Relative Transfer Singularities and Multi-Revolution Lambert Uniqueness

Jackson Kulik and Dmitry Savransky Cornell University

AIAA SciTech Forum

January 3-7, 2022

Copyright \bigcirc by Jackson Kulik. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

Roadmap

Lambert's problem

- Boundary value problem in two body motion
- Existence/uniqueness characteristics well-known
- Implications to satellite relative motion
 - Debris creating events
 - Flight safety of satellite deployments
 - Relative motion boundary value problems
 - Existence and uniqueness properties
 - Linearized model of relative motion
 - Nonlinear model of relative motion

Lambert's Problem

Given $(\mathbf{r}_0, \mathbf{r}_f, \Delta t)$ find \mathbf{v}_0 such that $\mathbf{r}(0) = \mathbf{r}_0, \mathbf{r}(\Delta t) = \mathbf{r}_f$.

- There exists a unique solution such that r(t) does not complete any full revolutions around the central body.
- Adding the constraint that r(t) completes N revolutions about the central body, there exists Δt^{*}_N such that:
 - $\blacktriangleright \ \Delta t < \Delta t_N^* \implies \text{No solutions}$
 - $\Delta t = \Delta t_N^* \implies$ A unique solution
 - $\Delta t > \Delta t_N^* \implies$ Two solutions

Relative Coordinate Frame

- Origin centered at the "chief" satellite
- Radial r̂ directed from Earth to the satellite
- Cross–Track ĉ direction of chief's angular momentum
- ► In-Track $\hat{\mathbf{i}}$ defined s.t. $\hat{\mathbf{r}} \times \hat{\mathbf{i}} = \hat{\mathbf{c}}$
- Relative position of "deputy" satellite as δ**r**_{RIC} = x**r̂** + y**î** + z**ĉ**

Hill-Clohessy-Wiltshire (HCW) State Transition Matrix

$$\begin{split} \delta \mathbf{x} &= \begin{bmatrix} x, y, z, \dot{x}, \dot{y}, \dot{z} \end{bmatrix} \\ \delta \mathbf{x}_t &= \Phi_0^t \delta \mathbf{x}_0 \\ \Phi_0^t &= \begin{bmatrix} 4 - 3c & 0 & 0 & s/n & 2/n - 2c/n & 0 \\ -6nt + 6s & 1 & 0 & -2/n + 2c/n & 4s/n - 3t & 0 \\ 0 & 0 & c & 0 & 0 & s/n \\ 3ns & 0 & 0 & c & 2s & 0 \\ -6n + 6nc & 0 & 0 & -2s & -3 + 4c & 0 \\ 0 & 0 & -ns & 0 & 0 & c \end{bmatrix} \\ \Phi_0^t &= \begin{bmatrix} \Phi_{rr} & \Phi_{rv} \\ \Phi_{vr} & \Phi_{vv} \end{bmatrix} \end{split}$$

where s = sin(nt) and c = cos(nt) and *n* is the mean motion of the reference orbit

Relative Transfer

Initial relative velocity $\delta \mathbf{v}_0$ to change relative position $\delta \mathbf{r}_0 \rightarrow \delta \mathbf{r}_t$

- Can be found by solving Lambert's problem
 - Find corresponding inertial positions then solve BVP
 - Potentially 0, 1, or 2 solutions
- Linear approximation from HCW equations
 - 0, 1, or infinite solutions
 - Depending on null space of Φ_{rv}^{-1} and boundary conditions

$$\delta \mathbf{v}_0 = \Phi_{\mathbf{rv}}^{-1} (\delta \mathbf{r}_t - \Phi_{\mathbf{rr}} \delta \mathbf{r}_0)$$

• What happens when Φ_{rv} is singular/nearly singular?

Relative Transfer Singularity and Uniqueness

• $det(\Phi_{rv}) = 0 \implies$ reference trajectory is unique solution to Lambert's problem between initial and terminal points of reference trajectory

Figure 1: det(Φ_{rv}) as a function of number of reference revolutions.

Debris Evolution

Figure 2: Objects relative to a circular reference orbit initialized with a uniform distribution of initial relative velocities in a square around zero.

Potential Collisions

Figure 3: Objects with common initial position but velocities differing by a multiple of $(3\tau, -4)$.

Relative Transfers in the Vicinity of a Singularity

Figure 4: In geostationary orbit, relative transfer cost from origin to in-track offset in around 1.4 days.

Relative Transfers in the Vicinity of a Singularity

Figure 5: In geostationary orbit, relative transfer cost from origin to in-track, radial offset in around 1.4 days.

Generalization to Bifurcation in BVP Solutions

• Given $\ddot{\mathbf{r}} = \mathbf{f}(\mathbf{r}, t), \mathbf{r}(0) = \mathbf{r}_0, \mathbf{r}(t_f) = \mathbf{r}_f$

- f twice differentiable with continuous second partials
- For Time change to $\mathbf{r}'' = t_f \mathbf{f}(\mathbf{r}, \tau), \mathbf{r}(0) = \mathbf{r}_0, \mathbf{r}(1) = \mathbf{r}_f$
- Written as first order system $\mathbf{x}' = \mathbf{F}, \mathbf{x} = \begin{bmatrix} \mathbf{r} \\ \mathbf{v} \end{bmatrix}, \mathbf{F} = \begin{bmatrix} \mathbf{v} \\ \mathbf{f} \end{bmatrix}$

• Variational equations
$$\Phi' = \frac{\partial \mathbf{F}}{\partial \mathbf{x}} \Phi, \Phi(0) = I$$

- We proved a solution to the BVP such that det(Φ_{rv}) = 0 implies a bifurcation point at t_f.
- Applies to three body problem
- Continuation methods from bifurcation theory

Conclusion-New Results

- Previously connected:
 - Pinch points and relative transfer singularity (Fitzgerald 1998)
 - Relative transfer singularity and minimum time Lambert (Stern 1964)
 - We summarize all three connections
- Alternative proof connecting
 - relative transfer singularity
 - uniqueness of multi-revolution Lambert solution
- Bifurcation results generalize
 - General two point boundary value problems
 - Associated first order variational equations
- Relative transfer singularity effects
 - Debris and pinch points
 - Subsatellite deployment safety
 - Existence and cost of relative transfers
- Heuristics-formation reconfiguration (conference paper only)

References

- Fitzgerald, R. J., "Pinch Points of Debris from a Satellite Breakup," Journal of guidance, control, and dynamics, Vol. 21, No. 5, 1998, pp. 813–815.
- Stern, R., "Singularities in the analytic solution of the linearized variational equations of elliptical motion," 1st AIAA Annual Meeting, 1964, p. 398.

Thank You – Questions?