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Roadmap

▶ Lambert’s problem
▶ Boundary value problem in two body motion
▶ Existence/uniqueness characteristics well-known

▶ Implications to satellite relative motion
▶ Debris creating events
▶ Flight safety of satellite deployments
▶ Relative motion boundary value problems

▶ Existence and uniqueness properties
▶ Linearized model of relative motion
▶ Nonlinear model of relative motion



Lambert’s Problem

Given (r0, rf ,∆t) find v0 such that r(0) = r0, r(∆t) = rf .

▶ There exists a unique solution such that r(t) does not complete any full
revolutions around the central body.

▶ Adding the constraint that r(t) completes N revolutions about the central body,
there exists ∆t∗N such that:
▶ ∆t < ∆t∗N =⇒ No solutions
▶ ∆t = ∆t∗N =⇒ A unique solution
▶ ∆t > ∆t∗N =⇒ Two solutions



Relative Coordinate Frame

▶ Origin centered at
the “chief” satellite

▶ Radial r̂ – directed
from Earth to the
satellite

▶ Cross–Track ĉ –
direction of chief’s
angular momentum

▶ In–Track î – defined
s.t. r̂ × î = ĉ

▶ Relative position of
“deputy” satellite as
δrRIC = x r̂ + y î+ z ĉ



Hill-Clohessy-Wiltshire (HCW) State Transition Matrix

δx =
[
x , y , z , ẋ , ẏ , ż

]
δxt = Φt

0δx0

Φt
0 =



4− 3c 0 0 s/n 2/n − 2c/n 0
−6nt + 6s 1 0 −2/n + 2c/n 4s/n − 3t 0

0 0 c 0 0 s/n
3ns 0 0 c 2s 0

−6n + 6nc 0 0 −2s −3 + 4c 0
0 0 −ns 0 0 c


Φt
0 =

[
Φrr Φrv

Φvr Φvv

]
where s = sin(nt) and c = cos(nt) and n is the mean motion of the reference orbit



Relative Transfer

Initial relative velocity δv0 to change relative position δr0 → δrt
▶ Can be found by solving Lambert’s problem

▶ Find corresponding inertial positions then solve BVP
▶ Potentially 0, 1, or 2 solutions

▶ Linear approximation from HCW equations
▶ 0, 1, or infinite solutions
▶ Depending on null space of Φ−1

rv and boundary conditions

δv0 = Φ−1
rv (δrt − Φrrδr0)

▶ What happens when Φrv is singular/nearly singular?



Relative Transfer Singularity and Uniqueness
▶ det(Φrv) = 0 =⇒ reference trajectory is unique solution to Lambert’s problem

between initial and terminal points of reference trajectory

Figure 1: det(Φrv) as a function of number of reference revolutions.



Debris Evolution

Figure 2: Objects relative to a circular reference orbit initialized with a uniform distribution of
initial relative velocities in a square around zero.



Potential Collisions

Figure 3: Objects with common initial position but velocities differing by a multiple of (3τ,−4).



Relative Transfers in the Vicinity of a Singularity

Figure 4: In geostationary orbit, relative transfer cost from origin to in-track offset in around
1.4 days.



Relative Transfers in the Vicinity of a Singularity

Figure 5: In geostationary orbit, relative transfer cost from origin to in-track, radial offset in
around 1.4 days.



Generalization to Bifurcation in BVP Solutions

▶ Given r̈ = f(r, t), r(0) = r0, r(tf ) = rf
▶ f twice differentiable with continuous second partials
▶ Time change to r′′ = tf f(r, τ), r(0) = r0, r(1) = rf

▶ Written as first order system x′ = F, x =

[
r
v

]
,F =

[
v
f

]
▶ Variational equations Φ′ = ∂F

∂xΦ,Φ(0) = I

▶ We proved a solution to the BVP such that det(Φrv ) = 0 implies a bifurcation
point at tf .

▶ Applies to three body problem

▶ Continuation methods from bifurcation theory



Conclusion-New Results

▶ Previously connected:
▶ Pinch points and relative transfer singularity (Fitzgerald 1998)
▶ Relative transfer singularity and minimum time Lambert (Stern 1964)
▶ We summarize all three connections

▶ Alternative proof connecting
▶ relative transfer singularity
▶ uniqueness of multi-revolution Lambert solution

▶ Bifurcation results generalize
▶ General two point boundary value problems
▶ Associated first order variational equations

▶ Relative transfer singularity effects
▶ Debris and pinch points
▶ Subsatellite deployment safety
▶ Existence and cost of relative transfers

▶ Heuristics-formation reconfiguration (conference paper only)
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Thank You – Questions?
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