite at the origin

Relative orbit linear dynamics are unobservable with angles-only measurements
(Woffinden and Geller 2007)



27/45

Nonlinear Observability
Nonlinear dynamics of the same satellites relative to a reference satellite at the origin

Nonlinear dynamics can enable observability (Ardaens, Gaias, et al. 2019;
Jean-Sébastien Ardaens and Gaias 2019; Lovell, Sinclair, and Newman 2018).
Current algorithms rely on bisection or homotopy continuation.
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Second Order Position Approximation

Consider the 3 by 6 matrix

Φr(t, 0) =
∂rt
∂x0

and the 3 by 6 by 6 rank (1,2) tensor

Ψr(t, 0) =
∂2rt
∂x20

δrt ≈ Φr(t, 0)δx0 +
1

2
Ψrδx20
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Optimal Linear Orbit Determination

Linear approximation of initial orbit direction vector: 6th right singular vector of A
(Sinclair and Alan Lovell 2020)

A =

[lt1 ]×Φ
r(t1, t0)
...

[ltn ]×Φ
r(tn, t0)


δ̂x0 ≈ x̄0 = argmin||δx0||=1

{
||Aδx0||2

}
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Scale Estimate

0 = ||lt × δrt || ≈ ||lt × Φr(t, 0)δx0 + lt ×
1

2
Ψr(t, 0)δx20|| =⇒

||δx0|| ≈
||lt × Φr(t, 0)δ̂x0||
||lt × 1

2Ψ
r(t, 0)δ̂x

2
0||

10.30 0.22 103.79 0.83 1.02 2.37 0.07 5.37 0.29

Relative orbit semi-minor axis sizes predicted from this estimate.
Mean of 13.81km order of magnitude approximation for actual 20km size.
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Improved Scale Estimate

By solving a generalized eigenvalue problem, we can improve initial state approximation

0 = ||lt × δrt || ≈ ||lt × Φr(t, 0)δx0 + lt ×
1

2
Ψr(t, 0)δx20|| =⇒

||δx0|| ≈
||lt × Φr(t, 0)δ̂x0||
||lt × 1

2Ψ
r(t, 0)δ̂x

2
0||

20.002 20.010 19.631 20.011 20.013 19.999 20.014 20.041 20.003

Relative orbit semi-minor axis sizes predicted from this estimate.
Mean of 19.97km is within 1 percent of the actual 20km size.
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Simple estimate σ = 10−4 error (3σ bound ≈ 1’)

Relative error in scale for 1000 initial relative orbits in a 200km cube centered about
the reference orbit.
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Improved estimate σ = 10−4 error

Relative error in scale for 1000 initial relative orbits in a 200km cube centered about
the reference orbit.
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Conclusion

Contributions:

▶ Approximate solution of passive angles-only relative orbit determination

▶ Quadratic model of dynamics resolves linear unobservability

▶ Only linear methods employed

Future directions:

▶ Iterative methods to improve estimate

▶ Convergence studies from starting estimates

▶ Showcase algorithm in cislunar space

▶ Extension to line of sight velocity problem

▶ Inertial orbit determination with similar methods
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Course Work

▶ Math
▶ Dynamical Systems
▶ Applied Dynamical Systems
▶ Perturbation Theory and Asymptotics
▶ Probability Theory
▶ Optimal Control and Differential Games (Expected Spring 2023)

▶ MAE
▶ Model Based Estimation
▶ Advanced Astrodynamics
▶ Attitude Dynamics and Control (Expected Fall 2022)

▶ Other
▶ Parallel Computing
▶ Inverse Problems
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Thank You – Questions?
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Final Position Error

||δrf ||(km) ||δrf ||(km)

The error in final position due to the approximation of the rendezvous optimal control
by second order and first order methods.
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Results of Interpolation Error

Worst case error in cost due to interpolation from 0.1 day intervals (66Mb data).
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Leading Order Interpolation

Given J = ∂F(x0)
∂x

Φ(t, 0) ≈ eJt =
∞∑
k=0

tk

k!
Jk

Φ(αt, 0) ≈ eJαt =
∞∑
k=0

(αt)k

k!
Jk

Φi
j(αt, 0) ≈ In + αP i

j (Φi
j(t, 0)− In)

P i
j = min{p ∈ N | (Jp)ij ̸= 0}
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Results of Interpolation Error

Worst case error in cost due to interpolation from 1 day intervals (6Mb data).
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Improving the Estimate

a =

lt1 × Φr(t1, 0)δ̂x0
...

ltn × Φr(tn, 0)δ̂x0

 || b =


lt1 ×Ψr(t1, 0)δ̂x

2
0

...

ltn ×Ψr(tn, 0)δ̂x
2
0


= Aδ̂x0 ≈ B δ̂x0

A =

[lt1 ]×Φ
r(t1, 0)
...

[ltn ]×Φ
r(tn, 0)

 B =

[lt1 ]×Ψ
r(t1, 0)x̄0
...

[ltn ]×Ψ
r(tn, 0)x̄0



B δ̂x0=λAδ̂x0

A†B δ̂x0=λδ̂x0
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