Astrometric Orbit
Estimation and Prediction for Exoplanets using Unscented Filters
Z. Stojanovski and D. Savransky

Introduction

Methodology Results

Conclusion
References Appendix

Astrometric Orbit Estimation and Prediction for Exoplanets using Unscented Filters

Zvonimir Stojanovski and Dmitry Savransky

January 10, 2023

Motivation

Astrometric Orbit Estimation and Prediction for Exoplanets using Unscented Filters
Z. Stojanovski and D. Savransky

Introduction

Methodology Results

Conclusion
References
Appendix

- Instruments such as the Gemini Planet Imager have enabled direct imaging and astrometric measurements on exoplanets
- Orbit fitting remains challenging and computationally expensive

De Rosa et al. (2020)

The Unscented Kalman Filter (UKF)

Astrometric Orbit Estimation and Prediction for Exoplanets using Unscented Filters
Z. Stojanovski and D. Savransky

Introduction

Methodology

Results
Conclusion
References
Appendix

- A recursive, nonlinear estimation method
- Introduced by Julier and Uhlmann (1997)
- Approximates a distribution using a finite, deterministic set of points and weights
- Fast enough for real-time state estimation

Julier and Uhlmann (1997)

UKF Update Procedure

Astrometric Orbit Estimation and Prediction for Exoplanets using Unscented Filters
Z. Stojanovski and D. Savransky

Introduction

Methodology

Results
Conclusion
References
Appendix

Can run multiple passes over same measurements - "smoothing"

Nonsingular Orbital Elements

- No singularities at $e=0, i=0$, etc.
- Any values in \mathbb{R}^{7} describe an orbit with $e<e_{\text {max }}$
- Based on the reference frame Q
- Combine features of the Thiele-Innes constants and the nonsingular elements due to Cohen and Hubbard (1962)

Perifocal frame \mathscr{P} and auxiliary frame \mathbb{Q}

Nonsingular Orbital Elements:
 Definitions

Astrometric Orbit Estimation and Prediction for Exoplanets using Unscented Filters
Z. Stojanovski and D. Savransky

Introduction
Methodology
Results
Conclusion
References
Appendix

$$
\begin{aligned}
\Xi_{11} & =\pi a\left(\cos \left(\omega+M_{0}\right) \cos \Omega-\sin \left(\omega+M_{0}\right) \sin \Omega \cos i\right) \\
\Xi_{21} & =\pi a\left(\cos \left(\omega+M_{0}\right) \sin \Omega+\sin \left(\omega+M_{0}\right) \cos \Omega \cos i\right) \\
\Xi_{12} & =\pi a\left(-\sin \left(\omega+M_{0}\right) \cos \Omega-\cos \left(\omega+M_{0}\right) \sin \Omega \cos i\right) \\
\Xi_{22} & =\pi a\left(-\sin \left(\omega+M_{0}\right) \sin \Omega+\cos \left(\omega+M_{0}\right) \cos \Omega \cos i\right) \\
\eta_{1} & =\frac{e \cos M_{0}}{\sqrt{e_{\max }-e^{2}}} \\
\eta_{2} & =-\frac{e \sin M_{0}}{\sqrt{e_{\max }-e^{2}}} \\
\lambda & =\log \left(P / P_{\text {scal }}\right)
\end{aligned}
$$

Measurement Model

Astrometric Orbit Estimation and Prediction for Exoplanets using Unscented Filters
. Stojanovski and D. Savransky

Introduction

Methodology

Results
Conclusion
References
Appendix

$$
\mathbf{z}=\boldsymbol{\Xi} \zeta(\boldsymbol{\eta}, \lambda, t)+\mathbf{w}
$$

- ζ is the position in the orbital plane in \mathbb{Q}, scaled by $1 / a$
- \mathbf{w} is the measurement noise
- Measurements are linear with respect to $\boldsymbol{\Xi}$ (4 of 7 elements)

Modifications to the UKF

Astrometric Orbit Estimation and Prediction for Exoplanets using Unscented Filters
Z. Stojanovski and D. Savransky

Introduction
Methodology
Results
Conclusion
References
Appendix

Square Root Sigma Point Filter

- Introduced by Brunke and Campbell (2004)
- Propagates $\sqrt{\mathbf{P}_{x x}}$ (as Cholesky decomposition) rather than $\mathbf{P}_{x x}$
- May improve numerical stability
- Currently used in our work

Quasilinear UKF

- Takes advantage of linearity of \mathbf{z} with respect to $\boldsymbol{\Xi}$
- Reduces dimension of sample points required
- Work in progress

Comparison with Markov Chain Monte Carlo (MCMC): β Pictoris b

Astrometric Orbit Estimation and Prediction for Exoplanets using Unscented Filters
Z. Stojanovski and D. Savransky

Introduction

Methodology

Results

Conclusion
References
Appendix

Maximum probability values and 95% credible intervals

Astrometric data from Lagrange et al. (2009) and Nielsen et al. (2014) MCMC fit by Nielsen et al. (2014)

UKF Orbit Fit: β Pictoris b

Astrometric Orbit Estimation and Prediction for Exoplanets using Unscented Filters
Z. Stojanovski and D. Savransky

Introduction

Methodology

Results
Conclusion
References
Appendix

Astrometric Orbit Estimation and Prediction for Exoplanets using Unscented Filters
Z. Stojanovski and D. Savransky

Introduction
Methodology
Results
Conclusion
References
Appendix

Comparison with Orbits for the Impatient (OFTI): GJ 504 b

Maximum probability values and 95% credible intervals

Astrometric data from Kuzuhara et al. (2013) OFTI fit by Blunt et al. (2017)

UKF Orbit Fit: GJ 504 b

Astrometric Orbit Estimation and Prediction for Exoplanets using Unscented Filters
Z. Stojanovski and D. Savransky

Introduction
Methodology
Results
Conclusion
References
Appendix

Implementation

Astrometric Orbit Estimation and Prediction for Exoplanets using Unscented Filters
. Stojanovski and D. Savransky

Introduction

References
Appendix

- Filter written in Fortran for efficiency
- Simple Python interface via F2PY and NumPy
- Typically fits an orbit in less than 1 second
- Soon to be available on GitHub

Characterizing prior effects and convergence

- Filter convergence appears to be sensitive to prior distributions and number of filter passes
- We plan to investigate more rigorous methods for choosing priors and number of passes

Further testing

- Tests with more datasets
- Comparisons with other orbit fitting methods, e.g., least-squares Monte Carlo

Astrometric Orbit Estimation and Prediction for Exoplanets using Unscented Filters
Z. Stojanovski and D. Savransky

Introduction
Methodology
Results
Conclusion
References
Appendix
S. Blunt, E. L. Nielsen, R. J. D. Rosa, et al. Orbits for the Impatient: A Bayesian Rejection-sampling Method for Quickly Fitting the Orbits of Long-period Exoplanets. The Astronomical Journal, 153(5), 2017.
S. Brunke and M. E. Campbell. Square Root Sigma Point Filtering for Real-Time, Nonlinear Estimation. Journal of Guidance, Control, and Dynamics, 27(2):314-317, 2004.
C. J. Cohen and E. C. Hubbard. A Nonsingular Set of Orbit Elements. The Astronomical Journal, 67(1), 1962.
R. J. De Rosa, E. L. Nielsen, J. J. Wang, et al. An Updated Visual Orbit of the Directly Imaged Exoplanet 51 Eridani b and Prospects for a Dynamical Mass Measurement with Gaia. The Astronomical Journal, 159(1), 2020.
S. Julier and J. Uhlmann. A New Extension of the Kalman Filter to Nonlinear Systems. Proc. SPIE 3068, Signal Processing, Sensor Fusion, and Target Recognition VI, 1997.
M. Kuzuhara, M. Tamura, T. Kudo, et al. Direct Imaging of a Cold Jovian Exoplanet in Orbit Around the Sun-Like Star GJ 504. The Astrophysical Journal, 774(1), 2013.
A.-M. Lagrange, D. Gratadour, G. Chauvin, et al. A probable giant planet imaged in the β Pictoris disk: VLT/NaCo deep L^{\prime}-band imaging. Astronomy © Astrophysics, 493(2):L21-L25, 2009.
E. L. Nielsen, M. C. Liu, Z. Wahhaj, et al. The Gemini/NICI Planet-Finding Campaign: The Orbit of the Young Exoplanet β Pictoris b. The Astrophysical Journal, 794(2), 2014.

Recovering the Classical Elements

Astrometric Orbit Estimation and Prediction for Exoplanets using Unscented Filters
Z. Stojanovski and D. Savransky

Introduction
Methodology
Results
Conclusion
References
Appendix

$$
\cos i=\gamma-\operatorname{sgn}(\gamma) \sqrt{\gamma^{2}-1}, \quad \text { where } \quad \gamma=\frac{\|\boldsymbol{\Xi}\|^{2}}{2 \operatorname{det}(\boldsymbol{\Xi})}
$$

$$
\begin{aligned}
a & =\frac{\|\boldsymbol{\Xi}\|}{2 \pi \sqrt{1+\cos ^{2} i}} \\
e & =\frac{e_{\max }\|\boldsymbol{\eta}\|}{\sqrt{1+\|\boldsymbol{\eta}\|^{2}}} \\
M_{0} & =\operatorname{atan} 2\left(-\eta_{2}, \eta_{1}\right) \\
\Omega+\omega+M_{0} & =\operatorname{atan} 2\left(\Xi_{21}-\Xi_{12}, \Xi_{11}+\Xi_{22}\right) \\
\Omega-\omega-M_{0} & =\operatorname{atan} 2\left(\Xi_{21}+\Xi_{12}, \Xi_{11}-\Xi_{22}\right) \\
P & =P_{0} \exp \lambda
\end{aligned}
$$

