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The Nancy G. Roman Space Telescope (RST)

• NASA’s next flagship observatory

• Will study multiple areas of astrophysics including universal expansion, dark energy,
and exoplanets

• Two instruments on-board: the Wide-Field Instrument (WFI) and the Coronagraph
Instrument (CGI) a

aNASA Goddard Space Flight Center. Roman space telescope mission overview. https://roman.gsfc.nasa.gov/about.html

3 / 94



Integrated Payload Testing
Test configuration in Space Environment Simulator

• Alignment verification of payload (WFI and
imaging optics assembly)

• Will use internal and external optical
components to understand how light travels
through the telescope

• Conducted in Space Environment Simulator
(SES) chamber at NASA Goddarda

aBolcar et al., “Roman Space Telescope Optical System: Overview,
Test, and Verification”.

Figure: RST and ground support
equipment in SES
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Integrated Payload Testing
Telescope model not to scale

Figure: Wide-Field Instrument (WFI)
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Integrated Payload Testing
Telescope model not to scale

Figure: Focal Plane Array (FPA)
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Integrated Payload Testing
Detector and sources

Figure: FPA detector configuration in mm
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Integrated Payload Testing
Telescope model not to scale

Figure: Subaperture Metrology System (SAMS)
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Integrated Payload Testing
Telescope model not to scale

Figure: Optical Large Aperture Flat System (OLAFS)
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Integrated Payload Testing
Pseudo double pass beam path
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Integrated Payload Testing
Active components
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Integrated Payload Testing
Verify telescope alignment using image-based wavefront sensing

• Translate FPA through focus

• Illuminate fiber sources

• Tilt OLAFS to translate beams across the
FPA and sample entire field of viewa

• Image point sources on the detector

• Reconstruct wavefront based on system
knowledge and image of point source

aBergkoetter and Jurling, “Data analysis algorithm for double-pass
testing of the Roman Space Telescope”.

A
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C
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Integrated Payload Testing
Verify telescope alignment using image-based wavefront sensing

• Phase retrieval will be used throughout RST
integration

• Will not be able to offload gravity on the
primary mirror after integrating payload

• Most realistic option for wavefront sensing
that can accommodate gravity induced
aberrations

A

B

C
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Integrated Payload Testing
Point sources on detector through test pass for 6 OLAFS tilts

Figure: FPA detector configuration in mm
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Fourier Optics Review

• Background

• Diffraction

• Field propagation
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Fourier Optics
What is a wavefront?
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Fourier Optics
Diffraction Basics

U(P1) =
Aejkr21

r21

U(P1) aperture illumination from single spherical wave diverging from a point source
P2

a

aGoodman, Introduction to Fourier Optics.
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Fourier Optics
Huygens-Fresnel Principle

U(P0) =
1

jλ

∫∫
Σ
U(P1)

ejkr

r
cos θds

U(P0) complex field disturbance at P0

λ wavelength

k wave number

Σ enclosed space around P1
a

aGoodman, Introduction to Fourier Optics. 37 / 94



Fourier Optics
Huygens-Fresnel Principle

cos θ =
z

r

Rewrite asa

U(x, y) =
1

jλz

∫∫
Σ
U(ξ, η)

ejkr

r2
ds

aGoodman, Introduction to Fourier Optics.
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Fourier Optics
Fresnel approximation

U(x, y) =

∫∫ ∞

−∞
U(ξ, η)

ejkr

r2
dξdη

r =
√

z2 + (x− ξ)2 + (y − η)2

r ∼= z +
(x− ξ)2 + (y − η)2

2z
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Fourier Optics
Fresnel approximation

Plugging in the approximation for r, we get the Fresnel diffraction integrala

U(x, y) =
ejkz

jλz
e

jk
2z

(x2+y2)

∫∫ ∞

−∞
U(ξ, η)e

jk
2z

(ξ2+η2)e
−j2π
λz

(xξ+yη)dξdη

aGoodman, Introduction to Fourier Optics.
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Phase Retrieval

• Phase retrieval and space telescopes

• Application of field propagation

• Algorithm background

◦ Iterative approach
◦ Nonlinear optimization
◦ Algorithmic differentiation
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Phase Retrieval
Brief history

Phase retrieval was used to characterize Hubble mirror flawa

James Webb Space Telescope demonstrated that phase retrieval is a useful and
necessary method of wavefront sensing that can be used through the stages of
integration to on-sky alignmentbcd

◦ Used for verification in ground testing
◦ Sole method of wavefront sensing for on-sky alignment

aFienup, “Phase-retrieval algorithms for a complicated optical system”.
bSmith et al., “Methodology and Results of James Webb Space Telescope Thermal Vacuum Optical System Alignment Testing and

Analysis”.
cDean et al., “Phase retrieval algorithm for JWST Flight and Testbed Telescope”.
dAronstein et al., “Wavefront-error performance characterization for the James Webb Space Telescope (JWST) Integrated Science

Instrument Module (ISIM) science instruments”.
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Phase Retrieval
Forward model

Figure: Pupil function

Wavefront error is defined as

W =
∑
n

anZn,

where an are coefficients of a basis Zn Using W we
define the pupil function g

g = A ◦ e(
i2π
λ

W)

with A being the amplitude function and ◦ being
element-wise multiplicationa

aFienup, “Phase retrieval algorithms: a comparison”.
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Phase Retrieval
Forward model

Figure: Modeled point spread function

We propagate from the pupil plane to the image
plane G with a Fourier transform

G = DFT {g}

The intensity I is the modeled point spread
function for the forward modelab

I = |G|2

aFienup, “Phase retrieval algorithms: a comparison”.
bFienup, “Phase-retrieval algorithms for a complicated optical system”.
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Phase Retrieval
Iterative algorithm (Gerberg-Saxton)

• Starts with wavefront guess and performs field
propagation while adjusting parameters until
the model sufficiently matches the measured
dataa

• Can be straightforward to implement- few
lines of code

• Difficult to scale algorithm for complicated
problems

• Can be prone to stagnation

aGerchberg, “A practical algorithm for the determination of phase from
image and diffraction plane pictures”.

Figure: Gergberg-Saxton
algorithm 1

Fienup, “Phase retrieval algorithms:
a comparison”.
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Phase Retrieval
Nonlinear optimization approach

The error metric ϵ is the sum of squares difference between our modeled point spread
function and the measured data D

ϵ =

∑
mw ◦ (αIm + β −Dm)2∑N

n wn ◦D2
n

where w is a weighing function to account for noise and bad pixels in the measured data

α and β are model parameters to account for gain and bias in the measured data

• Error metric is minimized using nonlinear optimization

• Gradients are constructed using algorithmic differentiationab

aJurling and Fienup, “Applications of algorithmic differentiation to phase retrieval algorithms”.
bFienup, “Phase retrieval algorithms: a comparison”.

49 / 94



Phase Retrieval
Algorithmic differentiation

W =
∑
n

anZn,

g = A ◦ e(
i2π
λ

W)

G = DFT {g}

I = |G|2

ϵ =

∑
mwm ◦ (αIm + β −Dm)2∑N

n wn ◦D2
n

.

ān =
∑
p

(W̄pZn,p)

W̄ =
2π

λ
ℑ[ḡ ◦ g∗]

ḡ = IDFT {Ḡ}

Ḡ = 2G ◦ Ī

Ī = 2αw ◦ (αIm + β −Dm)

• Works through steps in forward model to propagate gradients

• Use gradients to search along parameters in direction that minimizes error metrica

aJurling and Fienup, “Applications of algorithmic differentiation to phase retrieval algorithms”.
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Project Background

• Motivation for study

◦ Challenges for IPA testing

• Wavefront sensing considerations

◦ Geometry of pupil during IPA testing
◦ Effects of ground support equipment misalignment

51 / 94



Project Background
Challenges for IPA testing

• Phase retrieval is generally dependent on a
well understood system

• The ground support equipment (SAMS and
OLAFS) position will effect this system
understanding

• The extreme environmental changes within
the chamber can lead to temperature
deformation of the SAMS which introduces
knowledge error in the phase retrieval

Figure: RST and ground support
equipment in SES
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Project Background
Effect of component decentering on pupil
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Project Background
Effect of component decentering on fitting
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Project Background
Effect of component decentering on fitting
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Project Background
Pupil geometry of pseudo double pass
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Project Background
Pupil geometry of pseudo double pass
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Project Background
Phase retrieval algorithm for study

• Goal is characterization not compensation

• Want to fully understand the effects of pupil knowledge error

• Optimized over tip/tilt, low-order Zernike functions, and a point-by-point fita

aJurling, Bergkoetter, and Fienup, “Techniques for arbitrary sampling in two-dimensional Fourier transforms”.
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Overview of Models

Ideal model

◦ No surface aberrations or misalignment

Monte Carlo perturbed models

◦ 30 models generated with perturbed surfaces
◦ Simulates possible misalignment/surface errors
◦ No gravity sag

Gravity sag model

◦ Simulates aberration due to gravity sag on primary mirror
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Simulation
Monte Carlo study overview
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Simulation

ab

aJurling, “Advances in algorithms for image based wavefront sensing”.
bBergkoetter, “Phase retrieval for chromatic aberrations and wide-field detectors”.
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Simulation
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Simulation
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Results

Ideal model

◦ Contour plots
◦ Analysis across field of view
◦ Comparison of fiber locations

Perturbed models

◦ Box plot of results

Gravity sag model

◦ Contour plots
◦ Analysis across field of view
◦ Effects of model complications
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Results
Ideal model baseline decentering study
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Results
Decentering contours across field of view

(a)
t

(b)
t
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Results
95th percentile and max WFE within 4 mm decentering radius
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Results
Pupil geometry
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Results
Pupil geometry effects
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Results

Plot of 6 mm and 4 mm radius of decentering for 30 models
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Results
Gravity sag model baseline decentering study

83 / 94



Results
Gravity sag pupil clipping
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Results
Pupil clipping
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Results
Decentering contours across fied of view

(c)
t

(d)
t
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Results
95th percentile and max WFE within 4 mm decentering radius
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Results
Pupil clipping effects
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Conclusion

• 4 mm decentering radius fits within error budget for test

• Gravity sag results slightly effected by clipping

• Despite decentering dependent wavefront error and clipping, gravity sag results share
similar trends across field of view

• Can confidently use phase retrieval in presence of pupil knowledge error and gravity sag

• Next step is full test simulator
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Thank you for listening!
Special thanks to...

• Advisor Prof. Dmitry Savransky

• NASA Goddard & RST WFSC Groups

• My family

• My dog
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Questions?
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Phase Retrieval
Nonlinear optimization approach

• Less simple to implement than iterative approach

• Forward model can account for advanced features and is easier to scale with system
complexity

• Error metric can be adjusted to account for data artifactsabc

aFienup, “Phase-retrieval algorithms for a complicated optical system”.
bJurling, “Advances in algorithms for image based wavefront sensing”.
cBergkoetter, “Phase retrieval for chromatic aberrations and wide-field detectors”.
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Phase Retrieval
Algorithmic Differentiation

• Makes nonlinear optimization approach reusable and more robust

• Extends algorithmic differentiation techniques to complex valued problems with
multidimensional arrays

• Uses chain rule of partial derivatives

• Works through steps in forward model to propagate gradients

• Use gradients to search along parameters in direction that minimizes error metrica

aJurling and Fienup, “Applications of algorithmic differentiation to phase retrieval algorithms”.
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