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Motivation

Instruments such as the Gemini Planet Imager have enabled direct
imaging and astrometric measurements on exoplanets
Orbit fitting remains challenging and computationally expensive

De Rosa et al. (2020)
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The Unscented Kalman Filter (UKF)

A recursive, nonlinear estimation method
Introduced by Julier and Uhlmann (1997)
Approximates a distribution using a finite, deterministic set of
points and weights
Fast enough for real-time state estimation
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True mean: x      EKF mean: oFigure 1: The mean and standard deviation el-lipses for the actual and linearised form of thetransformation. The true mean is at � and theuncertainty ellipse is solid. Linearisation calcu-lates the mean at � and the uncertainty ellipse isdashed.

To appreciate the errors which can be caused bylinearisation, its values of the statistics of (x; y) werecompared with those calculated by the true statisticswhich are calculated by Monte Carlo simulation. Dueto the slow convergence of random sampling methods,an extremely large number of samples (3:5�106) wereused to ensure that accurate estimates of the true stat-istics were obtained. The results are shown in Figure 1.This �gure shows the mean and 1� contours for whichare calculated by each method. The 1� contour is thelocus of points fy : (y � �y)P�1y (y � �y) = 1g and is agraphical representation of the size and orientation ofPyy. As can be seen, the linearised transformation isbiased and inconsistent. This is most pronounced inthe range direction, where linearisation estimates thatthe position is 1m whereas in reality it is 96.7cm. Thisis extremely substantial. Linearisation errors e�ect-ively introduce an error which is over 1.5 times thestandard deviation of the range measurement. Since itis a bias which arises from the transformation processitself, the same error with the same sign will be com-mitted each time a coordinate transformation takesplace. Even if there were no bias, the transformationis inconsistent. Its ellipse is not long enough in the r direction. In fact, the nature of the inconsistency compoundsthe problem of the biased-ness: not only is the estimate or r in error, but also its estimated mean squared erroris much smaller than the true value.In practice the inconsistency can be resolved by introducing additional stabilising noise which increases thesize of the transformed covariance. This is one possible of why EKFs are so di�cult to tune | su�cient noisemust be introduced to o�set the defects of linearisation. However, introducing stabilising noise is an undesirablesolution since the estimate remains biased and there is no general guarantee that the transformed estimate remainsconsistent or e�cient. A more accurate prediction algorithm is required.3 THE UNSCENTED TRANSFORM3.1 The Basic Idea
Transformation

Nonlinear 

Figure 2: The principle of the unscented trans-form.
The unscented transformation is a new, novelmethod for calculating the statistics of a random vari-able which undergoes a nonlinear transformation. It isfounded on the intuition that it is easier to approxim-ate a Gaussian distribution than it is to approximatean arbitrary nonlinear function or transformation23.The approach is illustrated in Figure 2. A set of points(or sigma points) are chosen so that their sample meanand sample covariance are �x and Pxx. The nonlinearfunction is applied to each point in turn to yield a cloudof transformed points and �y and Pyy are the statist-ics of the transformed points. Although this methodbares a super�cial resemblance to Monte Carlo-type Julier and Uhlmann (1997)
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UKF Update Procedure

Prior Mean x̄ and
Covariance Pxx

Sample Points x(j )

and Weights w (j )

Predicted
Measurements z(j )

Measurement Mean z̄,
Covariance Pzz , and
Cross-Covariance Pxz

Posterior
x̄+ = x̄ + PxzP−1

zz (z − z̄)
P+
xx = Pxx − PxzP−1

zz PT
xz

True Measurement z

Can run multiple passes over same measurements — “smoothing”
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Nonsingular Orbital Elements

No singularities at e = 0, i = 0, etc.

Any values in ℝ7 describe an orbit
with e < emax

Based on the reference frame Q

Combine features of the
Thiele-Innes constants and the
nonsingular elements due to
Cohen and Hubbard (1962)

p1

p2
q1

q2

M0

P

Q

Perifocal frame P and
auxiliary frame Q
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Nonsingular Orbital Elements:
Definitions

Ξ11 = 𝜋a(cos(𝜔 +M0) cosΩ − sin(𝜔 +M0) sinΩ cos i)
Ξ21 = 𝜋a(cos(𝜔 +M0) sinΩ + sin(𝜔 +M0) cosΩ cos i)
Ξ12 = 𝜋a(− sin(𝜔 +M0) cosΩ − cos(𝜔 +M0) sinΩ cos i)
Ξ22 = 𝜋a(− sin(𝜔 +M0) sinΩ + cos(𝜔 +M0) cosΩ cos i)

[1 =
e cosM0√︁
emax − e2

[2 = − e sinM0√︁
emax − e2

_ = log (P/Pscal)
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Measurement Model

z = 𝚵𝜻 (𝜼, _, t) + w

𝜻 is the position in the orbital plane in Q, scaled by 1/a
w is the measurement noise

Measurements are linear with respect to 𝚵 (4 of 7 elements)
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Modifications to the UKF

Square Root Sigma Point Filter
Introduced by Brunke and Campbell (2004)

Propagates
√

Pxx (as Cholesky decomposition) rather than Pxx
May improve numerical stability

Currently used in our work

Quasilinear UKF
Takes advantage of linearity of z with respect to 𝚵

Reduces dimension of sample points required

Work in progress
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Comparison with Markov Chain
Monte Carlo (MCMC): 𝛽 Pictoris b

Maximum probability values and 95% credible intervals
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Astrometric data from Lagrange et al. (2009) and Nielsen et al. (2014)
MCMC fit by Nielsen et al. (2014)

9 / 16



Astrometric Orbit
Estimation and
Prediction for

Exoplanets using
Unscented Filters

Z. Stojanovski and
D. Savransky

Introduction

Methodology

Results

Conclusion

References

Appendix

UKF Orbit Fit: 𝛽 Pictoris b
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Comparison with Orbits for the
Impatient (OFTI): GJ 504 b

Maximum probability values and 95% credible intervals
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Astrometric data from Kuzuhara et al. (2013)
OFTI fit by Blunt et al. (2017)
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UKF Orbit Fit: GJ 504 b
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Implementation

Filter written in Fortran for efficiency

Simple Python interface via F2PY and NumPy

Typically fits an orbit in less than 1 second

Soon to be available on GitHub
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Future Work

Characterizing prior effects and convergence
Filter convergence appears to be sensitive to prior distributions and
number of filter passes

We plan to investigate more rigorous methods for choosing priors
and number of passes

Further testing
Tests with more datasets

Comparisons with other orbit fitting methods, e.g., least-squares
Monte Carlo
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Recovering the Classical Elements

cos i = 𝛾 − sgn(𝛾)
√︃
𝛾2 − 1, where 𝛾 =

∥𝚵∥2

2 det(𝚵)

a =
∥𝚵∥

2𝜋
√

1 + cos2 i

e =
emax∥𝜼∥√︁
1 + ∥𝜼∥2

M0 = atan2(−[2, [1)
Ω + 𝜔 +M0 = atan2(Ξ21 − Ξ12,Ξ11 + Ξ22)
Ω − 𝜔 −M0 = atan2(Ξ21 + Ξ12,Ξ11 − Ξ22)

P = P0 exp_
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