Relative Transfer Singularities and Multi-Revolution Lambert Uniqueness

Jackson Kulik and Dmitry Savransky
Cornell University

AIAA SciTech Forum

January 3-7, 2022

Copyright (c) by Jackson Kulik. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

Roadmap

- Lambert's problem
- Boundary value problem in two body motion
- Existence/uniqueness characteristics well-known
- Implications to satellite relative motion
- Debris creating events
- Flight safety of satellite deployments
- Relative motion boundary value problems
- Existence and uniqueness properties
- Linearized model of relative motion
- Nonlinear model of relative motion

Lambert's Problem

Given $\left(\mathbf{r}_{0}, \mathbf{r}_{f}, \Delta t\right)$ find \mathbf{v}_{0} such that $\mathbf{r}(0)=\mathbf{r}_{0}, \mathbf{r}(\Delta t)=\mathbf{r}_{f}$.

- There exists a unique solution such that $\mathbf{r}(t)$ does not complete any full revolutions around the central body.
- Adding the constraint that $\mathbf{r}(t)$ completes N revolutions about the central body, there exists Δt_{N}^{*} such that:
- $\Delta t<\Delta t_{N}^{*} \Longrightarrow$ No solutions
- $\Delta t=\Delta t_{N}^{*} \Longrightarrow$ A unique solution
- $\Delta t>\Delta t_{N}^{*} \Longrightarrow$ Two solutions

Relative Coordinate Frame

- Origin centered at the "chief" satellite
- Radial $\hat{\mathbf{r}}$ - directed from Earth to the satellite
- Cross-Track $\hat{\mathbf{c}}$ direction of chief's angular momentum
- In-Track $\hat{\mathbf{i}}$ - defined s.t. $\hat{\mathbf{r}} \times \hat{\mathbf{i}}=\hat{\mathbf{c}}$
- Relative position of "deputy" satellite as $\delta \mathbf{r}_{R I C}=x \hat{\mathbf{r}}+y \hat{\mathbf{i}}+z \hat{\mathbf{c}}$

Hill-Clohessy-Wiltshire (HCW) State Transition Matrix

$$
\begin{aligned}
\delta \mathbf{x} & =[x, y, z, \dot{x}, \dot{y}, \dot{z}] \\
\delta \mathbf{x}_{t} & =\Phi_{0}^{t} \delta \mathbf{x}_{0} \\
\Phi_{0}^{t} & =\left[\begin{array}{cccccc}
4-3 c & 0 & 0 & s / n & 2 / n-2 c / n & 0 \\
-6 n t+6 s & 1 & 0 & -2 / n+2 c / n & 4 s / n-3 t & 0 \\
0 & 0 & c & 0 & 0 & s / n \\
3 n s & 0 & 0 & c & 2 s & 0 \\
-6 n+6 n c & 0 & 0 & -2 s & -3+4 c & 0 \\
0 & 0 & -n s & 0 & 0 & c
\end{array}\right] \\
\Phi_{0}^{t} & =\left[\begin{array}{cc}
\Phi_{\mathrm{rr}} & \Phi_{\mathrm{rv}} \\
\Phi_{\mathrm{vr}} & \Phi_{\mathrm{vv}}
\end{array}\right]
\end{aligned}
$$

where $s=\sin (n t)$ and $c=\cos (n t)$ and n is the mean motion of the reference orbit

Relative Transfer

Initial relative velocity $\delta \mathbf{v}_{0}$ to change relative position $\delta \mathbf{r}_{0} \rightarrow \delta \mathbf{r}_{t}$

- Can be found by solving Lambert's problem
- Find corresponding inertial positions then solve BVP
- Potentially 0,1 , or 2 solutions
- Linear approximation from HCW equations
- 0,1 , or infinite solutions
- Depending on null space of $\Phi_{r v}^{-1}$ and boundary conditions

$$
\delta \mathbf{v}_{0}=\Phi_{\mathbf{r v}}^{-1}\left(\delta \mathbf{r}_{t}-\Phi_{\mathbf{r r}} \delta \mathbf{r}_{0}\right)
$$

- What happens when $\Phi_{r v}$ is singular/nearly singular?

Relative Transfer Singularity and Uniqueness

- $\operatorname{det}\left(\Phi_{\mathrm{rv}}\right)=0 \Longrightarrow$ reference trajectory is unique solution to Lambert's problem between initial and terminal points of reference trajectory

Figure 1: $\operatorname{det}\left(\Phi_{\mathrm{rv}}\right)$ as a function of number of reference revolutions.

Debris Evolution

Figure 2: Objects relative to a circular reference orbit initialized with a uniform distribution of initial relative velocities in a square around zero.

Potential Collisions

Figure 3: Objects with common initial position but velocities differing by a multiple of $(3 \tau,-4)$.

Relative Transfers in the Vicinity of a Singularity

Figure 4: In geostationary orbit, relative transfer cost from origin to in-track offset in around 1.4 days.

Relative Transfers in the Vicinity of a Singularity

-5. Minutes From Singularity

Figure 5: In geostationary orbit, relative transfer cost from origin to in-track, radial offset in around 1.4 days.

Generalization to Bifurcation in BVP Solutions

- Given $\ddot{\mathbf{r}}=\mathbf{f}(\mathbf{r}, t), \mathbf{r}(0)=\mathbf{r}_{0}, \mathbf{r}\left(t_{f}\right)=\mathbf{r}_{f}$
- f twice differentiable with continuous second partials
- Time change to $\mathbf{r}^{\prime \prime}=t_{f} \mathbf{f}(\mathbf{r}, \tau), \mathbf{r}(0)=\mathbf{r}_{0}, \mathbf{r}(1)=\mathbf{r}_{f}$
- Written as first order system $\mathbf{x}^{\prime}=\mathbf{F}, \mathbf{x}=\left[\begin{array}{l}\mathbf{r} \\ \mathbf{v}\end{array}\right], \mathbf{F}=\left[\begin{array}{l}\mathbf{v} \\ \mathbf{f}\end{array}\right]$
- Variational equations $\Phi^{\prime}=\frac{\partial \mathrm{F}}{\partial \mathrm{x}} \Phi, \Phi(0)=I$
- We proved a solution to the BVP such that $\operatorname{det}\left(\Phi_{r v}\right)=0$ implies a bifurcation point at t_{f}.
- Applies to three body problem
- Continuation methods from bifurcation theory

Conclusion-New Results

- Previously connected:
- Pinch points and relative transfer singularity (Fitzgerald 1998)
- Relative transfer singularity and minimum time Lambert (Stern 1964)
- We summarize all three connections
- Alternative proof connecting
- relative transfer singularity
- uniqueness of multi-revolution Lambert solution
- Bifurcation results generalize
- General two point boundary value problems
- Associated first order variational equations
- Relative transfer singularity effects
- Debris and pinch points
- Subsatellite deployment safety
- Existence and cost of relative transfers
- Heuristics-formation reconfiguration (conference paper only)

References

- Fitzgerald, R. J., "Pinch Points of Debris from a Satellite Breakup," Journal of guidance, control, and dynamics, Vol. 21, No. 5, 1998, pp. 813-815.
- Stern, R., "Singularities in the analytic solution of the linearized variational equations of elliptical motion," 1st AIAA Annual Meeting, 1964, p. 398.

Thank You - Questions?

