Variational Equations for Control and Estimation of Satellite Relative Motion

Jackson Kulik
Committee: Dmitry Savransky, Mark Campbell, Richard Rand
Cornell University Center for Applied Mathematics: A-Exam

August, 2022

Why study satellite relative motion?

General applications

- Rendezvous/docking
- Inspection
- Servicing/refueling

Scientific applications

- Required large separation of instruments
- Magnetosphere Multi-Scale mission (Roscoe et al. 2011)
- Starshade-based exoplanet imaging (Gaudi et al. 2020)
Other benefits
- Redundancy
- Cost reductions

Outline

Dynamical Systems Background
Calculating state transition tensors

Satellite Relative Motion Control

State transition matrix for optimal control
Composing STMs
Interpolating STMs
Precomputation and online algorithm
Angles-Only Relative Orbit Estimation
Linear unobservable range
Range ambiguous linear estimate
Scale estimate
Quadratic approximations

Dynamical Systems Preliminaries

- State vector $\mathbf{x} \in \mathbb{R}^{n}$
- Dynamics/vector field \mathbf{F} :

$$
\frac{d}{d t} \mathbf{x}=\mathbf{F}(\mathbf{x})
$$

- Flow map $\varphi_{t}: \mathbf{x}_{0} \rightarrow \mathbf{x}_{t}$

$$
\frac{d}{d t} \varphi_{t}(\mathbf{x})=\mathbf{F}\left(\varphi_{t}(\mathbf{x})\right), \quad \varphi_{0}(\mathbf{x})=\mathbf{x}
$$

Taylor Expansion of the Flow Map

Application of high order expansion began in astrodynamics uncertainty propagation (Park and Scheeres 2006)

State Transition Matrix

Applied to satellite relative motion since (Clohessy and Wiltshire 1960)

The state transition matrix gives the linear approximation

$$
\left.\delta \mathbf{x}_{f} \approx \frac{\partial \varphi_{t_{f}}}{\partial \mathbf{x}}\right|_{\mathbf{x}_{0}} \delta \mathbf{x}_{\mathbf{0}}=\Phi\left(t_{f}, t_{0}\right) \delta \mathbf{x}_{0}
$$

Calculating the State Transition Matrix

Assuming sufficient smoothness of $\varphi_{t}(\mathbf{x})$ (Clairaut's Theorem)

$$
\begin{aligned}
\frac{d \Phi(t, 0)}{d t}=\frac{d}{d t} \frac{\partial \varphi_{t}}{\partial \mathbf{x}} & =\frac{\partial}{\partial \mathbf{x}} \frac{d \varphi_{t}}{d t}=\frac{\partial}{\partial \mathbf{x}} \mathbf{F}\left(\varphi_{t}(\mathbf{x})\right) \\
\dot{\Phi} & =\left.\frac{\partial \mathbf{F}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\varphi_{t}(\mathbf{x})} \Phi(t, 0) \\
& =D \mathbf{F} \cdot \Phi, \quad \Phi(0,0)=I_{n}
\end{aligned}
$$

First order variational equations yield the state transition matrix.

- Integrate alongside original dynamical system.
- Higher order variational equations yield state transition tensors.

Calculating the Second-Order State Transition Tensor

Ψ is a 1-2 tensor.

$$
\delta \mathbf{x}_{f} \approx \Phi\left(t_{f}, 0\right) \delta \mathbf{x}_{0}+\Psi\left(t_{f}, 0\right) \delta \mathbf{x}_{0}^{2}
$$

The second order variational equations:

$$
\frac{d \Psi_{j, k}^{i}(t, 0)}{d t}=\frac{\partial^{2} F_{i}(\mathbf{x})}{\partial x_{l} \partial x_{q}} \Phi_{j}^{\prime}(t, 0) \Phi_{k}^{q}(t, 0)+\frac{\partial F_{i}(\mathbf{x})}{\partial x_{I}} \Psi_{j, k}^{\prime}(t, 0), \quad \Psi_{j, k}^{i}(0,0)=0
$$

Outline

Dynamical Systems Background
Calculating state transition tensors
Satellite Relative Motion Control
State transition matrix for optimal control
Composing STMs
Interpolating STMs
Precomputation and online algorithm
Angles-Only Relative Orbit Estimation
Linear unobservable range
Range ambiguous linear estimate
Scale estimate
Quadratic approximations

Rendezvous

What initial velocity leads the deputy satellite to meet the chief (reference) satellite?

Relative Transfer

Partition the state into position and velocity (Mullins 1992)

$$
\begin{aligned}
\delta \mathbf{x} & =\left[\begin{array}{ll}
\delta \mathbf{r}^{T} & \delta \mathbf{v}^{T}
\end{array}\right] \\
\Phi(t, 0) & =\left[\begin{array}{ll}
\Phi_{\mathbf{r}}^{r} & \Phi_{\mathbf{v}}^{\mathrm{v}} \\
\Phi_{\mathbf{r}}^{\mathbf{v}} & \Phi_{\mathbf{v}}
\end{array}\right]
\end{aligned}
$$

Initial relative velocity $\delta \mathbf{v}_{0}$ to change relative position $\delta \mathbf{r}_{0} \rightarrow \delta \mathbf{r}_{t}$

$$
\begin{aligned}
& \delta \mathbf{r}_{t} \approx \Phi_{\mathbf{r}}^{\mathbf{r}} \delta \mathbf{r}_{0}+\Phi_{\mathbf{v}}^{\mathbf{r}} \delta \mathbf{v}_{0} \Longrightarrow \\
& \delta \mathbf{v}_{0} \approx\left(\Phi_{\mathbf{v}}^{\mathbf{r}}\right)^{-1}\left(\delta \mathbf{r}_{t}-\Phi_{\mathbf{r}}^{\mathbf{r}} \delta \mathbf{r}_{0}\right)
\end{aligned}
$$

Continuous Thrust Control

Minimize cost $J=\int_{t_{0}}^{t_{f}} \frac{1}{2} \mathbf{u}^{T} \mathbf{u} \mathrm{~d} t$ under boundary conditions $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{\mathbf{0}}, \mathbf{x}\left(t_{f}\right)=\mathbf{x}_{\mathbf{f}}$:

$$
\frac{d}{d t} \mathbf{x}=\mathbf{F}(\mathbf{x})+\mathbf{u}, \quad \frac{d}{d t} \boldsymbol{\lambda}=-\left(\frac{\partial \mathbf{F}(\mathbf{x})}{\partial \mathbf{x}}\right)^{T} \boldsymbol{\lambda}
$$

Two point boundary value problem with twelve equations for states and costates.
(Bryson and Ho 2018)
Optimal control given by $\mathbf{u}=-\left(0,0,0, \lambda_{4}, \lambda_{5}, \lambda_{6}\right)^{T}$

Continuous Thrust Relative Transfers

Define the augmented state vector $\mathbf{z}=\left[\begin{array}{lll}\mathbf{x}^{T} & \boldsymbol{\lambda}^{T} & J\end{array}\right]^{T}$ and its dynamics

$$
\frac{d}{d t} \mathbf{z}=\mathbf{G}(\mathbf{z})=\left[\begin{array}{lll}
\left(\mathbf{F}(\mathbf{x})^{T}+\left[\begin{array}{ll}
\mathbf{0} & \mathbf{u}^{T}
\end{array}\right]\right)-\boldsymbol{\lambda}^{T}\left(\frac{\partial \mathbf{F}(\mathbf{x})}{\partial \mathbf{x}}\right) & \frac{1}{2} \mathbf{u}^{T} \mathbf{u}
\end{array}\right]^{T}
$$

Initial costates are given by STM associated with G

$$
\delta \boldsymbol{\lambda}_{0} \approx\left(\Phi_{\lambda}^{\mathbf{x}}\right)^{-1}\left(\delta \mathbf{x}_{t}-\Phi_{\mathbf{x}}^{\mathbf{x}} \delta \mathbf{x}_{0}\right)
$$

Previous works have only applied to 2-body dynamics (Lembeck and Prussing 1993;
Carter and Humi 1987)
Energy cost approximation from second order state transition tensor:

$$
\delta J \approx \frac{\partial^{2} J_{f}}{\partial \mathbf{x}_{0}^{2}} \delta \mathbf{x}_{0}^{2}+\frac{\partial^{2} J_{f}}{\partial \boldsymbol{\lambda}_{0}^{2}} \delta \boldsymbol{\lambda}_{0}^{2}
$$

Three Body Problem Example

Rendezvous onto an Earth-Sun L2 Halo Orbit from a sphere of initial relative positions

Rendezvous on SEL2 Halo: Two Weeks from $10,000 \mathrm{~km}$ Sphere

The rendezvous control cost approximated by second order state transition tensor and the error in its approximation versus numerical integration.

Problems with Practical Computation

Fast calculations once we have Φ and potentially higher order state transition tensors.
What about calculating Φ ?

- Analytical solutions:
- Clohessy-Wiltshire
- Yamanaka-Ankersen
- Their respective adjoint equations
- Numerical integration:
- High fidelity two body motion with perturbations
- Three body motion
- Costate equations

Second order STT for optimal control requires integration of 13^{3} equations! Likely infeasible for online computations

Question:

Given prior knowledge of this reference trajectory,

how do we quickly compute the STTs along any arc?

Cocycle Conditions

$$
\Phi(t, 0)=\Phi\left(t, t_{2}\right) \Phi\left(t_{2}, t_{1}\right) \Phi\left(t_{1}, 0\right)
$$

Interpolation

Let $(a, b) \subseteq \Delta$, then an entrywise linear interpolant of Φ is given by

$$
\Phi(b, a) \approx I+\frac{b-a}{|\Delta|}(\Phi(\Delta)-I)
$$

$$
t:
$$

Building Up The State Transition Matrix

Binary Search Construction

$$
\Delta_{m, j}=\left(T_{0}+\frac{T_{f}-T_{0}}{2^{m}} j, T_{0}+\frac{T_{f}-T_{0}}{2^{m}}(j+1)\right)
$$

Conclusion

Contributions:

- First linearized optimal control outside of Keplerian dynamics
- Novel use of STT to compute energy cost metric
- Precomputation and interpolation algorithm

Benefits:

- 2-3 order of magnitude speedup in STM and STT calculation
- Order of megabytes of precomputed data
- Achieves order 0.1 to 1 percent error in energy estimates

Future directions:

- Explore Lunar Halo analogs
- Fast computation for path constrained optimal relative control
- Fuel optimal control

Outline

Dynamical Systems Background
Calculating state transition tensors
Satellite Relative Motion Control
State transition matrix for optimal control
Composing STMs
Interpolating STMs
Precomputation and online algorithm
Angles-Only Relative Orbit Estimation
Linear unobservable range
Range ambiguous linear estimate
Scale estimate
Quadratic approximations

Angles-Only Space to Space Orbit Determination

Can a satellite determine another satellite's state with just a camera?

The Problem

Given relative position line of sight with QUEST measurement model (Shuster and Oh 1981)

$$
\begin{gathered}
\mathbf{I}_{t_{i}}=\frac{\mathbf{r}_{t_{i}}}{\left|\mathbf{r}_{t_{i}}\right|}+\mathbf{v}_{t_{i}} \\
E\left(\mathbf{v}_{t_{i}}\right)=\mathbf{0}, \quad E\left(\mathbf{v}_{t_{i}} \mathbf{v}_{t_{i}}^{T}\right)=\frac{\sigma^{2}}{2}\left(I_{3}-\frac{\mathbf{r}_{t_{t}} \mathbf{r}_{t_{i}}^{T}}{\left\|\mathbf{r}_{t_{i}}\right\|^{2}}\right)
\end{gathered}
$$

Find an initial relative state that fits

$$
\begin{aligned}
& \operatorname{argmin}_{\delta \mathbf{x}_{0} \in \mathbb{R}^{6}}\left\{\sum_{i=1}^{n} \frac{\left\|\mathbf{I}_{t_{i}} \times \mathbf{r}_{t_{i}}\right\|^{2}}{\left\|\mathbf{r}_{t_{i}}\right\|^{2}}\right\} \\
& \approx \operatorname{argmin}_{\delta \mathbf{x}_{0} \in \mathbb{R}^{6}}\left\{\frac{\sum_{i=1}^{n}\left\|\mathbf{I}_{t_{i}} \times \mathbf{r}_{t_{i}}\right\|^{2}}{\left\|\delta \mathbf{x}_{0}\right\|^{2}}\right\} \\
&= \operatorname{argmin} \\
& \delta \mathbf{x}_{0} \in \mathbb{R}^{6}
\end{aligned}\left\{\frac{\sum_{i=1}^{n}\left\|\mathbf{I}_{t_{i}} \times\left(\varphi_{t_{i}}^{r}\left(\mathbf{x}_{0}+\delta \mathbf{x}_{0}\right)-\varphi_{t_{i}}^{r}\left(\mathbf{x}_{0}\right)\right)\right\|^{2}}{\left\|\delta \mathbf{x}_{0}\right\|^{2}}\right\}, ~ 又 土 \text {. }
$$

Linear Unobservable Range

Linear dynamics of two satellites relative to a reference satellite at the origin

Relative orbit linear dynamics are unobservable with angles-only measurements (Woffinden and Geller 2007)

Nonlinear Observability

Nonlinear dynamics of the same satellites relative to a reference satellite at the origin

Nonlinear dynamics can enable observability (Ardaens, Gaias, et al. 2019; Jean-Sébastien Ardaens and Gaias 2019; Lovell, Sinclair, and Newman 2018). Current algorithms rely on bisection or homotopy continuation.

Second Order Position Approximation

Consider the 3 by 6 matrix

$$
\Phi^{r}(t, 0)=\frac{\partial \mathbf{r}_{t}}{\partial \mathbf{x}_{0}}
$$

and the 3 by 6 by 6 rank $(1,2)$ tensor

$$
\begin{gathered}
\psi^{r}(t, 0)=\frac{\partial^{2} \mathbf{r}_{t}}{\partial \mathbf{x}_{0}^{2}} \\
\delta \mathbf{r}_{t} \approx \phi^{r}(t, 0) \delta \mathbf{x}_{0}+\frac{1}{2} \psi^{r} \delta \mathbf{x}_{0}^{2}
\end{gathered}
$$

Optimal Linear Orbit Determination

Linear approximation of initial orbit direction vector: 6th right singular vector of A (Sinclair and Alan Lovell 2020)

$$
A=\left[\begin{array}{c}
{\left[I_{t_{1}}\right]_{\times} \Phi^{r}\left(t_{1}, t_{0}\right)} \\
\vdots \\
{\left[I I_{t_{n}}\right]_{\times} \Phi^{r}\left(t_{n}, t_{0}\right)}
\end{array}\right]
$$

$$
\hat{\delta} \mathbf{x}_{0} \approx \overline{\mathrm{x}}_{0}=\operatorname{argmin}_{\left\|\delta x_{0}\right\|=1}\left\{\left\|A \delta \mathbf{x}_{0}\right\|^{2}\right\}
$$

Scale Estimate

$$
\begin{aligned}
0=\left\|\mathbf{I}_{t} \times \delta \mathbf{r}_{t}\right\| \approx \| \mathbf{I}_{t} \times \Phi^{r}(t, 0) \delta \mathbf{x}_{0}+\mathbf{I}_{t} & \times \frac{1}{2} \Psi^{r}(t, 0) \delta \mathbf{x}_{0}^{2} \| \Longrightarrow \\
\left\|\delta \mathbf{x}_{0}\right\| & \approx \frac{\left\|\mathbf{I}_{t} \times \Phi^{r}(t, 0) \hat{\delta \mathbf{x}_{0}}\right\|}{\left\|\mathbf{I}_{t} \times \frac{1}{2} \psi^{\mathbf{r}}(t, 0) \hat{\delta \mathbf{x}_{0}^{2}}\right\|}
\end{aligned}
$$

10.30	0.22	103.79	0.83	1.02	2.37	0.07	5.37	0.29

Relative orbit semi-minor axis sizes predicted from this estimate.
Mean of 13.81 km order of magnitude approximation for actual 20 km size.

Improved Scale Estimate

By solving a generalized eigenvalue problem, we can improve initial state approximation

$$
\begin{aligned}
0=\left\|\mathbf{I}_{t} \times \delta \mathbf{r}_{t}\right\| \approx \| \mathbf{I}_{t} \times \Phi^{r}(t, 0) \delta \mathbf{x}_{0}+\mathbf{I}_{t} & \times \frac{1}{2} \Psi^{r}(t, 0) \delta \mathbf{x}_{0}^{2} \| \Longrightarrow \\
\left\|\delta \mathbf{x}_{0}\right\| & \approx \frac{\left\|\mathbf{I}_{t} \times \Phi^{r}(t, 0) \hat{\delta} \mathbf{x}_{0}\right\|}{\left\|\mathbf{I}_{t} \times \frac{1}{2} \Psi^{r}(t, 0) \hat{\delta \mathbf{x}_{0}^{2}}\right\|}
\end{aligned}
$$

20.002	20.010	19.631	20.011	20.013	19.999	20.014	20.041	20.003

Relative orbit semi-minor axis sizes predicted from this estimate. Mean of 19.97 km is within 1 percent of the actual 20 km size.

Simple estimate $\sigma=10^{-4}$ error (3σ bound $\approx 1^{\prime}$)

Relative error in scale for 1000 initial relative orbits in a 200 km cube centered about the reference orbit.

Improved estimate $\sigma=10^{-4}$ error

Relative error in scale for 1000 initial relative orbits in a 200 km cube centered about the reference orbit.

Conclusion

Contributions:

- Approximate solution of passive angles-only relative orbit determination
- Quadratic model of dynamics resolves linear unobservability
- Only linear methods employed

Future directions:

- Iterative methods to improve estimate
- Convergence studies from starting estimates
- Showcase algorithm in cislunar space
- Extension to line of sight velocity problem
- Inertial orbit determination with similar methods

Course Work

- Math
- Dynamical Systems
- Applied Dynamical Systems
- Perturbation Theory and Asymptotics
- Probability Theory
- Optimal Control and Differential Games (Expected Spring 2023)
- MAE
- Model Based Estimation
- Advanced Astrodynamics
- Attitude Dynamics and Control (Expected Fall 2022)
- Other
- Parallel Computing
- Inverse Problems

Publications

Journal papers:

- J. Kulik, G.J. Soto, and D. Savransky. "Minimal differential lateral acceleration configurations for starshade stationkeeping in exoplanet direct imaging." Journal of Astronomical Telescopes, Instruments, and Systems 8.1 (2022): 017003.
- J. Kulik "An in-plane J2-invariance condition and control algorithm for highly elliptical satellite formations." Celestial Mechanics and Dynamical Astronomy 133.2 (2021): 1-25.

Conference papers:

- J. Kulik, W. Clark and D. Savransky, "Fast approximation of continuous thrust optimal relative control in the three body problem," Astrodynamics Specialist Conference 2022, AAS, 2022.
- J. Kulik and D. Savransky, "Precomputation and interpolation of the matrizant for starshade slewing," Space Telescopes and Instrumentation 2022, SPIE, 2022.
- J. Kulik, and D. Savransky. "Relative Transfer Singularities and Multi-Revolution Lambert Uniqueness." AIAA SCITECH 2022 Forum. 2022.

Thank You - Questions?

Final Position Error

The error in final position due to the approximation of the rendezvous optimal control by second order and first order methods.

Results of Interpolation Error

Worst case error in cost due to interpolation from 0.1 day intervals (66 Mb data).

Leading Order Interpolation

Given $J=\frac{\partial \mathbf{F}\left(\mathbf{x}_{0}\right)}{\partial \mathbf{x}}$

$$
P_{j}^{i}=\min \left\{p \in \mathbb{N} \quad \mid \quad\left(J^{p}\right)_{j}^{i} \neq 0\right\}
$$

$$
\begin{gathered}
\Phi(t, 0) \approx e^{J t}=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} J^{k} \\
\Phi(\alpha t, 0) \approx e^{J \alpha t}=\sum_{k=0}^{\infty} \frac{(\alpha t)^{k}}{k!} J^{k} \\
\Phi_{j}^{i}(\alpha t, 0) \approx I_{n}+\alpha^{P_{j}^{i}}\left(\Phi_{j}^{i}(t, 0)-I_{n}\right)
\end{gathered}
$$

Results of Interpolation Error

Worst case error in cost due to interpolation from 1 day intervals (6 Mb data).

Improving the Estimate

$$
\begin{aligned}
& \mathbf{a}=\left[\begin{array}{c}
\mathbf{I}_{t_{1}} \times \Phi^{r}\left(t_{1}, 0\right) \hat{\delta \mathbf{x}_{0}} \\
\vdots \\
\mathbf{I}_{t_{n}} \times \Phi^{r}\left(t_{n}, 0\right) \hat{\delta \mathbf{x}_{0}}
\end{array}\right] \\
& =A \hat{\delta} \mathbf{x}_{0} \\
& A=\left[\begin{array}{c}
{\left[\mathbf{I}_{t_{1}}\right]_{\times} \Phi^{r}\left(t_{1}, 0\right)} \\
\vdots \\
{\left[\mathbf{I}_{t_{n}}\right]_{\times} \Phi^{r}\left(t_{n}, 0\right)}
\end{array}\right] \\
& \mathbf{b}=\left[\begin{array}{c}
\mathbf{I}_{t_{1}} \times \Psi^{r}\left(t_{1}, 0\right) \hat{\delta} \mathbf{x}_{0}^{2} \\
\vdots \\
\mathbf{I}_{t_{n}} \times \Psi^{r}\left(t_{n}, 0\right) \hat{\delta} \mathbf{x}_{0}^{2}
\end{array}\right] \\
& \approx B \hat{\delta \mathbf{x}_{0}} \\
& B=\left[\begin{array}{c}
{\left[\boldsymbol{I}_{t_{1}}\right]_{\times} \Psi^{r}\left(t_{1}, 0\right) \overline{\mathbf{x}}_{0}} \\
\vdots \\
{\left[\boldsymbol{l}_{t_{n}}\right]_{\times} \Psi^{r}\left(t_{n}, 0\right) \bar{x}_{0}}
\end{array}\right] \\
& B \hat{\delta \mathbf{x}_{0}}=\lambda A \hat{\delta} \mathbf{x}_{0} \\
& A^{\dagger} B \hat{\delta \mathbf{x}_{0}}=\lambda \hat{\delta \mathbf{x}_{0}}
\end{aligned}
$$

References I

固 Ardaens，J－S，Gabriella Gaias，et al．（2019）．＂Fast Angles－Only Initial Relative Orbit Determination for Onboard Application＂．In：10th International Workshop on Satellite Constellations and Formation Flying（IWSCFF 2019），pp．1－8．
围 Ardaens，Jean－Sébastien and Gabriella Gaias（2019）．＂A numerical approach to the problem of angles－only initial relative orbit determination in low earth orbit＂．In： Advances in Space Research 63．12，pp．3884－3899．
回 Bryson，Arthur E and Yu－Chi Ho（2018）．Applied optimal control：optimization， estimation，and control．Routledge．
國 Carter，Thomas and Mayer Humi（1987）．＂Fuel－optimal rendezvous near a point in general Keplerian orbit＂．In：Journal of Guidance，Control，and Dynamics 10．6， pp．567－573．
E Clohessy，WH and RS Wiltshire（1960）．＂Terminal guidance system for satellite rendezvous＂．In：Journal of the Aerospace Sciences 27．9，pp．653－658．
E Gaudi，B Scott et al．（2020）．＂The Habitable Exoplanet Observatory（HabEx） Mission Concept Study Final Report＂．In：arXiv．

References II

R Lembeck，Catherine A and John E Prussing（1993）．＂Optimal impulsive intercept with low－thrust rendezvous return＂．In：Journal of guidance，control，and dynamics 16．3，pp．426－433．
围 Lovell，T Alan，Andrew J Sinclair，and Brett Newman（2018）．＂Angles Only Initial Orbit Determination：Comparison of Relative Dynamics and Inertial Dynamics Approaches with Error Analysis＂．In： 2018 Space Flight Mechanics Meeting， p． 0475.
國 Mullins，Larry D（1992）．＂Initial value and two point boundary value solutions to the Clohessy－Wiltshire equations＂．In：Journal of the Astronautical Sciences 40．4， pp．487－501．
國 Park，Ryan S and Daniel J Scheeres（2006）．＂Nonlinear mapping of Gaussian statistics：theory and applications to spacecraft trajectory design＂．In：Journal of guidance，Control，and Dynamics 29．6，pp．1367－1375．

References III

Roscoe, Christopher WT et al. (2011). "Optimal formation design for magnetospheric multiscale mission using differential orbital elements". In: Journal of Guidance, Control, and Dynamics 34.4, pp. 1070-1080.
围 Shuster, Malcolm David and S D_ Oh (1981). "Three-axis attitude determination from vector observations". In: Journal of guidance and Control 4.1, pp. 70-77.
國 Sinclair, Andrew J and T Alan Lovell (2020). "Optimal Linear Orbit Determination". In: Journal of Guidance, Control, and Dynamics 43.3, pp. 628-632.
E- Woffinden, David C and David K Geller (2007). "Relative angles-only navigation and pose estimation for autonomous orbital rendezvous". In: Journal of Guidance, Control, and Dynamics 30.5, pp. 1455-1469.

