Verification of a Satellite Observing Event-Based Sensor Model A Examination

Rachel Oliver

31 August 2022

Space Domain Awareness (SDA)

Figure: Weisbarth, 2020, https://media.defense.gov/2020/Mar/15/2002264814/-1/-1/0/190111-F-HF064-002.PNG

Figure: MDA, 2008, http://www.mda.mil/mdalink/pdf/too164.pdf

Growing Complexity

Figure: ESA, ESA's Space Environment Report, 2022

Event-Based Sensors

- Asynchronous data collection
- Records time series events, e
 - $e = \{t, x, y, \rho\}$
 - \circ recording timestamp, t
 - pixel location, x and y
 - $\,\circ\,$ change polarity, ρ

Event-Based Sensors Advantages in SDA

- Event-Based Sensor Advantages for SDA
 - Temporal Sensitivity
 - High Dynamic Range
 - Space-Based
 - Low SWaP for Space-Based
 - Maximize Information for Downlink
 - Enable Onboard Computation
 - $\circ \ \ \mathsf{Ground}\text{-}\mathsf{Based}$
 - Low Cost for Augmenting SDA Operations

Figure: Cohen, 2019, http://greg-cohen.com/project/astrosite/

Event Simulations

New Event-based Sensor Model

New Event-based Sensor Model

Satellite and Star Generation

New Event-based Sensor Model

$$U(r_n) = \mathcal{Q}\left[\frac{m_{n-1}-1}{m_{n-1}\Delta z_{n-1}}, r_n\right] \times \prod_{i=1}^{n-1} \left\{ \mathcal{T}[z_i, z_{i+1}] \mathcal{F}^{-1}\left[f_i, \frac{r_{i+1}}{m_i}\right] \mathcal{Q}_2\left[-\frac{\Delta z_i}{m_i}, f_i\right] \mathcal{F}[r_i, f_i] \frac{1}{m_i} \right\} \times \left\{ \mathcal{Q}\left[\frac{1-m_1}{\Delta z_1}\right] \mathcal{T}[z_1, z_2] U(r_1) \right\}$$

$$U(r_n) = \mathcal{Q}\left[\frac{m_{n-1}-1}{m_{n-1}\Delta z_{n-1}}, r_n\right] \times \prod_{i=1}^{n-1} \left\{ \mathcal{T}[z_i, z_{i+1}] \mathcal{F}^{-1}\left[f_i, \frac{r_{i+1}}{m_i}\right] \mathcal{Q}_2\left[-\frac{\Delta z_i}{m_i}, f_i\right] \mathcal{F}[r_i, f_i] \frac{1}{m_i} \right\} \times \left\{ \mathcal{Q}\left[\frac{1-m_1}{\Delta z_1}\right] \mathcal{T}[z_1, z_2] U(r_1) \right\}$$

$$U(r_n) = \mathcal{Q}\left[\frac{m_{n-1}-1}{m_{n-1}\Delta z_{n-1}}, r_n\right] \times \prod_{i=1}^{n-1} \left\{ \mathcal{T}[z_i, z_{i+1}] \mathcal{F}^{-1}\left[f_i, \frac{r_{i+1}}{m_i}\right] \mathcal{Q}_2\left[-\frac{\Delta z_i}{m_i}, f_i\right] \mathcal{F}[r_i, f_i] \frac{1}{m_i} \right\} \times \left\{ \mathcal{Q}\left[\frac{1-m_1}{\Delta z_1}\right] \mathcal{T}[z_1, z_2] U(r_1) \right\}$$

$$U(r_n) = \mathcal{Q}\left[\frac{m_{n-1}-1}{m_{n-1}\Delta z_{n-1}}, r_n\right] \times \prod_{i=1}^{n-1} \left\{ \mathcal{T}[z_i, z_{i+1}] \mathcal{F}^{-1}\left[f_i, \frac{r_{i+1}}{m_i}\right] \mathcal{Q}_2\left[-\frac{\Delta z_i}{m_i}, f_i\right] \mathcal{F}[r_i, f_i] \frac{1}{m_i} \right\} \times \left\{ \mathcal{Q}\left[\frac{1-m_1}{\Delta z_1}\right] \mathcal{T}[z_1, z_2] U(r_1) \right\}$$

$$U(r_n) = \mathcal{Q}\left[\frac{m_{n-1}-1}{m_{n-1}\Delta z_{n-1}}, r_n\right] \times \prod_{i=1}^{n-1} \left\{ \mathcal{T}[z_i, z_{i+1}] \mathcal{F}^{-1}\left[f_i, \frac{r_{i+1}}{m_i}\right] \mathcal{Q}_2\left[-\frac{\Delta z_i}{m_i}, f_i\right] \mathcal{F}[r_i, f_i] \frac{1}{m_i} \right\} \times \left\{ \mathcal{Q}\left[\frac{1-m_1}{\Delta z_1}\right] \mathcal{T}[z_1, z_2] U(r_1) \right\}$$

Zernike Mode Phase Screen

$$U(r_n) = \mathcal{Q}\left[\frac{m_{n-1}-1}{m_{n-1}\Delta z_{n-1}}, r_n\right] \times \prod_{i=1}^{n-1} \left\{ \mathcal{T}[z_i, z_{i+1}] \mathcal{F}^{-1}\left[f_i, \frac{r_{i+1}}{m_i}\right] \mathcal{Q}_2\left[-\frac{\Delta z_i}{m_i}, f_i\right] \mathcal{F}[r_i, f_i] \frac{1}{m_i} \right\} \times \left\{ \mathcal{Q}\left[\frac{1-m_1}{\Delta z_1}\right] \mathcal{T}[z_1, z_2] U(r_1) \right\}$$

$$U(r_n) = \mathcal{Q}\left[\frac{m_{n-1}-1}{m_{n-1}\Delta z_{n-1}}, r_n\right] \times \prod_{i=1}^{n-1} \left\{ \mathcal{T}[z_i, z_{i+1}] \mathcal{F}^{-1}\left[f_i, \frac{r_{i+1}}{m_i}\right] \mathcal{Q}_2\left[-\frac{\Delta z_i}{m_i}, f_i\right] \mathcal{F}[r_i, f_i] \frac{1}{m_i} \right\} \times \left\{ \mathcal{Q}\left[\frac{1-m_1}{\Delta z_1}\right] \mathcal{T}[z_1, z_2] U(r_1) \right\}$$

New Event-based Sensor Model

Induced Photocurrent

• Responsivity linearly scales Power, $\Phi[W]$

$$I_p = R_\lambda \Phi[A]$$

- Responsivity, R_{λ} , Scaled by Quantum Efficiency, η $R_{\lambda} = \eta \frac{q}{hf} \approx \eta \frac{\lambda}{1.23985} \left[\frac{A}{W}\right]$
- Temperature, T, Dependent Dark Current, $I_{darklog}$

$$I_{darklog} = \ln(I_{dark}) = constant - \frac{E_a}{kT}$$

Event Simulations

Gaussian White Noise

Figure: McRenyolds, 2022, ETH Zurich

New Event-based Sensor Model

Low Pass Filter

- Maximum bandwidth, $f_{3dBmax} \approx 3000[Hz]$
- Resultant bandwidth, f_{3dB}

$$\begin{split} f_{3dB} &= \frac{l_{in} + \left(\frac{l_{max}}{10}\right)}{l_{max}} \times f_{3dBmax} \\ \epsilon &= e^{2\pi * \Delta t f_{3db}} \\ l_{\rho_{int}} \longleftarrow (1-\epsilon) l_{p-1} + \epsilon l_{in} \\ l_p \longleftarrow (1-\epsilon) l_{\rho_{int}} + \epsilon l_{in} \end{split}$$

New Event-based Sensor Model

Validation

Future Work

Comparator and Refractory Circuit

New Event-based Sensor Model

Arbitration

- Ordered row then column query
- Restricted maximum number of events
- Allows and tracks loss of events
 - Saturation
 - Refractory Period

Model Overview

- High Fidelity Model Innovations
 - 1. Inclusion of a physics based front end
 - 2. Induced current a function of quantum efficiency
 - 3. Inclusion of a temperature dependant dark current
 - 4. White noise scaled by photocurrent
 - 5. Realistic arbitration
 - 6. Tracks events lost during arbitration

Verification

- Goal: Prove Model Creates Data Analogous to Real Data
 - Build trust in simulation output
 - Produce simulated data for algorithm development
 - Test camera settings and designs to maximize low-light performance
- Challenges:
 - Non-deterministic: no one-to-one matching
 - Unknown importance of data characteristics

Data Collection

- Prophessee Gen3 (VGA) camera
- 85mm f1.4 Lens
- January March 2021
- Collection Procedure
 - 1. Slew to fixed azimuth and elevation
 - 2. Stare in fixed position for 30 seconds
 - 3. Slew to next location
- Courtesy of Dr. David Monet of AFRL Space Vehicles Directorate

Figure: Sony Prophesee, 2022 https: //www.prophesee.ai/event-based-evaluation-kits/

Example Data

Analysis Approaches

- Classic Post Processing
 - 1. Integrate data over 3 second time slice FITS image
 - SExtractor yields: (column, row, flux)
 - 3. Conversion of flux to visual magnitude: (*column*, *row*, *v*_{mag})
 - Astrometry.net maps (column, row) to (RA, DEC) and identifies reference stars and satellites
 - 5. Correlate satellite (*RA*, *DEC*) from each time slice with a satellite detection

- New Temporal Data Association
 - 1. Cluster data in 3-dimensions
 - 2. Filter clusters with too few pixels and/or events
 - 3. Combine clusters with Hough transform
 - 4. Assign cluster numbers to satellites
 - 5. Extract signature and temporal characteristics

a) Density Clustering b) Time Sequential Clustering

Clustering

Hough Transform

New Approach Limitations

- Human involvement is necessary
 - Easier to access in 2-dimensions
 - Poor signal to noise datasets are hard to process
- Time clustering is more consistent, but slow

Selected Characteristics

Characteristic Distributions

Validation Plan

- 1. Select at random a set of data from those post-processed
- 2. Simulate the physics front-end once
- 3. Run sensitivity analysis on camera parameters
- 4. Create Jacobian from sensitivity analysis
- 5. Find least squares fit of camera parameters
- 6. Use best fit parameters to simulate other collections
- 7. Compare the distributions with the Kolmogorov Smirnov Test

Non-linear Least Squares

- Sensitivity analysis is a finite difference approximation
- Produces Jacobian, J_{ij}
 δr:

 $J_{ij} = -\frac{\delta r_i}{\delta \beta_j}$

- Residuals, r_i
- Input Parameters, β_j
- Least Squares to find change in output, Δy

$$(J^T J)\Delta\beta = J^T \Delta y$$

$\frac{\delta r_1}{\delta \beta_1}$	$rac{\delta r_1}{\delta eta_2}$		$\frac{\delta r_1}{\delta \beta_j}$
$\frac{\delta r_2}{\delta \beta_1}$	$\frac{\delta r_2}{\delta \beta_2}$		
$\frac{\delta r_i}{\delta \beta_1}$		••••	$\cdot \frac{\delta r_i}{\delta \beta_j}$

Kolmogorov Smirnov Test

Multiple Hypothesis Tracker

Event-based Sensor Star Tracker

Other Projects

- Incorporation into an optical neural network
 - Recurrent Neural Network
 - Spiked Output
- Low light noise while slewing characteristic study
- Clustering algorithm update to analyze event-based data of lightning

Figure: Sohani, 2021, NDSEG Proposal

Contribution Overview

- Code: Event-based Sensor Model for Space Domain Awareness, various modules (physics front end, scaling white noise, limited arbiter)
- Conference Paper: Event-based Sensor Model for Space Domain Awareness, Advanced Maui Optical and Space Surveillance Technologies Conference 2021
- Code: Event-based post processing clustering algorithm for data association
- Code: Event-based multiple hypothesis tracker
- Conference Paper: Event-Based Sensor Multiple Hypothesis Tracker For Space Domain Awareness, Advanced Maui Optical and Space Surveillance Technologies Conference 2022
- Conference Short Course: An Introduction to Event-Based Sensors for SDA: A Hands-On Tutorial, Advanced Maui Optical and Space Surveillance Technologies Conference 2022

Contribution Overview Continued

- Research Seminar: Finding Satellites in Event-based Data, SGRS 2022
- Journal Paper: Verification of a Satellite Observing Event-Based Sensor Model, To Be Submitted in September 2022

Thank you for listening!

Special thank you to my committee members, husband, and friends for their never-ending patience with me.

Rachel Oliver

ro234@cornell.edu

Backup Slides - Courses Taken

- For Credit
 - AEP 5400 Nonlinear and Quantum Optics
 - MAE 5180 Autonomous Mobile Robots
 - MAE 5730 Intermediate Dynamics
 - MAE 5780 Feedback Control Systems
 - MAE 5830 Astronautic Optimization
 - MAE 6760 Model-Based Estimation
 - MAE 6780 Multivariable Control Theory
- Audited
 - MAE 6280 Adaptive and Learning Systems
 - MAE 6700 Advanced Dynamics
 - CS 5780 Intro to Machine Learning

Backup Slides - Additional Graduate Level Courses

- Taken at the Air Force Institute of Technology
 - Linear Systems Analysis
 - The Space Environment
 - Methods of Applied Mathematics
 - Intermediate Dynamics
 - Space Mission Analysis and Design
 - Satellite Communications
 - Control and State Space Concepts
 - Introduction to Flight Dynamics
 - Applied Linear Alegbra
 - Intermediate Space Flight
 - Dynamics

- Spacecraft Systems Engineering
- Satellite Design and Test
- Modern Methods of Orbital Determination
- Space Surveillance
- Chemical Rocket Propulsion

Backup Slides - Irradiance Calculations

- Star by Johnson V: $V_0 = q_v 2.5 log(F_v)$
 - $\circ~q_{v}$ zero magnitude flux scaled from Vega
 - Rearrange Equation for Flux

$$\circ \;\; {\cal F}_{
m v} = 10^{-0.4(V_0-q_{
m v})} [rac{W}{cm^2 Angstrom}]$$

- Multiply by bandpass, filter width, and recieving area
- $\circ P_v = F_v Area Bandpass$
- Satellite by Point Source:
 - Power sent to hemisphere

•
$$I = \frac{L \sum (A_{surf} \rho_{surf})}{2 * \pi}$$

• Calculate energy recieved per steradian

•
$$\mathcal{E}_{\lambda} = \frac{I_{\lambda} * cos(\theta_R)}{R^2}$$

Multiply by receiving area

$$\circ \ \ \textit{P}_{\textit{sat}} = \mathcal{E}_{\lambda}\textit{Area}$$

Backup Slides - Zernike Mode Weighting

$$Z_{evenj} = \sqrt{n+1}R_n^m(r)\sqrt{2}cos(m\theta)$$

 $Z_{oddj} = \sqrt{n+1}R_n^m(r)\sqrt{2}sin(m\theta)$
 $Z_j = \sqrt{n+1}R_n^0(r), m = 0$

$$\Theta_{atm}(r,\theta) = \sum_{j} a_{j} Z_{j}(r,\theta).$$

$$C_{j,j'} = E[a_{j}, a_{j'}] = \frac{K_{zz'} \delta_{z} \Gamma[(n+n'-5/3)/2] (D/r_{o})^{5/3}}{\Gamma[(n-n'+17/3)/2] \Gamma[(n'-n+17/3)/2] \Gamma[(n+n'+23/3)/2]}.$$

$$a_{j} = U^{T} \cdot \overrightarrow{n}.$$

Backup Slides - Beta Binomial Distribution Fit

- Unknown or random probability of success in each of a fixed or known number of Bernoulli trials
- Binomial distribution modification: probability of success is drawn from beta distribution
- Fit with selection of approximate α and β values defining the continuous beta distribution
- Defined the bin size and center values of those bins
- Curve fit the center locations to a continuous beta distribution

Figure: Horas, 2014