Fast Approximation of Continuous Thrust Optimal Relative Control in the Three Body Problem

Jackson Kulik, William Clark, and Dmitry Savransky Cornell University

Astrodynamics Specialist Conference

August, 2022

Dynamical Systems Preliminaries

- ▶ State vector $\mathbf{x} \in \mathbb{R}^n$
- Dynamics/vector field F:

$$\frac{d}{dt}\mathbf{x} = \mathbf{F}(\mathbf{x})$$

 $\blacktriangleright \text{ Flow map } \varphi_t : \mathbf{x}_0 \to \mathbf{x}_t$

$$rac{d}{dt}arphi_t(\mathbf{x}) = \mathbf{F}(arphi_t(\mathbf{x})), \quad arphi_0(\mathbf{x}) = \mathbf{x}$$

Taylor Expansion of the Flow Map

$$\delta x_0$$
 δx_f

$$\mathbf{x}_{f} + \delta \mathbf{x}_{f} = \varphi_{t_{f}}(\mathbf{x}_{0} + \delta \mathbf{x}_{0}) = \sum_{n=0}^{\infty} \frac{1}{n!} \left. \frac{\partial^{n} \varphi_{t_{f}}}{\partial \mathbf{x}^{n}} \right|_{\mathbf{x}_{0}} \delta \mathbf{x}_{0}^{n}$$

State Transition Matrix

The state transition matrix gives the linear approximation

$$\delta \mathbf{x}_{f} \approx \frac{\partial \varphi_{t_{f}}}{\partial \mathbf{x}} \bigg|_{\mathbf{x}_{0}} \delta \mathbf{x}_{0} = \Phi(t_{f}, t_{0}) \delta \mathbf{x}_{0}$$

Calculating the State Transition Matrix

Assuming sufficient smoothness of $\varphi_t(\mathbf{x})$ (Clairaut's Theorem)

$$\frac{d\Phi(t,0)}{dt} = \frac{d}{dt}\frac{\partial\varphi_t}{\partial\mathbf{x}} = \frac{\partial}{\partial\mathbf{x}}\frac{d\varphi_t}{dt} = \frac{\partial}{\partial\mathbf{x}}\mathsf{F}(\varphi_t(\mathbf{x})) = \frac{\partial\mathsf{F}(\mathbf{x})}{\partial\mathbf{x}}\Big|_{\varphi_t(\mathbf{x})}\Phi(t,0)$$
$$\dot{\Phi} = D\mathsf{F}\cdot\Phi, \quad \Phi(0,0) = I_n$$

First order variational equations yield the state transition matrix.

- Integrate alongside original dynamical system.
- Higher order variational equations yield state transition tensors.

Relative Transfer

Partition the state into position and velocity

$$\delta \mathbf{x} = \begin{bmatrix} \delta \mathbf{r}^T & \delta \mathbf{v}^T \end{bmatrix}$$
$$\Phi(t, 0) = \begin{bmatrix} \Phi_{\mathbf{r}}^r & \Phi_{\mathbf{v}}^r \\ \Phi_{\mathbf{r}}^v & \Phi_{\mathbf{v}}^v \end{bmatrix}$$

Initial relative velocity $\delta \mathbf{v}_0$ to change relative position $\delta \mathbf{r}_0 o \delta \mathbf{r}_t$

$$\delta \mathbf{r}_t \approx \Phi_{\mathbf{r}}^{\mathbf{r}} \delta \mathbf{r}_0 + \Phi_{\mathbf{v}}^{\mathbf{r}} \delta \mathbf{v}_0 \implies \delta \mathbf{v}_0 \approx (\Phi_{\mathbf{v}}^{\mathbf{r}})^{-1} (\delta \mathbf{r}_t - \Phi_{\mathbf{r}}^{\mathbf{r}} \delta \mathbf{r}_0)$$

Continuous Thrust Control

Minimize cost $J = \int_{t_0}^{t_f} \frac{1}{2} \mathbf{u}^T \mathbf{u} \, \mathrm{d}t$ under boundary conditions $\mathbf{x}(t_0) = \mathbf{x_0}, \mathbf{x}(t_f) = \mathbf{x_f}$:

$$rac{d}{dt}\mathbf{x} = \mathbf{F}(\mathbf{x}) + \mathbf{u}, \quad rac{d}{dt}oldsymbol{\lambda} = -\left(rac{\partial \mathbf{F}(\mathbf{x})}{\partial \mathbf{x}}
ight)^T oldsymbol{\lambda}$$

Two point boundary value problem with twelve equations for states and costates. Optimal control given by $\mathbf{u} = -(0, 0, 0, \lambda_4, \lambda_5, \lambda_6)^T$

Continuous Thrust Relative Transfers

Define the augmented state vector $\mathbf{z} = [\mathbf{x}^T \quad \boldsymbol{\lambda}^T \quad J]^T$ and its dynamics

$$\frac{d}{dt}\mathbf{z} = \mathbf{G}(\mathbf{z}) = \begin{bmatrix} \begin{pmatrix} \mathbf{F}(\mathbf{x})^T + \begin{bmatrix} \mathbf{0} & \mathbf{u}^T \end{bmatrix} \end{pmatrix} & -\lambda^T \begin{pmatrix} \frac{\partial \mathbf{F}(\mathbf{x})}{\partial \mathbf{x}} \end{pmatrix} & \frac{1}{2}\mathbf{u}^T \mathbf{u} \end{bmatrix}^T$$

Initial costates are given by STM associated with ${\bf G}$

$$\delta \lambda_0 pprox (\Phi^{\mathsf{x}}_{\boldsymbol{\lambda}})^{-1} (\delta \mathsf{x}_t - \Phi^{\mathsf{x}}_{\mathsf{x}} \delta \mathsf{x}_0)$$

Energy cost approximation from second order state transition tensor:

$$\delta J \approx \frac{\partial^2 J_f}{\partial \mathbf{x}_0^2} \delta \mathbf{x}_0^2 + \frac{\partial^2 J_f}{\partial \boldsymbol{\lambda}_0^2} \delta \boldsymbol{\lambda}_0^2$$

Three Body Problem Example

The reference 6 month Sun-Earth L2 Halo orbit in canonical distance units.

Rendezvous on SEL2 Halo: Two Weeks from 10,000km Sphere

The rendezvous control cost approximated by second order state transition tensor and the error in its approximation versus numerical integration.

Problems with Practical Computation

Fast calculations once we have Φ and potentially higher order state transition tensors. What about calculating Φ ?

- Analytical solutions:
 - Clohessy-Wiltshire
 - Yamanaka-Ankersen
 - Their respective adjoint equations
- Numerical integration:
 - High fidelity two body motion with perturbations
 - Three body motion
 - Costate equations

Second order STT for optimal control requires integration of 13^3 equations! Likely **infeasible** for online computations

Question:

Given prior knowledge of this reference trajectory,

how do we quickly compute the STTs along any arc?

Cocycle Conditions

Interpolation

Let $(a, b) \subseteq \Delta$, then an entrywise linear interpolant of Φ is given by

$$\Phi(b,a) \approx I + rac{b-a}{|\Delta|} (\Phi(\Delta) - I)$$

Building Up The State Transition Matrix

Binary Search Construction

$$\Delta_{m,j} = \left(T_0 + \frac{T_f - T_0}{2^m} j, T_0 + \frac{T_f - T_0}{2^m} (j+1) \right)$$

Conclusion

Benefits:

- ▶ 2-3 order of magnitude speedup in STM and STT calculation
- Order of megabytes of precomputed data
- ▶ Achieves order 0.1 to 1 percent error in energy estimates

Not Covered:

- Computation of state transition tensors (STTs)
- Cocycles and interpolation of STTs

Future directions:

- Explore Lunar Halo analogs
- Fast computation for path constrained optimal relative control
- Storage and interpolation with Chebyshev or Fourier methods
- Interpolation with Taylor series in time

Thank You – Questions?

Final Position Error

The error in final position due to the approximation of the rendezvous optimal control by second order and first order methods.

Results of Interpolation Error

Error 2-norm for the state transition matrix $\Phi(t_0 + \Delta t, t_0)$ interpolated from $\Phi(1, 0)$ versus the exact value of $\Phi(t_0 + \Delta t, t_0)$.

Results of Interpolation Error

Worst case interpolation error norm for the state transition matrix and second order state transition tensor

Results of Interpolation Error

Worst case error in cost due to interpolation from 0.1 day intervals (66Mb data).