Defining Pupil Knowledge Requirements for Roman Space Telescope Integrated Payload Assembly Testing

M.S. Thesis Defense

Kaitlyn Summey

Cornell University, Aerospace Engineering

August 30, 2022

Joint work with NASA Goddard Space Flight Center

Outline

The Nancy G. Roman Space Telescope

- $\circ~$ Mission background
- $\circ~$ Integration & testing
- \circ Motivation

Fourier Optics Review

Phase Retrieval

- $\circ~$ Contributions to past missions
- $\circ~$ Application of Fourier optics
- \circ Algorithm

Project Background

- \circ Purpose
- $\circ~$ Application of phase retrieval

Overview of Models

Simulation

 $\circ~$ Monte Carlo study

Results

The Nancy G. Roman Space Telescope (RST)

- NASA's next flagship observatory
- Will study multiple areas of astrophysics including universal expansion, dark energy, and exoplanets
- $\bullet\,$ Two instruments on-board: the Wide-Field Instrument (WFI) and the Coronagraph Instrument (CGI) a

^aNASA Goddard Space Flight Center. Roman space telescope mission overview. https://roman.gsfc.nasa.gov/about.html

Integrated Payload Testing Test configuration in Space Environment Simulator

- Alignment verification of payload (WFI and imaging optics assembly)
- Will use internal and external optical components to understand how light travels through the telescope
- Conducted in Space Environment Simulator (SES) chamber at NASA Goddard^a

Figure: RST and ground support equipment in SES

 $[^]a\mathrm{Bolcar}$ et al., "Roman Space Telescope Optical System: Overview, Test, and Verification".

Integrated Payload Testing Test configuration in Space Environment Simulator

- Alignment verification of payload (WFI and imaging optics assembly)
- Will use internal and external optical components to understand how light travels through the telescope
- Conducted in Space Environment Simulator (SES) chamber at NASA Goddard^a

Figure: RST and ground support equipment in SES

 $[^]a\mathrm{Bolcar}$ et al., "Roman Space Telescope Optical System: Overview, Test, and Verification".

Integrated Payload Testing Test configuration in Space Environment Simulator

- Alignment verification of payload (WFI and imaging optics assembly)
- Will use internal and external optical components to understand how light travels through the telescope
- Conducted in Space Environment Simulator (SES) chamber at NASA Goddard^a

Figure: RST and ground support equipment in SES

 $[^]a\mathrm{Bolcar}$ et al., "Roman Space Telescope Optical System: Overview, Test, and Verification".

Telescope model not to scale

Figure: Wide-Field Instrument (WFI)

Telescope model not to scale

Figure: Focal Plane Array (FPA)

Integrated Payload Testing Detector and sources

Figure: FPA detector configuration in mm

Telescope model not to scale

Figure: Subaperture Metrology System (SAMS)

Telescope model not to scale

Figure: Optical Large Aperture Flat System (OLAFS)

Integrated Payload Testing Active components

Verify telescope alignment using image-based wavefront sensing

- Translate FPA through focus
- Illuminate fiber sources
- Tilt OLAFS to translate beams across the FPA and sample entire field of view^a
- Image point sources on the detector
- Reconstruct wavefront based on system knowledge and image of point source

^aBergkoetter and Jurling, "Data analysis algorithm for double-pass testing of the Roman Space Telescope".

Verify telescope alignment using image-based wavefront sensing

- Phase retrieval will be used throughout RST integration
- Will not be able to offload gravity on the primary mirror after integrating payload
- Most realistic option for wavefront sensing that can accommodate gravity induced aberrations

Figure: FPA detector configuration in mm

Figure: FPA detector configuration in mm

- Background
- Diffraction
- Field propagation

Fourier Optics What is a wavefront?

Fourier Optics Diffraction Basics

 $U(P_1)$ aperture illumination from single spherical wave diverging from a point source $P_2{}^a$

^aGoodman, Introduction to Fourier Optics.
Fourier Optics Huygens-Fresnel Principle

 $U(P_0)$ complex field disturbance at P_0

 λ wavelength

k wave number

 Σ enclosed space around $P_1{}^a$

^aGoodman, Introduction to Fourier Optics.

Fourier Optics Huygens-Fresnel Principle

$$\cos\theta = \frac{z}{r}$$

Rewrite as^a

$$U(x,y) = \frac{1}{j\lambda z} \iint_{\Sigma} U(\xi,\eta) \frac{e^{jkr}}{r^2} ds$$

^aGoodman, Introduction to Fourier Optics.

Plugging in the approximation for r, we get the Fresnel diffraction integral^{*a*} $U(x,y) = \frac{e^{jkz}}{j\lambda z} e^{\frac{jk}{2z}(x^2+y^2)} \iint_{-\infty}^{\infty} U(\xi,\eta) e^{\frac{jk}{2z}(\xi^2+\eta^2)} e^{\frac{-j2\pi}{\lambda z}(x\xi+y\eta)} d\xi d\eta$

^aGoodman, Introduction to Fourier Optics.

Plugging in the approximation for r, we get the Fresnel diffraction integral^a $U(x,y) = \frac{e^{jkz}}{j\lambda z} e^{\frac{jk}{2z}(x^2+y^2)} \iint_{-\infty}^{\infty} U(\xi,\eta) e^{\frac{jk}{2z}(\xi^2+\eta^2)} e^{\frac{-j2\pi}{\lambda z}(x\xi+y\eta)} d\xi d\eta$

^aGoodman, Introduction to Fourier Optics.

Plugging in the approximation for r, we get the Fresnel diffraction integral^{*a*}

$$U(x,y) = \frac{e^{jkz}}{j\lambda z} e^{\frac{jk}{2z}(x^2 + y^2)} \iint_{-\infty}^{\infty} U(\xi,\eta) e^{\frac{jk}{2z}(\xi^2 + \eta^2)} e^{\frac{-j2\pi}{\lambda z}(x\xi + y\eta)} d\xi d\eta$$

^aGoodman, Introduction to Fourier Optics.

Plugging in the approximation for r, we get the Fresnel diffraction integral^a $U(x,y) = \frac{e^{jkz}}{j\lambda z} e^{\frac{jk}{2z}(x^2+y^2)} \iint_{-\infty}^{\infty} U(\xi,\eta) e^{\frac{jk}{2z}(\xi^2+\eta^2)} e^{\frac{-j2\pi}{\lambda z}(x\xi+y\eta)} d\xi d\eta$

^aGoodman, Introduction to Fourier Optics.

- Phase retrieval and space telescopes
- Application of field propagation
- Algorithm background
 - $\circ~$ Iterative approach
 - $\circ~$ Nonlinear optimization
 - $\circ~$ Algorithmic differentiation

Phase retrieval was used to characterize Hubble mirror flaw^a

James Webb Space Telescope demonstrated that phase retrieval is a useful and necessary method of wavefront sensing that can be used through the stages of integration to on-sky alignment^{bcd}

- $\circ~$ Used for verification in ground testing
- $\circ~$ Sole method of wavefront sensing for on-sky alignment

 $^{^{}a}$ Fienup, "Phase-retrieval algorithms for a complicated optical system".

 $^{^{}b}$ Smith et al., "Methodology and Results of James Webb Space Telescope Thermal Vacuum Optical System Alignment Testing and Analysis".

^cDean et al., "Phase retrieval algorithm for JWST Flight and Testbed Telescope".

 $^{^{}d}$ Aronstein et al., "Wavefront-error performance characterization for the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) science instruments".

Phase Retrieval Forward model

Wavefront error is defined as

$$\mathbf{W} = \sum_{n} a_n \mathbf{Z}_n,$$

where a_n are coefficients of a basis \mathbf{Z}_n Using \mathbf{W} we define the pupil function \mathbf{g}

Figure: Pupil function

$$\mathbf{g} = \mathbf{A} \circ e^{\left(\frac{i2\pi}{\lambda}\mathbf{W}\right)}$$

with **A** being the amplitude function and \circ being element-wise multiplication^{*a*}

^aFienup, "Phase retrieval algorithms: a comparison".

Phase Retrieval Forward model

We propagate from the pupil plane to the image plane **G** with a Fourier transform

$$\mathbf{G} = \mathcal{DFT}\{\mathbf{g}\}$$

The intensity I is the modeled point spread function for the forward model^{*ab*}

$$\mathbf{I} = |\mathbf{G}|^2$$

^aFienup, "Phase retrieval algorithms: a comparison".

^bFienup, "Phase-retrieval algorithms for a complicated optical system".

- Starts with wavefront guess and performs field propagation while adjusting parameters until the model sufficiently matches the measured data^a
- Can be straightforward to implement- few lines of code
- Difficult to scale algorithm for complicated problems
- Can be prone to stagnation

Figure: Gergberg-Saxton algorithm $^{\rm 1}$

^aGerchberg, "A practical algorithm for the determination of phase from image and diffraction plane pictures".

Fienup, "Phase retrieval algorithms: a comparison".

The error metric ϵ is the sum of squares difference between our modeled point spread function and the measured data D

$$\epsilon = \frac{\sum_{m} w \circ (\alpha \mathbf{I}_{m} + \beta - \mathbf{D}_{m})^{2}}{\sum_{n}^{N} w_{n} \circ \mathbf{D}_{n}^{2}}$$

where w is a weighing function to account for noise and bad pixels in the measured data α and β are model parameters to account for gain and bias in the measured data

- Error metric is minimized using nonlinear optimization
- $\bullet\,$ Gradients are constructed using algorithmic differentiation ab

^aJurling and Fienup, "Applications of algorithmic differentiation to phase retrieval algorithms". ^bFienup, "Phase retrieval algorithms: a comparison".

Phase Retrieval Algorithmic differentiation

 ϵ

$$\mathbf{W} = \sum_{n} a_{n} \mathbf{Z}_{n}, \qquad \qquad \bar{a}_{n} = \sum_{p} (\bar{\mathbf{W}}_{p} \mathbf{Z}_{n,p})$$
$$\mathbf{g} = \mathbf{A} \circ e^{\left(\frac{i2\pi}{\lambda}\mathbf{W}\right)} \qquad \qquad \bar{\mathbf{W}} = \frac{2\pi}{\lambda} \Im[\bar{\mathbf{g}} \circ \mathbf{g}^{*}]$$
$$\mathbf{G} = \mathcal{DFT}\{\mathbf{g}\} \qquad \qquad \bar{\mathbf{G}} = \mathcal{IDFT}\{\bar{\mathbf{G}}\}$$
$$\mathbf{I} = |\mathbf{G}|^{2} \qquad \qquad \bar{\mathbf{G}} = 2\mathbf{G} \circ \bar{\mathbf{I}}$$
$$= \frac{\sum_{m} w_{m} \circ (\alpha \mathbf{I}_{m} + \beta - \mathbf{D}_{m})^{2}}{\sum_{n}^{N} w_{n} \circ \mathbf{D}_{n}^{2}}. \qquad \qquad \bar{\mathbf{I}} = 2\alpha w \circ (\alpha \mathbf{I}_{m} + \beta - \mathbf{D}_{m})$$

- Works through steps in forward model to propagate gradients
- Use gradients to search along parameters in direction that minimizes error metric^a

^aJurling and Fienup, "Applications of algorithmic differentiation to phase retrieval algorithms".

- Motivation for study
 - $\circ~$ Challenges for IPA testing
- Wavefront sensing considerations
 - $\circ~$ Geometry of pupil during IPA testing
 - $\circ~$ Effects of ground support equipment misalignment

Project Background Challenges for IPA testing

- Phase retrieval is generally dependent on a well understood system
- The ground support equipment (SAMS and OLAFS) position will effect this system understanding
- The extreme environmental changes within the chamber can lead to temperature deformation of the SAMS which introduces knowledge error in the phase retrieval

Figure: RST and ground support equipment in SES

Project Background Effect of component decentering on pupil

Project Background Effect of component decentering on fitting

Project Background Effect of component decentering on fitting

Fitted Point Spread Function

Project Background Pupil geometry of pseudo double pass

Project Background Pupil geometry of pseudo double pass

- Goal is characterization not compensation
- Want to fully understand the effects of pupil knowledge error
- Optimized over tip/tilt, low-order Zernike functions, and a point-by-point fit a

^aJurling, Bergkoetter, and Fienup, "Techniques for arbitrary sampling in two-dimensional Fourier transforms".

Ideal model

 $\circ~$ No surface aberrations or misalignment

Monte Carlo perturbed models

- $\circ~30$ models generated with perturbed surfaces
- $\circ~$ Simulates possible misalignment/surface errors
- $\circ~$ No gravity sag

Gravity sag model

 $\circ~$ Simulates aberration due to gravity sag on primary mirror

ab

^aJurling, "Advances in algorithms for image based wavefront sensing".

 $[^]b\mathrm{Bergkoetter},$ "Phase retrieval for chromatic aberrations and wide-field detectors".

Simulation

Simulation

Ideal model

- $\circ~$ Contour plots
- $\circ~$ Analysis across field of view
- $\circ~$ Comparison of fiber locations

Perturbed models

 $\circ~$ Box plot of results

Gravity sag model

- $\circ~$ Contour plots
- $\circ~$ Analysis across field of view
- $\circ~$ Effects of model complications

Results Ideal model baseline decentering study

Decentering contours across field of view

77/94

95th percentile and max WFE within 4 mm decentering radius

Results Pupil geometry

Results Pupil geometry effects

Plot of 6 mm and 4 mm radius of decentering for 30 models

Results Gravity sag model baseline decentering study

Results Gravity sag pupil clipping

Results Pupil clipping

Decentering contours across fied of view

95th percentile and max WFE within 4 mm decentering radius

Results Pupil clipping effects

- 4 mm decentering radius fits within error budget for test
- Gravity sag results slightly effected by clipping
- Despite decentering dependent wavefront error and clipping, gravity sag results share similar trends across field of view
- Can confidently use phase retrieval in presence of pupil knowledge error and gravity sag
- Next step is full test simulator

Thank you for listening! Special thanks to...

- Advisor Prof. Dmitry Savransky
- NASA Goddard & RST WFSC Groups
- My family
- My dog

Questions?

References

- Aronstein, David L. et al. "Wavefront-error performance characterization for the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) science instruments", In: Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave. Ed. by Howard A. MacEwen et al. Vol. 9904. International Society for Optics and Photonics. SPIE, 2016, pp. 63 80. DOI: 10.1117/12.2233842. URL: https://doi.org/10.1117/12.2233842.
- Bergkoetter, Matthew. "Phase retrieval for chromatic aberrations and wide-field detectors". PhD thesis. University of Rochester. Institute of Optics, 2017.
- Bergkoetter, Matthew D. and Alden S. Jurling. "Data analysis algorithm for double-pass testing of the Roman Space Telescope". In: Optical System Alignment, Tolerancing, and Verification XIII. Vol. 11488. International Society for Optics and Photonics. SPIE, 2020, pp. 167–173. DOI: 10.1117/12.2567347. URL: https://doi.org/10.1117/12.2567347.
- Bolcar, Matthew et al. "Roman Space Telescope Optical System: Overview, Test, and Verification". SPIE Astronomical Telescopes + Instrumentation. 2022.
- Dean, Bruce H. et al. "Phase retrieval algorithm for JWST Flight and Testbed Telescope". In: Space Telescopes and Instrumentation I: Optical, Infrared, and Millimeter. Ed. by John C. Mather, Howard A. MacEwen, and Mattheus W. M. de Graauw. Vol. 6265. International Society for Optics and Photonics. SPIE, 2006, p. 626511. DOI: 10.1117/12.673569. URL: https://doi.org/10.1117/12.673569.
- Fienup, J. R. "Phase retrieval algorithms: a comparison". In: Appl. Opt. 21.15 (1982), pp. 2758-2769. DOI: 10.1364/A0.21.002758. URL: http://opg.optica.org/ao/abstract.cfm?URI=ao-21-15-2758.
- . "Phase-retrieval algorithms for a complicated optical system". In: Appl. Opt. 32.10 (1993), pp. 1737–1746. DOI: 10.1364/A0.32.001737. URL: http://opg.optica.org/ao/abstract.cfm?URI=ao-32-10-1737.
- Gerchberg, R. W. "A practical algorithm for the determination of phase from image and diffraction plane pictures". In: Optik 35 (1972), pp. 237–246.
- 📱 Goodman, J.W. Introduction to Fourier Optics. Electrical Engineering Series. McGraw-Hill, 1996. ISBN: 9780070242548. URL: https://books.google.com/books?id=QllRAAAMAAJ.
- 📱 Jurling, Alden. "Advances in algorithms for image based wavefront sensing". PhD thesis. University of Rochester. Institute of Optics, 2015.
- Jurling, Alden S., Matthew D. Bergkoetter, and James R. Fienup. "Techniques for arbitrary sampling in two-dimensional Fourier transforms". In: J. Opt. Soc. Am. A 35.11 (2018), pp. 1784–1796. DOI: 10.1364/JOSAA.35.001784. URL: http://opg.optica.org/josaa/abstract.cfm?URI=josaa-35-11-1784.
- Jurling, Alden S. and James R. Fienup. "Applications of algorithmic differentiation to phase retrieval algorithms". In: J. Opt. Soc. Am. A 31.7 (2014), pp. 1348–1359. DOI: 10.1364/JOSAA.31.001348. URL: http://opg.optica.org/josaa/abstract.cfm?URI=josaa-31-7-1348.
- Smith, Koby Z. et al. "Methodology and Results of James Webb Space Telescope Thermal Vacuum Optical System Alignment Testing and Analysis". In: 34th Space Symposium (2018).

- Less simple to implement than iterative approach
- Forward model can account for advanced features and is easier to scale with system complexity
- Error metric can be adjusted to account for data artifacts abc

 $^{^{}a}$ Fienup, "Phase-retrieval algorithms for a complicated optical system".

^bJurling, "Advances in algorithms for image based wavefront sensing".

 $[^]c\mathrm{Bergkoetter},$ "Phase retrieval for chromatic aberrations and wide-field detectors".

- Makes nonlinear optimization approach reusable and more robust
- Extends algorithmic differentiation techniques to complex valued problems with multidimensional arrays
- Uses chain rule of partial derivatives
- Works through steps in forward model to propagate gradients
- Use gradients to search along parameters in direction that minimizes error metric^a

^aJurling and Fienup, "Applications of algorithmic differentiation to phase retrieval algorithms".