

Unscented Filtering for Directly-Observed Exoplanet Orbits

Zvonimir Stojanovski¹ Dmitry Savransky^{1,2}

¹Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY

²Carl Sagan Institute, Cornell University, Ithaca, NY

Challenges of Exoplanet Orbit Fitting

- Sparse measurements with large errors
- Highly nonlinear dynamics and measurements
- Classical orbital elements have singularities and bounds that are impractical for estimation
- Most existing techniques are computationally expensive (e.g., Monte Carlo methods)

Definitions

- $\Xi_{11} = \frac{\alpha}{d} (\cos(\omega + M_0) \cos \Omega \sin(\omega + M_0) \sin \Omega \cos I)$ $\frac{\omega}{d}(\cos(\omega + M_0)\sin\Omega + \sin(\omega + M_0)\cos\Omega\cos I)$
- $\Xi_{12} = \frac{\omega}{J} (-\sin(\omega + M_0)\cos\Omega \cos(\omega + M_0)\sin\Omega\cos I)$

A New Set of Orbital Elements

Perifocal Frame \mathcal{P} and Auxiliary Frame \mathcal{Q}

Filtering Methods

Unscented Kalman Filter (UKF) Update [1]

$\Xi_{22} = \frac{\alpha}{I} \left(-\sin(\omega + M_0) \sin\Omega + \cos(\omega + M_0) \cos\Omega \cos I \right)$ $e\cos M_0$ $\eta_1 =$ $\overline{\sqrt{1-e^2}}$ $\eta_2 = -\frac{e\sin M_0}{\sqrt{1-e^2}}$ $\lambda = \log \left(\cdot \right)$ $(P_0 \text{ is an arbitrary scaling factor, e.g., 1 yr})$

Properties

- No singularities at e = 0, I = 0, etc.
- Any values in \mathbb{R}^7 describe an elliptic orbit
- Based on the reference frame Q
- Combine features of the Cohen-Hubbard nonsingular elements [2] and Thiele-Innes constants

Filter Results

Root Mean-Square Error (RMSE) over 100 Simulation Trials

Measurement Model

 $\mathbf{z} = \mathbf{\Xi} \boldsymbol{\zeta}(\boldsymbol{\eta}, \lambda, t) + \mathbf{w}$

• $\boldsymbol{\zeta}$ is the position in the orbital plane in \mathcal{Q} , scaled by 1/a• w is the measurement noise

> Performance Summary

Accuracy: Relative RMSE after 20 filter passes

Improving UKF Performance

10^{1}

 10^{-1}

 \prec

• We use a 7th-order Gaussian cubature for $\mathbf{x}^{(j)}$ and $w^{(j)}$ Running multiple filter passes with same measurements

Simulated Exoplanet Parameters

Semi-Major Axis	a	3.0 au
Eccentricity	e	0.1
Inclination	Ι	30.0 deg
Longitude of Ascending Node	Ω	120.0 deg
Argument of Periapsis	ω	45.0 deg
Mean Anomaly at Epoch	M_0	75.0 deg
Period	P	5.0 yr
Distance from Observer	d	2.5 pc

- Generated five measurements over a one-year time span
- Standard deviation of measurement noise is 5 mas

References

■ 1.4% for Ξ 11% for η • 1.0% for λ

Speed: \sim 10,000 filter updates per second in C++ implementation

Future Work

- Testing and statistical analysis with various simulated exoplanets
- Determining convergence criteria for multiple filter passes
- Analyzing error estimates and bounds
- Testing with other UKF variants
- Comparison with other exoplanet orbit fitting methods
- Application to real exoplanet data

[2] C. J. Cohen and E. C. Hubbard, "A Nonsingular Set of Orbital Elements," *The* Astronomical Journal, vol. 67, no. 1, 1962.

