Precomputation and Interpolation of the Matrizant for Starshade Slewing

Jackson Kulik ${ }^{1}$ Dmitry Savransky
${ }^{1}$ Cornell University, Center for Applied Mathematics ${ }^{2}$ Cornell University. Department of Mechanical and Aerospace Engineering

The State Transition Matrix
The state transition matrix (STM) or matrizant, $\Phi\left(t_{f}, t_{0}\right)$, gives a linear approximation to the behavior of a dynamical system in the vicinity of some reference trajectory.

Variations in initial conditions, $\delta \mathbf{x}_{0}$, at time t_{0} are mapped into variations in the final state, $\delta \mathbf{x}_{f}$, at time t_{f}.

$$
\delta \mathbf{x}_{f} \approx \Phi\left(t_{f}, t_{0}\right) \delta \mathbf{x}_{0}
$$

Calculating the STM

Suppose a dynamical system for the state $\mathbf{x} \in \mathbb{R}^{n}$ is described by the vector field \mathbf{F}

$$
\frac{d}{d t} \mathbf{x}=\mathbf{F}(\mathbf{x})
$$

The state transition matrix associated with a given trajectory arises from simultaneous integration of the first order variational equations

$$
\frac{d \Phi(t, 0)}{d t}=\frac{\partial \mathbf{F}(\mathbf{x})}{\partial \mathbf{x}} \Phi(t, 0), \quad \Phi(0,0)=I_{n}
$$

- No analytical solutions exist in the three body problem
- Numerical integration required to calculate STM

Impulsive Relative Transfers

Suppose the state, \mathbf{x}, is partitioned into position, \mathbf{r}, and velocity, \mathbf{v}. The final relative position $\delta \mathbf{r}_{f}$ can be expressed in terms of initial variations.

$$
\delta \mathbf{r}_{f} \approx \Phi_{\mathbf{r}}^{\mathbf{r}}\left(t_{f}, t_{0}\right) \delta \mathbf{r}_{0}+\Phi_{\mathbf{v}}^{\mathbf{r}}\left(t_{f}, t_{0}\right) \delta \mathbf{v}_{0}
$$

Given an initial relative position, r_{0}, and a desired final relative position, r_{f}, the initial relative velocity to achieve that final position is given by

$$
\delta \mathbf{v}_{0} \approx\left(\Phi_{\mathbf{v}}^{\mathbf{r}}\left(t_{f}, t_{0}\right)\right)^{-1}\left(\delta \mathbf{r}_{f}-\Phi_{\mathbf{r}}^{\mathbf{r}}\left(t_{f}, t_{0}\right) \delta \mathbf{r}_{0}\right)
$$

Final relative velocity can be calculated from the STM

$$
\delta \mathbf{v}_{f} \approx \Phi_{\mathbf{v}}^{\mathbf{v}}\left(t_{f}, t_{0}\right) \delta \mathbf{v}_{0}+\Phi_{\mathbf{r}}^{\mathbf{v}}\left(t_{f}, t_{0}\right) \delta \mathbf{r}_{0}
$$

- initial and final $\delta \mathbf{v}$ impulses calculated from difference with desired values
- desired final velocity is zero relative inertial velocity relative to telescope
- similar technique to find initial costates for continuous thrust optimal control

References

[^0]
Acknowledgments

The authors thank the DOD for its generous support through the NDSEG fellowship.

Starshades for Exoplanet Direct Imaging

A starshade satellite formation flying in coordination near a space telescope

- Enables direct imaging of exoplanets by blocking out starlight
- Requires consideration of cost to maneuver starshade for each observation [1]
- Assumes the telescope flies on a known stable orbit in Sun-Earth space

Optimal mission scheduling

- Balances potential science objectives with limited fuel to maneuver
- Takes potentially millions of cost function evaluations to approximate solution - Requires fast evaluation of the cost function for a proposed mission schedule

$\delta \mathbf{r}_{f}$

Evaluating the maneuever cost function $\Delta \mathbf{v}$

- Requires solution of a boundary value problem with many design variables - Transfer time Δt
- Initial and final position along sphere around telescope $\delta \mathbf{r}_{0}$ and $\delta \mathbf{r}_{f}$
- Takes multiple numerical integrations of 42 equation system to solve exactly
- Employs costly numerical integration to find STM even for linear approximation
- Existing interpolation approaches ignore potentially important spatial variables [2]

Our approach

- Avoid online costs by precomputing STMs along the telescope trajectory
- Combine and interpolate STMs online to solve for any maneuver cost

Composing STMs
Cocycle conditions allow for STMs along consecutive segments to be composed into a single STM along the combined trajectory.

$\Phi(t, 0)=\Phi\left(t, t_{2}\right) \Phi\left(t_{2}, t_{1}\right) \Phi\left(t_{1}, 0\right)$

Interpolation of the STM
Let $(a, b) \subseteq \Delta$, then an entrywise linear interpolant of Φ is given by

$$
\Phi(b, a) \approx I+\frac{b-a}{|\Delta|}(\Phi(\Delta)-I)
$$

t :

Error in any matrix norm is quadratic in $|\Delta|$.

Precomputation and Online Computation

To quickly calculate the STM along any portion of the telescope's periodic orbit Perform the following ahead of time

- Divide the trajectory into 2^{m} subintervals $\Delta_{m, j}$ evenly spaced from T_{0} to T_{f} - Precompute and store the STM $\Phi\left(\Delta_{m, j}\right)$ along each subset of the trajectory - Build up and store $\Phi\left(\Delta_{i, j}\right)$ for i from 0 to $m-1$ using cocycle conditions

$$
\Delta_{m, j}=\left(T_{0}+\frac{T_{f}-T_{0}}{2^{m}} j, T_{0}+\frac{T_{f}-T_{0}}{2^{m}}(j+1)\right)
$$

During schedule optimization online

- Follow logarithmic search algorithm to build up STM for desired time interval - Use cocycle conditions on precomputed STMs contained in desired time range - Interpolate on end points of time intervals, and then use cocycle conditions
- Calculate approximate transfer costs using the resulting STM

Benefits

- Less than $2 m$ matrix multiplications required for computation
- $2^{m+1}-1$ matrices with 36 floating point entries each stored
- On the order of kilobytes and microseconds for m chosen to keep interpolation error on the order of 0.1%

Delta-V Error

- Compare $\Delta \mathbf{v}$ calculated with exact STM vs an interpolated STM.

- Along a 6 month L2 Halo orbit
- 5000 example transfers to and from uniform random look vectors
- Interpolated STM has 1 day finest discretization, and 0.5 day interpolation is used on either side to demonstrate worst case error
Delta-v error is less than 0.05%, and diminishes for longer transfers - Accurate delta-v estimates with low memory requirements (50 Kb) for any nearby relative transfer

[^0]: [1] Egemen Kolemen and N Jeremy Kasdin. Optimization of
 of guidance, control, and dyramics, $3511: 172-185$, 2012 .
 [2] Gabriel \rfloor Soto, Dmitry Savransk, Daniel Garrett, and Christian Delacroix. Parameterizing the search space of starshade

