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Filtering methods are among the basic tools used for state estimation and

control in many areas of engineering, particularly in aerospace. For some sys-

tems, the problem of state estimation remains challenging for various reasons,

including highly nonlinear dynamics and measurements, as well as unusual

process and measurement noise distributions. Although a wide variety of filter-

ing methods have been developed over the past few decades, both for general

purposes and specific applications, the need for developing new methods re-

mains strong. This thesis is devoted to the development and improvement of

nonlinear filtering methods and their applications to challenging problems in

astrodynamics.

Most filters currently in use compute the mean and covariance of the state

of the system. This is sufficient to describe a Gaussian or nearly Gaussian dis-

tribution, but to describe a wider family of possible distributions, higher-order

moments are required. In this thesis, we develop the Higher-Order Unscented

Estimator, which accounts for skewness and kurtosis in addition to the mean

and covariance. We test this filter in simulations of three nonlinear dynamical

systems and find that it is more robust than other estimators in the presence of

outliers in the process and measurement noise.

Next, we apply the Square Root Sigma Point Filter to the problem of au-

tonomous cross-calibration for Earth-imaging satellites. This is a novel applica-

tion of nonlinear filtering. We develop a simulation framework for a constellation



of Earth-imaging satellites, which includes detailed models of the satellites’ dy-

namics and cameras, and we demonstrate the application of this method to two

satellites in coplanar low-Earth orbits.

Finally, we apply a Gaussian mixture sigma point filter to the problem of

exoplanet orbit fitting. To avoid the singularities associated with the classical

orbital elements, we introduce a new nonsingular parametrization for Keplerian

orbits. With these new elements, the filter works well, and estimates of the

classical elements can be obtained by simple transformations.

Throughout this work, we show that nonlinear filtering methods can be

successfully applied to new dynamical systems. This is achieved through careful

modeling and parametrization of the system state and measurements and the

development of new filtering techniques.
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INTRODUCTION: ESTIMATION IN AEROSPACE AND ASTRONOMY

In many aerospace applications, it is necessary to obtain estimates of the state

of a dynamical system in real time from incomplete and noisy measurements.

The Kalman filter, first introduced in 1960, forms the basis of most modern

recursive estimators. It alternates between predicting the state of the system

and updating the estimate using measurements. The invention of the Kalman

filter came just in time for the development of spaceflight—by 1969, it was used

on the Apollo navigation computer [25].

Although the original Kalman filter is only for systems with linear dynamics

and measurements, it has been extended to nonlinear systems. To adapt to the

requirements of a wide range of systems, researchers have developed numerous

filtering methods. Some of the most notable methods are listed below.

• Kalman-Bucy filter: A continuous-time version of the Kalman filter, with

linear dynamics and measurements and white noise.

• Extended Kalman filter (EKF): Linearizes the dynamics and measurement

functions about the means using Jacobian matrices.

• Particle Filter (PF): Approximates the probability density of the state using

randomly-generated points.

• Unscented Kalman filter (UKF): Approximates the probability density of the

state using a finite, deterministic set of points.

In this thesis, we investigate the application of filters to problems in aerospace

and astronomy. The foundation of all of these projects is nonlinear Bayesian esti-

mation, and in particular the unscented Kalman filter. The theory and methods

of Bayesian estimation are reviewed in Chapter 1.
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The first main result in the thesis is a new filter, the Higher-Order Unscented

Estimator (HOUSE), presented in Chapter 2. It is a new extension of the un-

scented Kalman filter with asymmetric sample points and weights chosen to

match third- and fourth-order moments in addition to the mean and covariance.

Explicit solutions are obtained for sample points and weights, making their

evaluation efficient and robust, and rigorous constraints are derived for their

applicability. The use of the new filter is demonstrated with three dynamical

systems—an aircraft coordinated turn model, a rotating rigid body, and a projec-

tile with drag—and filter performance is compared with that of the conventional

unscented Kalman filter and conjugate unscented transform filters. The new fil-

ter is found to be more robust in most cases where the initial distribution, process

noise, and measurement noise have a high kurtosis, in that it does not generate

extreme outliers in the estimation error. Also, execution times for the new filter

are found to be only slightly longer than for the conventional unscented Kalman

filter and significantly shorter than for the conjugate unscented transform filters.

In Chaper 3, we present a methodology called Autonomous Cross-

Calibration for Imaging Satellites (ACCIS). Here, each satellite extracts features

from primary mission images and then transmits the features, along with its

state estimate, to other satellites. Furthermore, each satellite uses comparisons

of the image features, along with conventional state measurements, to estimate

its position, attitude, and camera parameters via the Square Root Sigma Point

Filter (SRSPF). We demonstrate the feasibility of this method using a simulation

of two satellites.

In Chapter 4, we present a new method for exoplanet orbit fitting from direct

observations, called the Nonsingular Estimator for Exoplanet Orbits (NEXO),

2



based on nonlinear filtering and a new set of orbital elements. These elements

are nonsingular, and every possible set of values describes an elliptic orbit,

making them well-suited to an unconstrained filter; they combine features of the

Cohen-Hubbard nonsingular elements, as well as the Thiele-Innes constants.

The filtering method combines the SRSPF with Gaussian mixture models. We

validate this method using a large sample of simulated exoplanet orbits, and we

apply it to real exoplanet data.
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CHAPTER 1

BAYESIAN ESTIMATION

In probability theory and statistics, there are two main philosophies: the

Bayesian philosophy, in which the probability is interpreted as the degree of

belief or certainty, and the frequentist philosophy, in which it is interpreted as

a frequency of outcomes in an experiment. In practice, the main difference is

that Bayesian techniques start with a prior probability distribution, representing

prior knowledge of the system, which is then updated using measurements.

This structure is useful for estimation and forms the basis for the Kalman filter.

Since its introduction in 1960 [35], the Kalman filter has become an indis-

pensable tool in control, navigation, and tracking, due to its simplicity and

robustness [5]. Although the original Kalman filter assumes that the system dy-

namics and measurements are linear—one of the very few cases where the filter

has a closed form—a wide variety of modifications to the Kalman filter, using

various approximation methods, have been developed for handling nonlinear

systems with possibly non-Gaussian noise. Fang et al. [19] provide an extensive

survey of such filters within a Bayesian framework.

In this chapter, we review the theory of Bayesian estimation, with an emphasis

on filtering techniques. In particular, we describe the Kalman filter and some of

its extensions to nonlinear systems.

1.1 Notation

Throughout this thesis, vectors are denoted by lowercase boldface letters (e.g.,

x) and matrices by uppercase boldface letters (e.g., A). An overbar denotes the
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mean or expected value of a random variable; e.g., x̄ is the expected value of x.

Covariance matrices are denoted by P with subscripts indicating the variables;

e.g., P𝑥𝑥 is the covariance of x, and P𝑥𝑦 is the cross-covariance of x and y.

1.2 The Nonlinear Filtering Problem

In this section, we present the nonlinear filtering problem and describe the

procedures for state prediction and correction.

Suppose that a system with state vector x evolves in discrete time according

to

x(𝑘 + 1) = f(x(𝑘),w(𝑘), 𝑘), (1.1)

where w is the process noise, 𝑘 is the time step, and f is a known state function.

Furthermore, suppose that a measurement z is taken at each time step, given by

z(𝑘) = h(x(𝑘), n(𝑘), 𝑘), (1.2)

where n is the measurement noise, and h is a known measurement function.

We assume that w and n are mutually independent and also independent of

x. Furthermore, we assume that w(𝑘′) is independent of w(𝑘) for 𝑘′ ≠ 𝑘 and

that the same is true for n. Thus, the state of the system is a Markov process,

which can be informally stated as, “The future is independent of the past if the

present is known” [5]. In addition, we assume that the noise is zero-mean, i.e.,

that w̄(𝑘) = 0 and n̄(𝑘) = 0.

The operation of the filter can be divided into two alternating steps: prediction,

or finding the distribution of x(𝑘 + 1) given the distributions of x(𝑘) and w(𝑘);
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and correction or update, or finding the distribution of x(𝑘) given a measurement

z(𝑘), the distribution of n(𝑘), and the prior predicted distribution of x(𝑘).

Except in some special cases, the true distribution of a variable—i.e., its

probability density function (PDF)—cannot be determined analytically. This is

especially true if f and h are not known explicitly, e.g., if their evaluation requires

numerical integration of equations of motion. While the PDF can be approx-

imated very accurately using numerical methods, such as finite difference or

Gaussian mixture models, this is too computationally expensive for many appli-

cations. Instead, the distribution may be described by a finite set of generalized

moments. For any random variable x ∈ Ω with PDF 𝑝 and function 𝜙 : Ω → R,

we can define a generalized moment 𝜙̄ ∈ R as

𝜙̄ = E[𝜙(x)] =
∫
Ω

𝑝(x)𝜙(x)dx. (1.3)

Furthermore, for any functions g : Ω → Ω′
and 𝜙′

: Ω′ → R, we can compute a

generalized moment of y = g(x)

𝜙̄′ = E[𝜙′(y)] =
∫
Ω

𝜙′(g(x))𝑝(x)dx. (1.4)

The simplest generalized moments of a random variable x are its mean or

expected value x̄ and covariance P𝑥𝑥 , which is defined as

P𝑥𝑥 = E[(x − x̄)(x − x̄)T]. (1.5)

In practice, for many estimators, these are the only generalized moments that

are considered. Furthermore, in some cases, it is reasonable to assume that the

PDF 𝑝 is of a specific type (e.g., Gaussian) or belongs to a broader family of

distributions (e.g., the Pearson family). Then, 𝑝 can be fully characterized by a

finite set of generalized moments.
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Given these definitions, we can now describe in detail the processes of pre-

diction and correction.

1.2.1 Prediction

The most general form of the prediction step is given by the Chapman-

Kolmogorov equation

𝑝
(𝑘+1)
𝑥 (x) =

∫
𝑝
(𝑘+1|𝑘)
𝑥 (x|x′)𝑝(𝑘)𝑥 (x′)dx′, (1.6)

where 𝑝
(𝑘)
𝑥 is the PDF of x(𝑘), and 𝑝

(𝑘+1|𝑘)
𝑥 is the transition density from x(𝑘) to

x(𝑘 + 1), i.e., the conditional PDF of x(𝑘 + 1) given x(𝑘) [5]. From (1.1), we see

that the only random effects in the transition from x(𝑘) to x(𝑘 + 1) are due to the

process noise w(𝑘); therefore, we have the conditional probability density for

x(𝑘 + 1) = x given x(𝑘) = x′

𝑝
(𝑘+1|𝑘)
𝑥 (x|x′) =

∫
𝛿(x − f(x′,w, 𝑘))𝑝(𝑘)𝑤 (w)dw, (1.7)

where 𝑝
(𝑘)
𝑤 is the PDF of w(𝑘), and 𝛿 is the Dirac delta function.

A generalized moment 𝜙̄ of x(𝑘+1) can be obtained by substituting (1.6) into

(1.3), which gives

𝜙̄ =

∫
𝜙(x)

∫
𝑝
(𝑘+1|𝑘)
𝑥 (x|x′)𝑝(𝑘)𝑥 (x′)dx′dx, (1.8)

and substituting (1.7) gives

𝜙̄ =

∫
𝜙(x)

∬
𝛿(x − f(x′,w, 𝑘))𝑝(𝑘)𝑤 (w)dw𝑝(𝑘)𝑥 (x′)dx′dx. (1.9)

Using the properties of the Dirac delta function, this simplifies to

𝜙̄ =

∬
𝜙(f(x′,w, 𝑘))𝑝(𝑘)𝑤 (w)dw𝑝(𝑘)𝑥 (x′)dx′, (1.10)
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which is the expected value of 𝜙(f(x,w, 𝑘)). At this point, in order to simplify

the notation in the development of the filter, it is useful to define the augmented

state

yP(𝑘) =

x(𝑘)

w(𝑘)

 , (1.11)

with PDF 𝑝
(𝑘)
YP

, given by

𝑝
(𝑘)
YP

©­«

x

w

ª®¬ = 𝑝
(𝑘)
𝑤 (w)𝑝(𝑘)𝑥 (x). (1.12)

Then, the generalized moment is given in the form of (1.3) by

𝜙̄ =

∫
𝜙(y)𝑝(𝑘)

YP
(y)dy, (1.13)

where

𝜙
©­«

x

w

ª®¬ = 𝜙(x). (1.14)

1.2.2 Correction

Due to (1.2), the measurement likelihood function is given by

𝑝
(𝑘)
𝑧 |𝑥(z|x) =

∫
𝛿(z − h(x(𝑘), n(𝑘), 𝑘))𝑝(𝑘)𝑛 (n)dn, (1.15)

where 𝑝
(𝑘)
𝑛 (n) is the PDF of n(𝑘). The posterior, or corrected, PDF for x(𝑘)—i.e.,

the conditional probability density of x(𝑘) given z(𝑘)—is given by Bayes’ rule

𝑝
(𝑘)
𝑥 |𝑧(x|z) =

𝑝
(𝑘)
𝑧 |𝑥(z|x)𝑝

(𝑘)
𝑥 (x)∫

𝑝
(𝑘)
𝑧 |𝑥(z|x′)𝑝

(𝑘)
𝑥 (x′)dx′

, (1.16)

where 𝑝
(𝑘)
𝑥 is the prior PDF of x(𝑘) and 𝑝

(𝑘)
𝑥 |𝑧 is the posterior PDF of x(𝑘).
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For computing the generalized moments of z(𝑘) and x(𝑘), we use an approach

similar to that in the prediction step, with an augmented state

yC(𝑘) =

x(𝑘)

n(𝑘)

 . (1.17)

Obtaining generalized moments for the posterior density of x, however, is more

difficult. Usually, this is done by defining an estimator x̂ of x that is a function of

z and the prior distribution of x. (Here, we drop the 𝑘 suffixes for brevity.) The

estimator error is then defined as

𝝐 = x − x̂. (1.18)

It is desirable that an estimator be unbiased, which means that 𝝐̄ = 0, or equiv-

alently, that E[x̂(z)] = x̄. Furthermore, to make the estimator error as small as

possible, we seek to minimize the mean-square error (MSE), which is defined as

E[𝝐T𝝐].

The optimal estimator—the one that is unbiased and minimizes the MSE—is

the mean of the Bayesian posterior distribution

x̂ =

∫
x𝑝𝑧 |𝑥(z|x)𝑝𝑥(x)dx∫
𝑝𝑧 |𝑥(z|x)𝑝𝑥(x)dx

. (1.19)

In some special cases, such as when h is linear and 𝑝𝑥 and 𝑝𝑛 are Gaussian, this

can be expressed in closed form. In many other cases, however, the optimal

estimator does not have a useful analytical form, and the computational cost

of approximating the PDFs numerically is too high for real-time applications.

Instead, we may use a linear estimator of the form

x̂ = Az + b, (1.20)

where A is a constant matrix, and b is a constant vector. Among unbiased linear

estimators, the one that gives the smallest MSE, called the linear minimum

9



mean-square estimator (LMMSE), is given by [5]

x̂ = x̄ + P𝑥𝑧P−1

𝑧𝑧 (z − z̄), (1.21)

with error covariance

P𝜖𝜖 = P𝑥𝑥 − P𝑥𝑧P−1

𝑧𝑧PT

𝑥𝑧 . (1.22)

In practice, we often use P𝜖𝜖 as an approximation of P𝑥𝑥 |𝑧 , the posterior covari-

ance of x.

1.3 Linear and Linearized Filtering Methods

This section starts with a description of the original Kalman filter, which gives

closed-form solutions to the filtering problem for linear systems. Then, we

present the extended Kalman filter, which is a straightforward extension to

nonlinear systems based on linear approximations.

1.3.1 The Kalman Filter

The Kalman filter gives an exact solution to the estimation problem with (1.1)

and (1.2) in the linear form

x(𝑘 + 1) = F(𝑘)x(𝑘) + G(𝑘)w(𝑘) (1.23)

and

z(𝑘) = H(𝑘)x(𝑘) + C(𝑘)n(𝑘). (1.24)

For the prediction step, we apply (1.23) and the properties of the mean and

covariance to obtain

x̄(𝑘 + 1|𝑘) = F(𝑘)x̄(𝑘) (1.25)

10



and

P𝑥𝑥(𝑘 + 1|𝑘) = F(𝑘)P𝑥𝑥(𝑘)FT(𝑘) + G(𝑘)P𝑤𝑤(𝑘)GT(𝑘). (1.26)

For details, see [5]. As for the correction step, we compute the measurement

mean

z̄(𝑘) = H(𝑘)x̄(𝑘 |𝑘 − 1), (1.27)

the measurement covariance

P𝑧𝑧(𝑘) = H(𝑘)P𝑥𝑥(𝑘 |𝑘 − 1)HT(𝑘) + C(𝑘)P𝑛𝑛(𝑘)CT(𝑘), (1.28)

and the cross-covariance between the state and the measurement

P𝑥𝑧(𝑘) = P𝑥𝑥(𝑘 |𝑘 − 1)HT(𝑘). (1.29)

From this, we compute the Kalman gain

K(𝑘) = P𝑥𝑧(𝑘)P−1

𝑧𝑧 (𝑘). (1.30)

Then, we use the LMMSE formulae (1.21) and (1.22) to obtain the updated mean

x̄(𝑘) = x̄(𝑘) + K(𝑘)(z(𝑘) − z̄(𝑘)) (1.31)

and covariance

P𝑥𝑥(𝑘) = P𝑥𝑥(𝑘) − K(𝑘)PT

𝑥𝑧(𝑘). (1.32)

Contrary to popular belief, the Kalman filter does not require that the distribu-

tions of w(𝑘) and n(𝑘) be Gaussian. However, that is the only case when the

Kalman correction is optimal in the mean-square error sense (and not merely

the LMMSE).

1.3.2 The Extended Kalman Filter

Although the Kalman filter only solves the linear estimation problem, its simplic-

ity and robustness have motivated the development of similar but suboptimal

11



filters for nonlinear systems. The most straightforward is the extended Kalman

filter (EKF), which uses a linear approximation of the nonlinear system about

the mean, using Jacobian matrices.

In the EKF, we evaluate the predicted state and measurement mean using

the full nonlinear model at the prior mean, that is,

x̄(𝑘 + 1) =f(x̄(𝑘), 0, 𝑘), (1.33)

z̄(𝑘) =h(x̄(𝑘), 0, 𝑘). (1.34)

As for computing the covariances and cross-covariances, we define

F(𝑘) = 𝜕f
𝜕x

(x̄(𝑘), 0, 𝑘), (1.35)

G(𝑘) = 𝜕f
𝜕w

(x̄(𝑘), 0, 𝑘), (1.36)

H(𝑘) =𝜕h
𝜕x

(x̄(𝑘), 0, 𝑘), (1.37)

C(𝑘) =𝜕h
𝜕x

(x̄(𝑘), 0, 𝑘). (1.38)

Then, we apply the same procedures as for the original Kalman filter. This

method has been widely used for a variety of applications. However, there

are many dynamical systems for which the linearization is not a sufficiciently

accurate approximation. Also, the evaluation of the Jacobians can be complicated

and computationally expensive.

1.4 The Unscented Kalman Filter

As a more efficient alternative to the previously developed EKF and particle fil-

ter (PF), Julier and Uhlmann [34] introduced the unscented Kalman filter (UKF),
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also known as the sigma point filter (SPF), which evaluates the state and mea-

surement functions at a finite, deterministic set of points, called sigma points,

and uses weighted sums to compute the predicted and updated mean and co-

variance in the filter. This process is referred to as the unscented transform (UT).

The points and weights are chosen so that the computed mean and covariance

are exact up to the second and first order in the state, respectively. In cases

where the state distribution is symmetric, the third moments are preserved as

well, due to the symmetry of the sigma points. As in the original Kalman fil-

ter [35], no assumptions are made about the type of distribution—in particular,

the distribution need not be Gaussian.

1.4.1 The Unscented Transform

In many cases, even when the exact PDF is known, it is impossible to compute

the generalized moment using (1.3) analytically. However, the integral in this

equation can be approximated with reasonable accuracy and efficiency by eval-

uating 𝜙 at a deterministic set of sample points x(1), . . . , x(𝑁)
with corresponding

weights 𝑤1, . . . , 𝑤𝑁 and replacing the integral with a weighted sum

𝜙̄ ≈
𝑁∑
𝑗=1

𝑤 𝑗𝜙(x(𝑗)). (1.39)

This is the principle behind the unscented transform. It is very closely related to

a class of methods for numerical integration; these methods are usually referred

to as quadratures in the univariate case and cubatures in the multivariate case.

Choosing the points x(𝑗) and weights 𝑤 𝑗 is equivalent to finding a cubature

rule with 𝑝 as a weighting function. Let ℱ be the family of functions for which

13



this cubature is exact; that is

ℱ =

𝜙 : Ω → R

������
∫
Ω

𝜙(x)𝑝(x)dx =

𝑁∑
𝑗=1

𝑤 𝑗𝜙(x(𝑗))
 . (1.40)

For example, ℱ might include all polynomials up to a certain degree. We want

to choose the points x(𝑗) and weights 𝑤 𝑗 so that all functions 𝜙 that we use

for generalized moments 𝜙̄ can be approximated with sufficient accuracy by

functions in ℱ . Specifically, suppose that we want to compute 𝜙̄′ = E[𝜙′(y)],

where y = g(x), for a polynomial 𝜙 of degree 𝑀 and an arbitrary function g. If

we want to account for 𝐾-th order terms in the Taylor expansion of g, then ℱ

must contain polynomials up to degree 𝐾𝑀.

In the original unscented transform [34], for a random variable x ∈ R𝑛 with

mean x̄ and covariance P𝑥𝑥 , the sample points, referred to as sigma points, are

given by

x(𝑗) =


x̄ +

√
𝑛 + 𝜅c(𝑗), 1 ≤ 𝑗 ≤ 𝑛

x̄ −
√
𝑛 + 𝜅c(𝑗−𝑛) 𝑛 + 1 ≤ 𝑗 ≤ 2𝑛

x̄ 𝑗 = 2𝑛 + 1

, (1.41)

where c(𝑗) denotes the 𝑗-th column of

√
P𝑥𝑥 . The corresponding weights are

𝑤 𝑗 =


1

2(𝑛 + 𝜅) , 1 ≤ 𝑗 ≤ 2𝑛

𝜅
𝑛 + 𝜅

, 2𝑛 + 1

, (1.42)

where 𝜅 is a tuning factor. These points and weights form a cubature rule that is

exact for polynomials up to the second order. The square root of the covariance

matrix is usually taken to be the lower-triangular Cholesky decomposition, due

to its efficiency and numerical stability. We adopt this convention in our work.
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1.4.2 Procedures

We now describe how the unscented transform is applied to the prediction and

correction steps in the unscented Kalman filter.

Prediction

For the general dynamical model (1.1), we define the augmented state

yP(𝑘) =

x(𝑘)

w(𝑘)

 , (1.43)

which has mean

ȳP(𝑘) =

x̄(𝑘)

0

 (1.44)

and covariance

P𝑦𝑦,P(𝑘) =

P𝑥𝑥(𝑘) 0

0 P𝑤𝑤(𝑘)

 . (1.45)

To these we apply the unscented transform to obtain the sample points y(𝑗)
C

, which

comprise x(𝑗) and w(𝑗)
, with corresponding weights𝑤 𝑗 . Then, the predicted states

at the sigma points are given by

x(𝑗)
P

= f(x(𝑗),w(𝑗), 𝑘). (1.46)

From these points, we compute the predicted state mean

x̄(𝑘 + 1|𝑘) =
𝑁∑
𝑗=1

𝑤 𝑗x
(𝑗)
P

(1.47)

and covariance

P𝑥𝑥(𝑘 + 1|𝑘) =
𝑁∑
𝑗=1

𝑤 𝑗(x(𝑗)
P

− x̄(𝑘 + 1|𝑘))(x(𝑗)
P

− x̄(𝑘 + 1|𝑘))T. (1.48)
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In the special (but common) case where the process noise is additive

x(𝑘 + 1) = f(x(𝑘), 𝑘) + w(𝑘), (1.49)

we can compute the sigma points and weights only for x(𝑘) based on x̄(𝑘) and

P𝑥𝑥(𝑘), from which we evaluate

x(𝑗)
P

= f(x(𝑗), 𝑘). (1.50)

Then, the mean is again given by (1.47), and to the covariance (1.48) we add the

noise covariance P𝑤𝑤 .

Correction

In the correction step, we use the general measurement model (1.2) to define an

augmented state

yC(𝑘) =

x(𝑘)

n(𝑘)

 , (1.51)

with mean

ȳC(𝑘) =

x̄(𝑘 |𝑘 − 1)

0

 (1.52)

and covariance

P𝑦𝑦,C(𝑘) =

P𝑥𝑥(𝑘 |𝑘 − 1) 0

0 P𝑛𝑛(𝑘)

 . (1.53)

Then, as in the prediction step, we compute the sample points x(𝑗) and n(𝑗)
and

their corresponding weights 𝑤 𝑗 , we and evaluate the sample measurements

z(𝑗) = h(x(𝑗), n(𝑗), 𝑘). (1.54)

With these sample points, we compute the measurement mean

z̄(𝑘) =
𝑁∑
𝑗=1

𝑤 𝑗z(𝑗), (1.55)
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covariance

P𝑧𝑧(𝑘) =
𝑁∑
𝑗=1

𝑤 𝑗(z(𝑗) − z̄(𝑘))(z(𝑗) − z̄(𝑘))T, (1.56)

and cross-covariance

P𝑥𝑧(𝑘) =
𝑁∑
𝑗=1

𝑤 𝑗(x(𝑗) − x̄(𝑘))(z(𝑗) − z̄(𝑘))T. (1.57)

Then, we apply the LMMSE correction, as in the original Kalman filter, to obtain

the updated x̄(𝑘) and P𝑥𝑥(𝑘). If the measurement noise is additive,

z(𝑘) = h(x(𝑘), 𝑘) + n(𝑘), (1.58)

we can apply a simplified approach similar to the one for the prediction step, in

this case adding P𝑛𝑛 to P𝑧𝑧 in (1.56).

1.4.3 The Square-Root Sigma Point Filter

The Square Root Sigma Point Filter (SRSPF), introduced by Brunke and Camp-

bell [11], is a variant of the UKF that propagates

√
P𝑥𝑥 rather than P𝑥𝑥 . The

main advantage of this approach is that it improves numerical stability. First,

√
P𝑥𝑥 has a lower condition number than P𝑥𝑥 [5]. Also, due to numerical errors,

the LMMSE covariance update (1.22) can give a posterior covariance that is not

positive-definite; the SRSPF, on the other hand, avoids this problem.

The SRSPF is based on the following observation. Suppose that, for a random

variable y, we have a set of sample points y(1), . . . , y(𝑁)
with corresponding

weights 𝑤1, . . . , 𝑤𝑁 . We define the centralized sample points as

y(𝑗)
𝑐 = y(𝑗) − ȳ. (1.59)
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We can arrange the centralized sample points in the matrix

Y𝑐 =

[
y(1)
𝑐 · · · y(𝑁)

𝑐

]
(1.60)

and the weights in the diagonal matrix

W = diag(𝑤1, . . . , 𝑤𝑁 ). (1.61)

Then, the covariance of y can be expressed as

P𝑦𝑦 = Y𝑐WYT

𝑐 . (1.62)

Assuming that all of the weights are positive, this is equivalent to

P𝑦𝑦 = SST, (1.63)

where

S = Y𝑐

√
W. (1.64)

Now, to obtain

√
P𝑦𝑦 , rather than multiplying SST

and then taking its Cholesky

factorization, we can apply the QR factorization directly to ST
. That is, we can

compute the factorization

ST = QR, (1.65)

where R is an upper-triangular matrix, and Q is a matrix with orthonormal

columns. This is equivalent to applying the Gram-Schmidt process to the

columns of ST
. Then, using (1.63) and the fact that QTQ = I, we obtain√

P𝑦𝑦 = RT. (1.66)

In the prediction step of the filter, we can apply this technique with y(𝑗) = x(𝑗)
𝑃

to obtain

√
P𝑥𝑥(𝑘 + 1). As for the update step, we do the same with the LMMSE

errors for sample values of x(𝑘) and z(𝑘); that is, we use

y(𝑗) = x(𝑗) − Kz(𝑗) (1.67)

to obtain the updated

√
P𝑥𝑥(𝑘).
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1.4.4 Gaussian Mixtures

Like the original Kalman filter and the EKF, the UKF parametrizes probability

distributions using only their mean and covariance. This is sufficient for many

applications, particularly where the distributions are roughly Gaussian. In some

cases, however, such as when the distributions are multimodal, the mean and

covariance can be uninformative, or even misleading.

A Gaussian mixture model (GMM) provides a method for handling a very

wide range of probability distributions, including multimodal ones, while taking

advantage of some of the nice features of Gaussian distributions. For a random

variable x, a GMM has a PDF of the form

𝑝𝑥(x) =
𝑀∑
𝑗=1

𝑊𝑗𝑔(x; x̄(𝑗), P(𝑗)
𝑥𝑥), (1.68)

where 𝑔(x;𝝁,𝚺) denotes a Gaussian PDF with mean 𝝁 and covariance 𝚺; the

𝑊𝑗 are positive weights that sum to unity; and x̄(𝑗) and P(𝑗)
𝑥𝑥 are the means and

covariances, respectively, of the mixture components.

An extension of the UKF using Gaussian mixtures, called the Sigma Point

Gaussian Sum Filter (SPGSF), was developed by Šimandl and Duník [67]. For the

prediction step, this filter simply performs the UKF prediction step individually

for each component of the mixture, with mean x̄(𝑗) and covariance P(𝑗)
𝑥𝑥 , and the

weights 𝑊𝑗 are unchanged. Similarly, for the update step, the SPGSF performs

the UKF update step for the mean and covariance of each mixture component.

However, in order to remain consistent with Bayes’ rule, the updated weights

are given by

𝑊+
𝑗 =

𝑊𝑗𝜁 𝑗∑𝑀
𝑙=1
𝑊𝑙𝜁𝑙

, (1.69)
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where

𝜁 𝑗 = 𝑔(z; z̄(𝑗), P(𝑗)
𝑧𝑧 ), (1.70)

in which z̄(𝑗) and P(𝑗)
𝑧𝑧 are the measurement mean and covariance obtained from

x̄(𝑗) and P(𝑗)
𝑥𝑥 using the unscented transform. Thus, we can handle very compli-

cated state distributions using the UKF as a building block. This approach can

also be applied to variants of the UKF; in particular, Šimandl and Duník apply

it to the SRSPF [67].

The main disadvantage of this method, particularly for real-time estimation,

is the computational cost, which increases linearly with the number of mixture

components. Nevertheless, the SPGSF prediction and update procedures lend

themselves well to parallelization.

1.4.5 Credible Intervals

The outputs of the UKF are the mean x̄ and covariance P𝑥𝑥 of the system state

x. While these contain a great deal of information about the distribution of

x, in some cases it may be difficult to interpret the results, particularly if the

components of x cannot be easily visualized. In this section, we describe methods

for summarizing the output of the UKF using Bayesian credbile intervals (not to

be confused with frequentist confidence intervals) for non-angular and angular

functions of x.

To obtain credible intervals that only depend on the moments of the variables,

without making any further assumptions about the forms of the probability

distributions, we apply the Chebyshev and Markov inequalities. For a random

variable 𝑋 with mean 𝑋̄ and standard deviation 𝜎𝑋 , the Chebyshev inequality
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states that

Pr[|𝑋 − 𝑋̄ | ≥ 𝜀] ≤
𝜎2

𝑋

𝜀2

(1.71)

for any 𝜀 > 0. The closely related Markov inequality states that, if 𝑋 > 0, then

Pr[𝑋 ≥ 𝜀] ≤ 𝑋̄

𝜀
. (1.72)

These two inequalities hold regardless of the distribution of 𝑋 [5].

Non-Angular Variables

Let 𝑦 be a function of x. With the unscented transform, we can approximate this

variable’s mean

𝑦̄ =

𝑁∑
𝑗=1

𝑤 𝑗𝑦(x(𝑗)) (1.73)

and standard deviation

𝜎𝑦 =

√√√ 𝑁∑
𝑗=1

𝑤 𝑗(𝑦(x(𝑗)) − 𝑦̄)2. (1.74)

Then, by applying the Chebyshev inequality (1.71), we obtain the credible inter-

val

𝒞𝑦 =
[
𝑦̄ −

𝜎𝑦√
𝛼
, 𝑦̄ +

𝜎𝑦√
𝛼

]
. (1.75)

with probability 1 − 𝛼.

Angular Variables

For an angular variable, the conventional mean and standard deviation do not

provide a good characterization of its distribution, since the variable “wraps

around” at 0, 2𝜋, etc. Therefore, we must take a different approach to computing
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credible intervals for angular functions of x. Here, we present a novel formula

for angular credible intervals, combining directional statistics with the Markov

inequality.

Let 𝜃 be an angular function of x. We can approximate the expected values

of cos𝜃 and sin𝜃, denoted by 𝑐 and 𝑠, using the unscented transform:

𝑐 =

𝑁∑
𝑗=1

𝑤 𝑗 cos𝜃(x(𝑗)), (1.76)

𝑠 =

𝑁∑
𝑗=1

𝑤 𝑗 sin𝜃(x(𝑗)). (1.77)

From these values, we can obtain the mean direction 𝜃̄ and and mean resultant

length 𝑅̄ of 𝜃, which are defined as [20]

𝜃̄ = atan2(𝑠, 𝑐), (1.78)

𝑅̄ =
√
𝑐2 + 𝑠2. (1.79)

Now, we want to find a credible interval for 𝜃 about 𝜃̄. We define

𝛽 =
1

2

(𝜃 − 𝜃̄), (1.80)

and using trigonometric identities, we obtain

sin
2 𝛽 =

1

2

(1 − cos𝜃 cos 𝜃̄ − sin𝜃 sin 𝜃̄). (1.81)

Taking the expected value of this expression gives

E[sin
2 𝛽] = 1

2

(1 − 𝑐 cos 𝜃̄ − 𝑠 sin 𝜃̄), (1.82)

and substituting (1.78–1.79), we have

E[sin
2 𝛽] = 1

2

(1 − 𝑅̄). (1.83)
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Then, we can apply the Markov inequality (1.72) to obtain

Pr[sin
2 𝛽 ≥ 𝜀] ≤ 1 − 𝑅̄

2𝜀
(1.84)

for any 𝜀 > 0, and it follows that

Pr

[
sin

2 𝛽 ≥ 1 − 𝑅̄
2𝛼

]
≤ 𝛼 (1.85)

for any 0 < 𝛼 < 1. From this, we can obtain a credible interval for 𝜃

𝒞𝜃 =

[
𝜃̄ − 2 arcsin

√
1 − 𝑅̄

2𝛼
, 𝜃̄ + 2 arcsin

√
1 − 𝑅̄

2𝛼

]
(1.86)

with probability 1 − 𝛼. Note that, if 1 − 𝑅̄ > 2𝛼, the inverse sines cannot be

evaluated, and 𝒞𝜃 covers the entire circle. This means that there is a high

probability that the actual value of 𝜃 is far from 𝜃̄.

1.5 Conclusion

In this chapter, we presented the theory of Bayesian estimation leading up to

the unscented Kalman filter and some of its extensions. In addition, we derived

a new formula (1.86) for credible intervals for angular variables based on the

Markov inequality. We use this theory in the development and application of

estimation methods throughout the rest of this thesis.
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CHAPTER 2

THE HIGHER-ORDER UNSCENTED ESTIMATOR

2.1 Introduction

In recent years, a wide range of filters based on the unscented Kalman filter

(UKF) have been developed. Some have targeted specific applications, such

as the UnScented QUaternion Estimator (USQUE) proposed by Crassidis and

Markley for quaternion-based attitude estimation [15]. Others have sought to

generalize the UKF, particularly by adding estimates of higher moments and

higher-order approximations in order to better characterize the state distribution.

One straightforward generalization of the UKF is the higher order unscented

filter (HOUF) developed by Tenne and Singh [75]. In HOUF, the sigma points

and weights are chosen to match the moments up to a given order; specifically,

the points and weights are the solution to a system of polynomial equations with

the moments, which is typically obtained using an analytical solver.

The unscented transform is closely related to multivariate quadrature—

or cubature—rules, which approximate multivariate integrals using weighted

sums. A cubature rule in R𝑛 is called a product rule if it is an 𝑛-fold ten-

sor product of univariate quadrature rules. For filtering purposes, 𝑛 is the

dimension of the augmented state, i.e., the system state combined with mea-

surement or process noise. Such cubature rules are simple to design but also

suffer from the “curse of dimensionality” [74]. Several filtering methods have

been developed using both product and non-product cubature rules. Ito and

Xong [30] use product rules based on Gauss-Hermite quadratures in a filter for

multivariate Gaussian distributions; this filter is further generalized to Gaus-
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sian mixtures. Furthermore, Gauss-Laguerre quadrature rules, combined with

spherical cubature rules, form the basis for the third-order cubature Kalman

filter (CKF) proposed by Arasaratnam and Haykin [4] and the higher-degree

CKF by Jia, Xin, and Cheng [32]. Another method, intended for cases where

the noise is not linearly correlated with the state, is proposed by Grothe [26].

This method uses sets of points called generators, which are used for computing

non-product cubature rules (e.g., [37]). With this, Grothe shows that the original

sigma points are a special case of a generator and derives explicit formulas for a

fifth-order unscented transform with 2𝑛2 + 1 points and weights. A more recent

filtering method using non-product cubature rules is based on the conjugate

unscented transform (CUT), developed by Adurthi, Singla, and Singh [2, 3]. In

this method, the sigma points are generated using scaled conjugate axes; the

scales and weights for the points are chosen to match fourth, sixth, or eighth

order moments for Gaussian or uniform distributions. The number of sigma

points in CUT is 𝑂(2𝑛).

While many filtering methods focus on increasing the accuracy of the state

estimates, others aim to keep the computational cost of the filters low. The

latter consideration is especially important in real-time applications, embedded

systems, or wherever computation time and resources are limited. To this end,

Julier and Uhlmann propose a reduced UKF with only 𝑛 + 2 sigma points based

on a simplex and chosen to match the mean and covariance and minimize

the skewness [33]. An extension of this method with 2𝑛 + 3 points, which

matches moments up to the fifth order and minimizes the error for the sixth-

order moments, is proposed by Lévesque [45].

It is interesting to note that none of the aforementioned filters explicitly
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propagate higher-order moments, such as the skewness and kurtosis, of the

state distribution. Rather, the higher moments of the standardized state—i.e.,

the state transformed so that its mean is zero and its covariance is the identity

matrix—are taken to be known a priori. This is usually done by assuming

a particular form for the state distribution, e.g., Gaussian or uniform. Such

assumptions, however, are not always accurate. For example, for the problem

of cross-calibration in constellations of imaging satellites, Shapiro [66] showed

that measurements extracted from images exhibit highly non-Gaussian noise.

A filtering method that directly accounts for non-Gaussian and non-uniform

distributions was proposed by Ponomareva, Date, and Wang [57]. This method

retains the general structure of the UKF, with 2𝑛+1 sigma points, but the points

and their corresponding weights are scaled using two factors that take into

account third and fourth order moments. Specifically, the factors are chosen so

that the averages of the third and fourth order marginal moments of the state

components are preserved in the unscented transform. This method is simpler

and more computationally efficient than several other higher-order filters in that

it requires 𝑂(𝑛) sigma points and does not require solving large systems of

polynomials using an analytical solver. Further results on this method can be

found in [56].

Drawing on the method of Ponomareva et al., we propose a new extension of

the unscented Kalman filter with 2𝑛 + 1 sigma points that propagates the state

skewness and kurtosis in 𝑛 directions, in addition to the mean and covariance.

In this filter’s variant of the unscented transform, the sigma points and their

weights are asymmetrically scaled to match all of the propagated moments. We

are able to obtain simple, explicit formulas for the sigma points and weights,
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making their computation efficient and robust. This work was presented in [71].

We call this filter the Higher-Order UnScented Estimator (HOUSE).

In Section 2.2, we derive the formulas for the sigma points and their weights

and describe constraints under which they are applicable. Finally, in Section

2.3 we demonstrate the use of HOUSE on three dynamical systems—an aircraft

coordinated turn model, a rotating rigid body, and a projectile with drag—and

compare its performance to that of a conventional UKF implementation as well

as the CUT filters under various conditions.

2.2 Methodology

A straightforward generalization of the original unscented transform (1.41–1.42)

was developed by Ponomareva, Date, and Wang [57], with sigma points

x(𝑗) =


x̄ + 𝛼c(𝑗), 1 ≤ 𝑗 ≤ 𝑛

x̄ − 𝛽c(𝑗−𝑛) 𝑛 + 1 ≤ 𝑗 ≤ 2𝑛

x̄ 𝑗 = 2𝑛 + 1

(2.1)

and weights

𝑤 𝑗 =



1

𝛼(𝛼+𝛽)𝑛 , 1 ≤ 𝑗 ≤ 𝑛

1

𝛽(𝛼+𝛽)𝑛 , 𝑛 + 1 ≤ 𝑗 ≤ 2𝑛

1 −∑
2𝑛
𝑖=1
𝑤𝑖 , 𝑗 = 2𝑛 + 1

(2.2)

where 𝛼 and 𝛽 are coefficients chosen to preserve the marginal third and fourth

order moments averaged over the components of x. We propose a further gen-

eralization of this method, with separate coefficients 𝛼𝑖 and 𝛽𝑖 for each column
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of

√
P𝑥𝑥 . Then, the sigma points are given by

x(𝑗) =


x̄ + 𝛼 𝑗c(𝑗), 1 ≤ 𝑗 ≤ 𝑛

x̄ − 𝛽 𝑗−𝑛c(𝑗−𝑛) 𝑛 + 1 ≤ 𝑗 ≤ 2𝑛

x̄ 𝑗 = 2𝑛 + 1

(2.3)

and the corresponding cubature rule is∫
Ω

𝜙(x)𝑝(x)dx = 𝑤2𝑛+1𝜙(x̄) +
𝑛∑
𝑗=1

(𝑤 𝑗𝜙(x̄ + 𝛼 𝑗c(𝑗)) + 𝑤𝑛+𝑗𝜙(x̄ − 𝛽 𝑗c(𝑗))) (2.4)

In this section, we will derive expressions for the coefficients 𝛼𝑖 and 𝛽𝑖 for

𝑖 = 1, . . . , 𝑛 along with the weights 𝑤 𝑗 for 𝑗 = 1, . . . , 2𝑛 + 1 such that this

unscented transform preserves the marginal skewness and kurtosis for each

component of x̃ = (
√

P𝑥𝑥)−1(x − x̄). Using these results, we will describe a new

generalization of the unscented Kalman filter, which we call the Higher-Order

UnScented Estimator (HOUSE). Furthermore, we will derive conditions under

which HOUSE can reliably be applied.

2.2.1 Standardization

For any x, we can define a random variable

x̃ = (
√

P𝑥𝑥)−1(x − x̄) (2.5)

with domain Ω̃. Then, x̃ has a mean of zero and covariance I, the 𝑛 × 𝑛 identity

matrix. Using a change of variables, we have∫
Ω

𝜙(x)𝑝(x)dx =

∫
Ω̃

𝜙
(
(
√

P𝑥𝑥)x̃ + x̄
)
𝑝̃(x̃)dx̃ (2.6)
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where 𝑝̃ is the probability density of 𝑥̃. The corresponding cubature points for

x̃ are

x̃(𝑗) =


𝛼 𝑗e(𝑗), 1 ≤ 𝑗 ≤ 𝑛

−𝛽 𝑗−𝑛e(𝑗−𝑛) 𝑛 + 1 ≤ 𝑗 ≤ 2𝑛

0 𝑗 = 2𝑛 + 1

(2.7)

where the e(𝑗) are the standard basis vectors, and the cubature rule is∫
Ω̃

𝜓(x̃)𝑝̃(x̃)dx̃ = 𝑤2𝑛+1𝜓(0) +
𝑛∑
𝑗=1

(𝑤 𝑗𝜓(𝛼 𝑗e(𝑗)) + 𝑤𝑛+𝑗𝜓(−𝛽 𝑗e(𝑗))) (2.8)

For 𝜙 : Ω → R, we define

𝜙̃(x̃) = 𝜙
(
(
√

P𝑥𝑥)x̃ + x̄
)

(2.9)

The cubature rule (2.4) for 𝜙 holds if and only if (2.8) holds for 𝜙̃. This can be

shown by supposing that the cubature rule (2.8) holds for 𝜙̃. Then∫
Ω

𝜙(x)𝑝(x)dx =

∫
Ω̃

𝜙
(
(
√

P𝑥𝑥)x̃ + x̄
)
𝑝̃(x̃)dx̃ =

∫
Ω̃

𝜙̃(x̃)𝑝̃(x̃)dx̃

= 𝑤2𝑛+1𝜙̃(0) +
𝑛∑
𝑗=1

(𝑤 𝑗 𝜙̃(𝛼 𝑗e(𝑗)) + 𝑤𝑛+𝑗 𝜙̃(−𝛽 𝑗e(𝑗)))

= 𝑤2𝑛+1𝜙(x̄) +
𝑛∑
𝑗=1

(𝑤 𝑗𝜙(x̄ + 𝛼 𝑗c(𝑗)) + 𝑤𝑛+𝑗𝜙(x̄ − 𝛽 𝑗c(𝑗)))

(2.10)

using

√
P𝑥𝑥e(𝑗) = c(𝑗). Conversely, if (2.4) holds for 𝜙, we have∫

Ω̃

𝜙̃(x̃)𝑝̃(x̃)dx̃ =

∫
Ω̃

𝜙
(
(
√

P𝑥𝑥)x̃ + x̄
)
𝑝̃(x̃)dx̃ =

∫
Ω

𝜙(x)𝑝(x)dx

= 𝑤2𝑛+1𝜙(x̄) +
𝑛∑
𝑗=1

(𝑤 𝑗𝜙(x̄ + 𝛼 𝑗c(𝑗)) + 𝑤𝑛+𝑗𝜙(x̄ − 𝛽 𝑗c(𝑗)))

= 𝑤2𝑛+1𝜙̃(0) +
𝑛∑
𝑗=1

(𝑤 𝑗 𝜙̃(𝛼 𝑗e(𝑗)) + 𝑤𝑛+𝑗 𝜙̃(−𝛽 𝑗e(𝑗)))

(2.11)

demonstrating the bi-directionality of the realtionship between the two cubature

rules. Therefore, our problem reduces to finding the coefficients 𝛼 𝑗 , 𝛽 𝑗 and the

weights 𝑤 𝑗 for a random, zero-mean vector with covariance I.
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2.2.2 Determination of Coefficients and Weights

Suppose that we want the cubature rule (2.8) to hold exactly for 𝜓(x̃) = 1 and

𝜓(x̃) = 𝑥𝑘
𝑖

with 𝑖 = 1, . . . , 𝑛 and 𝑘 = 1, 2, 3, 4. If x̃𝑖 has skewness 𝛾𝑖 and kurtosis

𝜅𝑖 , then we have the system of equations

2𝑛+1∑
𝑗=1

𝑤 𝑗 = 1 (2.12)

and

𝑤𝑖𝛼𝑖 − 𝑤𝑛+𝑖𝛽𝑖 = 0 (2.13)

𝑤𝑖𝛼
2

𝑖 + 𝑤𝑛+𝑖𝛽
2

𝑖 = 1 (2.14)

𝑤𝑖𝛼
3

𝑖 − 𝑤𝑛+𝑖𝛽
3

𝑖 = 𝛾𝑖 (2.15)

𝑤𝑖𝛼
4

𝑖 + 𝑤𝑛+𝑖𝛽
4

𝑖 = 𝜅𝑖 (2.16)

in unknowns 𝛼𝑖 , 𝛽𝑖 , 𝑤𝑖 , 𝑤𝑛+𝑖 , and 𝑤2𝑛+1 for 𝑖 = 1, . . . , 𝑛. This system can be

solved as follows. First, from (2.13), we have

𝑤𝑛+𝑖 =
𝛼𝑖
𝛽𝑖
𝑤𝑖 (2.17)

Substituting this into (2.14) gives

𝑤𝑖 =
1

𝛼2

𝑖
+ 𝛼𝑖𝛽𝑖

(2.18)

and applying (2.17) gives

𝑤𝑛+𝑖 =
1

𝛽2

𝑖
+ 𝛼𝑖𝛽𝑖

(2.19)

If we substitute these two results into the higher-moment equations (2.15) and

(2.16), we have

𝛼3

𝑖

𝛼2

𝑖
+ 𝛼𝑖𝛽𝑖

−
𝛽3

𝑖

𝛽2

𝑖
+ 𝛼𝑖𝛽𝑖

= 𝛾𝑖 (2.20)

and

𝛼4

𝑖

𝛼2

𝑖
+ 𝛼𝑖𝛽𝑖

+
𝛽4

𝑖

𝛽2

𝑖
+ 𝛼𝑖𝛽𝑖

= 𝜅𝑖 (2.21)
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which simplify to

𝛼𝑖 − 𝛽𝑖 = 𝛾𝑖 (2.22)

and

𝛼2

𝑖 − 𝛼𝑖𝛽𝑖 − 𝛽2

𝑖 = 𝜅𝑖 (2.23)

respectively. Combining the last two expressions yields the second order poly-

nomial

𝛼2

𝑖 − 𝛾𝑖𝛼𝑖 + 𝛾2

𝑖 − 𝜅𝑖 = 0 (2.24)

which has the solution

𝛼𝑖 =
𝛾𝑖 ±

√
4𝜅𝑖 − 3𝛾2

𝑖

2

(2.25)

Since the skewness and kurtosis always satisfy the inequality

𝜅𝑖 ≥ 𝛾2

𝑖 + 1 (2.26)

we have

4𝜅𝑖 − 3𝛾2

𝑖 ≥ 𝛾2

𝑖 + 4 (2.27)

which guarantees that there is a real, positive solution for 𝛼𝑖 , namely

𝛼𝑖 =
𝛾𝑖 +

√
4𝜅𝑖 − 3𝛾2

𝑖

2

(2.28)

Then, using (2.22), we have

𝛽𝑖 =
−𝛾𝑖 +

√
4𝜅𝑖 − 3𝛾2

𝑖

2

(2.29)

which is also real and positive. Furthermore, we can evaluate 𝑤1, . . . , 𝑤2𝑛 using

(2.18) and (2.19), and we find that these weights are positive as well. Finally,

from (2.12), we have

𝑤2𝑛+1 = 1 −
2𝑛∑
𝑗=1

𝑤 𝑗 (2.30)
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2.2.3 Tuning the Sigma Points and Weights

From (2.18) and (2.19), we have

𝑤𝑖 + 𝑤𝑛+𝑖 =
1

𝛼𝑖𝛽𝑖
(2.31)

and substituting this into (2.30) gives

𝑤2𝑛+1 = 1 −
𝑛∑
𝑖=1

1

𝛼𝑖𝛽𝑖
(2.32)

Furthermore, substituting (2.28) and (2.29) gives

𝑤2𝑛+1 = 1 −
𝑛∑
𝑖=1

1

𝜅𝑖 − 𝛾2

𝑖

(2.33)

which holds regardless of the sign chosen in the solution for 𝛼𝑖 . From the

inequality (2.26), we have

0 <
1

𝜅𝑖 − 𝛾2

𝑖

≤ 1 (2.34)

However, this does not guarantee that 𝑤2𝑛+1 will be positive, especially if 𝑛 is

large and the 𝜅𝑖 and 𝛾𝑖 are small. In some cases, the fact that 𝑤2𝑛+1 can be

negative can be problematic. For example, approximating the covariance of a

random variable y = g(x) by

P𝑦𝑦 =
2𝑛+1∑
𝑗=1

𝑤 𝑗(y(𝑗) − ȳ)(y(𝑗) − ȳ)T (2.35)

could give a covariance matrix estimate that is not positive-definite. On the other

hand, if all of the weights are non-negative, then the approximated covariance

matrix must be at least positive-semidefinite.

One way to ensure that 𝑤2𝑛+1 stay non-negative is to increase the smaller

values of kurtosis, so that 𝜅𝑖 − 𝛾2

𝑖
is at least 𝜅min in each direction

𝜅′
𝑖 =


𝜅min + 𝛾2

𝑖
, 𝜅𝑖 − 𝛾2

𝑖
≤ 𝜅min

𝜅𝑖 , otherwise

(2.36)
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We choose 𝜅min to be the value of kurtosis that gives 𝑤2𝑛+1 = 𝛿 for a symmetric

distribution (𝛿 = 0 in the minimal case); that is

𝜅min =
𝑛

1 − 𝛿
(2.37)

The trade-off of this approach, of course, is that the higher moments are some-

what distorted. Specifically, since the kurtosis increases, the modified distribu-

tion has heavier tails and is more non-Gaussian.

2.2.4 Mixed Moments

Let 𝑄 be the cubature operator from (2.8)

𝑄[𝜓] = 𝑤2𝑛+1𝜓(0) +
𝑛∑
𝑗=1

(𝑤 𝑗𝜓(𝛼 𝑗e(𝑗)) + 𝑤𝑛+𝑗𝜓(−𝛽 𝑗e(𝑗))) (2.38)

If

𝜓(x̃) =
𝑛∏
𝑖=1

𝑥̃
𝑘𝑖
𝑖

(2.39)

where two or more of the 𝑘𝑖 are nonzero, then 𝑄[𝜓] = 0. Therefore, using the

coefficients and weights found in Section 2.2.2, the cubature rule (2.8) is exact

for 𝜓(x̃) = 𝑥̃𝑖 𝑥̃ 𝑗 , since the components of x̃ are uncorrelated. Effectively, when

computing 𝑄[𝜓] for an arbitrary function 𝜓, the cubature “drops” the third and

fourth order mixed terms in the Taylor expansion of 𝜓. We do not expect that

this significantly impacts the accuracy of the filter.

In the special case where the components of 𝑥̃ are not only uncorrelated,

but independent, the quadrature rule is also exact for all third and fourth order

monomials except those of the form 𝑥̃2

𝑖
𝑥̃2

𝑗
. This assumption of independence is

reasonable if the system state is described using a minimal set of coordinates.
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2.2.5 Constraints

The main limitation of the HOUSE filter, particularly if the correction (2.36) is

applied, is that the sigma points could grow without bound for large values of

kurtosis. One way to ensure that this does not occur is to impose the constraint

∥x(𝑖) − x̄∥ < 𝑅 (2.40)

for some radius 𝑅. Using (2.3), we see that this constraint is equivalent to

max

𝑖∈{1,...,𝑛}

(
∥c(𝑖)∥ max(𝛼𝑖 , 𝛽𝑖)

)
< 𝑅 (2.41)

Furthermore, from (2.28) and (2.29), we have

max(𝛼𝑖 , 𝛽𝑖) =
|𝛾𝑖 | +

√
4𝜅𝑖 − 3𝛾2

𝑖

2

(2.42)

so the constraint (2.40) can be expressed as

max

𝑖∈{1,...,𝑛}

©­­«
|𝛾𝑖 | +

√
4𝜅𝑖 − 3𝛾2

𝑖

2

∥c(𝑖)∥
ª®®¬ < 𝑅 (2.43)

The other constraint on the moments comes from (2.33): if all weights are to be

non-negative, then the skewness and kurtosis values must satisfy

𝑛∑
𝑖=1

1

𝜅𝑖 − 𝛾2

𝑖

≤ 1 (2.44)

To obtain simpler inequalities, we assume that x has a radially symmetric

distribution about x̄. This is effectively assuming that we have the same uncer-

tainty in each component of x; while this is clearly not the case in the filter, we

believe that this is reasonable for an order-of-magnitude analysis of the filter’s

tractability. Then, we have 𝜅𝑖 = 𝜅, 𝛾𝑖 = 0, and ∥c(𝑖)∥ = 𝜎 for 𝑖 = 1, . . . , 2𝑛 + 1; in

that case, the inequality (2.43) reduces to

𝜎
√
𝜅 < 𝑅 (2.45)
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and (2.44) reduces to

𝑛

𝜅
≤ 1 (2.46)

These two simple inequalities provide an approximate range for 𝜅 where the

filter can operate

𝑛 ≤ 𝜅 <
𝑅2

𝜎2

(2.47)

We expect that the filter will perform better if the range for 𝜅 is wider; this is

satisfied when

𝑛𝜎2 ≪ 𝑅2

(2.48)

Furthermore, because of this inequality, we expect that this filter is better suited

for lower-dimensional systems.

2.2.6 Computational Complexity

The computational complexity of HOUSE is only slightly greater than that of the

conventional UKF. In both filters, the most expensive part of the computation

tends to be the evaluation of the nonlinear state and measurement functions,

and in both filters these are evaluated 2𝑛 + 1 times. The added complexity

of HOUSE is due to the evaluation of the sigma point coefficients and weights,

which requires𝑂(𝑛)operations, and the estimation of the skewness and kurtosis,

which requires 𝑂(𝑛2) operations. However, these computations are very simple

and involve no transcendental functions. The increased memory requirement

for HOUSE due to the stored skewness and kurtosis is also 𝑂(𝑛).
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2.2.7 Procedures

Here, we summarize the HOUSE prediction and correction procedures. These

are illustrated in Figures 2.1 and 2.2. A C++ implementation of these procedures

can be found in [72].

Prediction

1. For the augmented state

yP(𝑘) =

x(𝑘)

w(𝑘)

 (2.49)

generate the modified sigma points

y(𝑗)
P
(𝑘) =


x(𝑗)(𝑘)

w(𝑗)(𝑘)

 (2.50)

and weights 𝑤 𝑗 , as described in Section 2.2.2.

2. Propagate the state for each sigma point:

x(𝑗)(𝑘 + 1|𝑘) = f(x(𝑗)(𝑘),w(𝑗)(𝑘), 𝑘) (2.51)

3. Compute the predicted mean and covariance:

x̄(𝑘 + 1|𝑘) =
𝑁∑
𝑗=1

𝑤 𝑗x(𝑗)(𝑘 + 1|𝑘) (2.52)

𝜼(𝑗)(𝑘 + 1|𝑘) =x(𝑗)(𝑘 + 1|𝑘) − x̄(𝑘 + 1|𝑘) (2.53)

P𝑥𝑥(𝑘 + 1|𝑘) =
𝑁∑
𝑗=1

𝑤 𝑗𝜼
(𝑗)(𝑘 + 1|𝑘)𝜼(𝑗)(𝑘 + 1|𝑘)T (2.54)

4. Compute the standardized states at the sigma points:

x̃(𝑗)(𝑘 + 1|𝑘) =
( √

P𝑥𝑥(𝑘 + 1|𝑘)
)−1

𝜼(𝑗)(𝑘 + 1|𝑘) (2.55)
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Covariance

P𝑤𝑤(𝑘)

Coefficients 𝛼𝑖 , 𝛽𝑖
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Figure 2.1: Diagram of HOUSE prediction.

37



Measurement

Noise

Skewness

& Kurtosis

State

Skewness

& Kurtosis

State

Mean &

Covariance

x̄(𝑘 |𝑘 − 1),
P𝑥𝑥(𝑘 |𝑘 − 1)

Measurement

Noise

Covariance

P𝑛𝑛(𝑘)

Coefficients 𝛼𝑖 , 𝛽𝑖
Sigma Points

x(𝑗), n(𝑗)

Weights 𝑤 𝑗

Predicted

Measurements at

Sigma Points z(𝑗)

Updated State

Covariance P𝑥𝑥(𝑘) LMMSE

Updated State

Skewness

& Kurtosis

Updated

State Mean

x̄(𝑘)

True

Measurement

z(𝑘)

Figure 2.2: Diagram of HOUSE update.
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5. Compute the skewness and kurtosis of the standardized state:

𝛾𝑖(𝑘 + 1|𝑘) =
𝑁∑
𝑖=1

𝑤 𝑗 𝑥̃
(𝑗)
𝑖
(𝑘 + 1|𝑘)3 (2.56)

𝜅𝑖(𝑘 + 1|𝑘) =
𝑁∑
𝑖=1

𝑤 𝑗 𝑥̃
(𝑗)
𝑖
(𝑘 + 1|𝑘)4 (2.57)

Correction

Here, z(𝑘) denotes the true measurement.

1. For the augmented state

yC(𝑘) =

x(𝑘)

n(𝑘)

 (2.58)

generate the modified sigma points

y(𝑗)
C
(𝑘) =


x(𝑗)(𝑘)

n(𝑗)(𝑘)

 (2.59)

and weights 𝑤 𝑗 , as described in Section 2.2.2.

2. Compute the measurement for each sigma point:

z(𝑗)(𝑘) = h(x(𝑗)(𝑘),w(𝑗)(𝑘), 𝑘) (2.60)

3. Compute the measurement mean and covariance:

z̄(𝑘) =
𝑁∑
𝑗=1

𝑤 𝑗z(𝑗)(𝑘) (2.61)

P𝑧𝑧(𝑘) =
𝑁∑
𝑗=1

𝑤 𝑗(z(𝑗)(𝑘) − z̄(𝑘))(z(𝑗)(𝑘) − z̄(𝑘))T (2.62)

P𝑥𝑧(𝑘) =
𝑁∑
𝑗=1

𝑤 𝑗(x(𝑗)(𝑘 |𝑘 − 1) − x̄(𝑘 |𝑘 − 1))(z(𝑗)(𝑘) − z̄(𝑘))T (2.63)
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4. Compute the LMMSE-updated mean and covariance for the state:

x̄(𝑘) =x̄(𝑘 |𝑘 − 1) + P𝑥𝑧(𝑘)P𝑧𝑧(𝑘)−1(z(𝑘) − z̄(𝑘)) (2.64)

P𝑥𝑥(𝑘) =P𝑥𝑥(𝑘 |𝑘 − 1) − P𝑥𝑧(𝑘)P𝑧𝑧(𝑘)−1P𝑧𝑥(𝑘)T (2.65)

5. Compute the LMMSE error and standardized state at the sigma points:

𝝐(𝑗)(𝑘) =x(𝑗)(𝑘) − x̄(𝑘 |𝑘 − 1) − P𝑥𝑧(𝑘)P𝑧𝑧(𝑘)−1(z(𝑗)(𝑘) − z̄(𝑘)) (2.66)

x̃(𝑗) =
( √

P𝑥𝑥(𝑘)
)−1

𝝐(𝑗)(𝑘) (2.67)

6. Compute the skewness and kurtosis of the standardized state:

𝛾𝑖(𝑘) =
𝑁∑
𝑖=1

𝑤 𝑗 𝑥̃
(𝑗)
𝑖
(𝑘)3 (2.68)

𝜅𝑖(𝑘) =
𝑁∑
𝑖=1

𝑤 𝑗 𝑥̃
(𝑗)
𝑖
(𝑘)4 (2.69)

2.3 Examples of Application

In this section, we demonstrate the use of HOUSE with simulations of three

dynamical systems: an aircraft performing coordinated turns, a rotating rigid

body, and a projectile with drag. In each case, we test the performance of

HOUSE against the conventional UKF and the CUT filters with Gaussian and

non-Gaussian noise. Potential advantages of CUT include guaranteed positive

weights without moment distortion and accounting for higher-order mixed mo-

ments [3].

In the non-Gaussian case, the noise is sampled from a Pearson type IV dis-

tribution, which has a PDF of the form

𝑝(𝑥) = 𝐾

(
1 +

(
𝑥 − 𝜆
𝑎

)
2

)−𝑚
exp

(
−𝜈 arctan

(
𝑥 − 𝜆
𝑎

))
(2.70)
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defined on the entire real line, where 𝑎 > 0,𝑚 > 1/2,𝜆, and 𝜈 are free parameters,

and 𝐾 is a normalizing factor. Given values of the mean, standard deviation,

skewness, and kurtosis, the parameters of the Pearson type IV distribution can

be determined uniquely, provided that [18]

0 <
𝛾2(𝜅 + 3)2

4(4𝜅 − 3𝛾2)(2𝜅 − 3𝛾2 − 6) < 1 (2.71)

Qualitatively, the Pearson type IV distribution has an asymmetric bell shape with

heavy tails. It has been used for modeling various random processes, including

wind shear fluctuations [61], fluctuating pressure on aircraft skin panels [68],

and solar wind intensity [41]. The random noise in our simulations is generated

using the procedures described by McGrath and Irving [50].

We implemented HOUSE, the conventional UKF, and the CUT filters in C++,

using similar program structures to ensure a fair comparison of run times. The

CUT sigma points for standardized Gaussian distributions were pre-computed

using code by Adurthi et al. [1]. We used the Eigen 3 library [27] for matrix oper-

ations and Burkardt’s implementation [12] of the Shampine-Gordon solver [65]

for ordinary differential equations. The complete filtering and simulation code

can be found in [72].

2.3.1 Aircraft Coordinated Turn

This example, representing a simple air traffic tracking scenario, is used by

Adurthi et al. [3] to test the performance of the CUT filters. In this scenario,

an aircraft executes the following maneuvers at a constant speed of 120 m/s:

heads westward for 125 s, turns southward 90
◦

with a turn rate of 1
◦
/s, heads

southward for 125 s, turns westward 90
◦

at −3
◦
/s, and then heads westward for
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125 s.

The aircraft’s motion is described by the coordinated turn (CT) model. The

state vector is x =

[
𝜉 ¤𝜉 𝜂 ¤𝜂 Ω

]
T

, where (𝜉, 𝜂) is the aircraft’s position and Ω

is its turn rate. The state dynamics are modeled in discrete time as

x(𝑘 + 1) =



1
sin(Ω𝑇)

Ω
0 −1−cos(Ω𝑇)

Ω
0

0 cos(Ω𝑇) 0 − sin(Ω𝑇) 0

0
1−cos(Ω𝑇)

Ω
1

sin(Ω𝑇)
Ω

0

0 sin(Ω𝑇) 0 cos(Ω𝑇) 0

0 0 0 0 1


x(𝑘) + w(𝑘) (2.72)

where 𝑇 is the time between steps. The covariance matrix of the noise w is given

by

P𝑤𝑤 = 𝐿1



𝑇3

3

𝑇2

2
0 0 0

𝑇2

2
𝑇 0 0 0

0 0
𝑇3

3

𝑇2

2
0

0 0
𝑇2

2
𝑇 0

0 0 0 0
𝐿2

𝐿1

𝑇


(2.73)

where 𝐿1 and 𝐿2 are constants. A radar takes takes measurements of range

𝑟 =

√
𝜉2 + 𝜂2 + 𝑛𝑟 (2.74)

and bearing

𝜃 = atan2(𝜂, 𝜉) + 𝑛𝜃 , (2.75)

where 𝑛𝑟 and 𝑛𝜃 represent measurement noise.

In the simulations, the process noise constants are 𝐿1 = 0.16 and 𝐿2 = 0.01;

the standard deviations of the process noise 𝑛𝑟 and 𝑛𝜃 are 100 m and 1
◦
,

respectively. The initial (prior) distribution of the state has mean x̄(0) =
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[
25000 m −120 m 10000 m 0 m/s 0.000001 rad/s

]
T

, with standard deviation

1000 m for the position, 10 m/s for the velocity, and 1
◦
/s for the turn rate.

We consider two cases: one in which the measurement noise is Gaussian and

another in which it has a Pearson Type IV distribution with skewness 𝛾 = −1

and kurtosis 𝜅 = 20. In addition, in the Pearson case, the initial state distribution

and process noise are assumed to have kurtosis 𝜅 = 10. For each case, we test

the performance of HOUSE, the UKF (with 𝜅 = 1), CUT-4, CUT-6, and CUT-8

over 100 trials.

Figure 2.3 shows the root-mean-square error (RMSE) for each filter and length

of time between measurements. The RMSE values for the UKF and CUT filters

with Gaussian noise are nearly identical to those in [3]. In the case with Gaussian

noise, the RMSE is of the same order of magnitude for HOUSE and UKF but

lower by an order of magnitude or more for CUT-4, CUT-6, and CUT-8. This is

expected, because the CUT filters are designed specifically to match the higher-

order moments of Gaussian distributions.

For the case with Pearson Type IV noise, Figure 2.3 shows that the RMSE

for HOUSE is lower than for any of the other filters for 𝑇 = 1 s. On the other

hand, for larger values of 𝑇, the estimation error is lower for CUT-4, CUT-6, and

CUT-8. This is due to one of the limitations of HOUSE discussed in Section 2.2.5:

the distance of the sigma points from the mean can rapidly increase with the

standard deviation and kurtosis of the state and noise. In this case, we know

from (2.73) that the standard deviation of the process noise, and therefore the

distance of the sigma points from the mean, increases with 𝑇; this can lead

to unrealistic values for the state components, particularly the turn rate Ω, for

large values of 𝑇. Modeling the process noise with a smaller kurtosis value
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Figure 2.3: Root-mean-square error for aircraft CT example.

could mitigate this problem, but it could also produce negative weights: since

the dimension of the augmented state is 𝑛 = 10, the kurtosis value used here

(𝜅 = 10) is already the smallest value that guarantees non-negative weights,

given by (2.37).

Figures 2.4 and 2.5 show the error distribution for 𝑇 = 1 s and 𝑇 = 5 s,

respectively, for each of the filters. In Figure 2.4, we see that the RMSE for
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Figure 2.4: Distribution of estimation error for coordinated turn example with

sampling time interval 1 s.

Pearson type IV noise is driven by outliers for all of the filters except HOUSE.

This effect is closely related to the kurtosis of the noise distributions and is an

important characteristic of HOUSE, as discussed in the next example. However,

from Figure 2.5, we see how the performance of HOUSE degrades for a larger

value of 𝑇; in that case, HOUSE produces even more outliers than the other

filters.
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Figure 2.5: Distribution of estimation error for coordinated turn example with

sampling time interval 5 s.
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2.3.2 Projectile

The projectile’s state consists of the position (𝑥, 𝑦, 𝑧) and velocity ( ¤𝑥, ¤𝑦, ¤𝑧), and

its equations of motion are

¥𝑥 = −𝑏𝑣 ¤𝑥 + 𝑓𝑥 (2.76)

¥𝑦 = −𝑏𝑣 ¤𝑦 + 𝑓𝑦 (2.77)

¥𝑧 = −𝑏𝑣 ¤𝑧 + 𝑓𝑧 − 𝑔 (2.78)

where 𝑏 is a constant, ( 𝑓𝑥 , 𝑓𝑦 , 𝑓𝑧) are the specific disturbance forces, 𝑔 is the

acceleration due to gravity (9.80665 m/s
2

), and 𝑣 is the speed

𝑣 =

√
¤𝑥2 + ¤𝑦2 + ¤𝑧2

(2.79)

The constant 𝑏 is given by

𝑏 =
𝐴𝐶𝐷𝜌

2𝑚
(2.80)

where 𝐴 is the projectile’s surface area, 𝐶𝐷 is its drag coefficient, 𝑚 is its mass,

and 𝜌 is the atmospheric density. In this example, we take 𝑏 = 0.001 m
−1

. The

observer is located at the origin and takes measurements of azimuth

𝛼 = atan2(𝑦,−𝑥) + 𝑛𝛼 (2.81)

and elevation

𝜖 = atan2

(
𝑧,

√
𝑥2 + 𝑦2

)
+ 𝑛𝜖 (2.82)

where 𝑛𝛼 and 𝑛𝜖 represent measurement noise.

The disturbance forces are taken to be independent with mean zero and

standard deviation 0.01 m/s
2
. The two components of the measurement noise 𝑛𝛼

and 𝑛𝜖 are assumed to be independent with mean zero and a standard deviation

of one arcminute. The initial (prior) state distribution has mean (1000, 1000, 0) m
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and standard deviation 250 m for the position and mean (500, 0, 500) m/s and

standard deviation 100 m/s for the velocity. All components of the initial state

are assumed to be independent as well. We consider two cases: one in which

the distributions of the initial state, process noise, and measurement noise are

Gaussian, and one in which they are Pearson type IV. In the latter case, all of the

distributions have kurtosis 30; the initial state and process noise have skewness

1, and the measurement noise has skewness −1. The measurements are sampled

at a rate of 5 Hz.

For both the Gaussian case and the Pearson type IV case, we compare HOUSE

to the UKF (with tuning factor 𝜅 = 1), CUT-4, and CUT-6 over 100 trials. (We do

not test CUT-8 in this example, because the augmented state in the prediction

step has dimension 𝑛 = 9, while solutions for CUT-8 sigma points are known for

𝑛 ≤ 6 [3].) In each trial, the projectile’s trajectory is simulated with randomly

generated initial conditions and process noise, with a terminal condition of

𝑧 = 0 (i.e., when the projectile hits the ground). Trajectories lasting less than one

second are rejected. Based on each trajectory, a sequence of azimuth-elevation

measurements is generated with random measurement noise.

Figure 2.6 shows RMSE throughout the projectile’s flight for each of the filters,

averaged over 100 trials. Since the total time-of-flight varies between trials, we

consider the percentage of the total time-of-flight, rather than the actual time. In

the case with Gaussian distributions, the RMSE is nearly equal for HOUSE and

the conventional UKF, but it is an order of magnitude lower for CUT-4 and CUT-

6. Again, this is expected, because of the design of the CUT filters. However, in

the case with Pearson type IV distributions, the RMSE is between one and three

orders of magnitude lower for HOUSE than for the UKF, CUT-4, or CUT-6.
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Figure 2.6: Root-mean-square estimation error for projectile example.

Figure 2.7 shows the overall distribution of the estimation error for each of the

filters for time 𝑡 > 1 s after launch. (We do not consider the first second of flight,

since the high initial errors are not representative of the filters’ performance.)

It is clear that, in the case with Pearson type IV distributions, the RMSE for

the UKF, CUT-4, and CUT-6 is dominated by outliers—those cases in which the

position error is 10 km or greater. Except for these outliers, the error distributions

for the UKF, CUT-4, and CUT-6 are very similar to that of HOUSE. In the case

with Gaussian distributions, on the other hand, there are no such outliers. This

is a direct effect of the kurtosis of the distributions, which is interpreted as

their “propensity to produce outliers” [78]. Specifically, since a Pearson type

IV distribution has a higher kurtois than a Gaussian distribution, we expect to
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Figure 2.7: Distribution of estimation error for projectile example.

see more outliers in the Pearson type IV case. Based on Figures 2.6 and 2.7, it

appears that HOUSE, which directly accounts for the higher kurtosis, is more

robust in the presence of outliers than CUT-4, CUT-6, or the UKF.

Figure 2.8 shows the average run times for each of the filters. While HOUSE

is slightly slower than the UKF, it is an order of magnitude faster than the CUT-4

or CUT-6 filters, since HOUSE requires many fewer sigma points.
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Figure 2.8: Filter run times for projectile example.

2.3.3 Rigid Body

We consider a rigid body with principal moments of inertia about the center of

mass 𝐼1, 𝐼2, 𝐼3 and angular velocity components (𝜔1, 𝜔2, 𝜔3) in the directions of

the principal axes, respectively. The time evolution of the angular velocities is

described by the Euler equations

𝐼1 ¤𝜔1 = (𝐼2 − 𝐼3)𝜔2𝜔3 + 𝜏1 (2.83)

𝐼2 ¤𝜔2 = (𝐼3 − 𝐼1)𝜔3𝜔1 + 𝜏2 (2.84)

𝐼3 ¤𝜔3 = (𝐼1 − 𝐼2)𝜔1𝜔2 + 𝜏3 (2.85)

where 𝜏1, 𝜏2, 𝜏3 are external disturbance torques about the center of mass in

the directions of the principal axes, respectively. We assume that only 𝜔1 is

measured directly.

In our simulations, we consider an asymmetric rigid body with 𝐼1 =

51



900 kg · m
2
, 𝐼2 = 800 kg · m

2
, and 𝐼3 = 700 kg · m

2
. The disturbance torques are

taken to be zero-mean and independent, with standard deviation 0.001 N · m.

The initial angular velocities sampled from a distribution with mean zero and

standard deviation 0.01 rad/s in each direction. The measurement noise has

mean zero and standard deviation 0.001 rad/s, and the measurements are sam-

pled at 10 Hz. As in the previous example, we consider Gaussian and Pearson

Type IV distributions for the initial state, process noise, and measurement noise;

specifically, we consider Pearson distributions with skewness 𝛾 = −1 and kur-

tosis 𝜅 = 30. For both distribution types, we test HOUSE, the UKF (with tuning

factor 𝜅 = 1), CUT-4, CUT-6, and CUT-8 in 100 trials.

The RMSE and error distributions for the filters are shown in Figures 2.9

and 2.10, respectively. Overall, the differences in RMSE between the filters are

small, and the RMSE is of the same order of magnitude for all of the filters.

The filters’ error quartiles are very similar as well. However, in the case with

Pearson Type IV distributions, we observe a similar effect as with the projectile:

HOUSE has fewer and less extreme outliers than the UKF or any of the CUT

filters. Again, this is evidence that HOUSE is better equipped to process outliers

because of its propagation of kurtosis.

Figure 2.11 shows the average runtimes for each of the filters. As in the

projectile example, HOUSE is slightly slower than the UKF but signficantly

faster than CUT-4, CUT-6, and especially CUT-8.
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Figure 2.9: Root-mean-square estimation error for rigid body example.
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Figure 2.11: Filter run times for rigid body example.

2.4 Conclusion

We have proposed a new extension of the unscented Kalman filter with third

and fourth order moment matching and explicit formulas for the sigma points

and weights. Its computational cost is only slightly greater than that of the con-

ventional UKF. We have also described conditions under which the sigma point

formulas are applicable and the filter is operable. In simulations of dynamical

systems, we have found that the new filter is more robust for distributions with

high kurtosis than the conventional UKF or the CUT filters. Specifically, we

have found that HOUSE generates many fewer outliers in the estimation error

in cases where the initial conditions and noise have high kurtosis. Also, we have

found that the run times for HOUSE are significantly shorter than for the CUT

filters and only slightly longer than for the conventional UKF.

In our future work, we plan to further refine the HOUSE method to increase
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its accuracy and range of applicability. In particular, we will investigate modi-

fications to HOUSE that would minimize the distortion of moments and make

the filter’s performance less sensitive to the dimension of the system. Since

these improvements would most likely require increasing the number of sigma

points, and hence the computational complexity, we will also study in detail the

trade-off between the speed and accuracy of higher-moment unscented filters.

Finally, we plan to apply HOUSE to the problem of satellite tracking using

unconventional measurements—such as those obtained from ground imaging

data—coupled with more conventional measurement techniques. Because the

unconventional measurements might have highly non-Gaussian distributions,

we expect that HOUSE would be well suited for this problem. We plan to test

the performance of these new methods in spacecraft navigation and attitude

determination using a realistic simulation of a satellite’s dynamics and sensors.
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CHAPTER 3

AUTONOMOUS CROSS-CALIBRATION FOR IMAGING SATELLITES

Cross-calibration between satellites is crucial to the performance of Earth-

observing constellations. To this end, very rigorous cross-calibration schemes

have been developed and implemented, e.g., for the Dove constellation [44].

However, these techniques rely heavily on communications with the ground sta-

tion and humans-in-the-loop; as a result, they may not be feasible for larger con-

stellations. To mitigate this problem, we propose a method called Autonomous

Cross-Calibration for Imaging Satellites (ACCIS). This method uses measure-

ments obtained from the primary mission images, combined with conventional

position and attitude measurements, to estimate the states of satellites and their

cameras, with key data transmitted between satellites to achieve accurate cross-

calibration. This method was first presented in [69].

In this chapter, we describe in detail the concept of operation for ACCIS and

analyze its performance using a realistic simulation. In ACCIS, each satellite

computes a real-time estimate of its state, which includes its postion, attitude,

and camera parameters. This is done using the square root sigma point filter,

discussed in Section 1.4.3, which is robust and computationally efficient for

a wide range of systems with nonlinear dynamics and measurements. Here,

the filter processes not only conventional position and attitude measurements,

but also measurements obtained from images. Specifically, it uses features, or

key points, extracted from images using the Scale-Invariant Feature Transform

(SIFT) introduced by Lowe [46]. For each key point found in the image, the SIFT

algorithm computes a position, orientation, and scale, as well as a descriptor that

is invariant under translation, rotation, and scaling. This allows us to develop a
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model that maps changes in the imaging satellite’s position, attitude, and camera

parameters to changes in a key point’s position, orientation, and scale.

During a mission, ACCIS would operate as follows. Whenever a satellite takes

an image, it extracts the key points using SIFT. It then transmits the key points,

along with the state estimate and covariance from its filter, to other satellites.

Then, when two or more satellites have imaged approximately the same area,

each of them can use the difference in the key points and the estimated states to

update its own state estimate.

Compared to existing techniques, ACCIS has several features that could

make cross-calibration faster and cheaper for large constellations of imaging

satellites. First, it is fully autonomous, requiring no humans-in-the-loop. Also,

it does not require uplinks nor downlinks, but only crosslinks between satellites,

reducing the communication load for the ground station. Furthermore, the

crosslinks transmit only the state estimates, covariance matrices, and SIFT key

points and descriptors, which is much less expensive than transmitting full

images. In addition, this method uses only the primary mission data, requiring

no dedicated calibration measurements.

We test the performance of ACCIS by simulating a minimal constellation

of two imaging satellites in low Earth orbit. Each of the satellites is equipped

with a GPS receiver, a gyroscope, a star tracker, and a nominally nadir-pointing

camera for imaging. The simulation features a detailed model of the satellites’

rigid-body attitude dynamics and orbital motion, including high-fidelity mod-

els for perturbations such as non-spherical Earth gravity and aerodynamic drag.

We also model the orientation, focus, and distortion parameters of the satel-

lites’ cameras. To emulate the raw data obtained by the satellites, we generate
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synthetic images from Landsat data; the original Landsat images are trimmed,

projected, and distorted based on the satellites’ position, field of view, and cam-

era distortion parameters.

3.1 State Models

In ACCIS, the satellite state is considered to include both its dynamical state and

its camera parameters. In this section, we describe all of the state components,

how they are propagated in time, and how they relate to the imaging operations

of the satellite. The positions and reference frames used in our model are shown

in Figure 3.1.

3.1.1 Satellite Dynamics

We model each satellite as a rigid body in a perturbed Keplerian orbit. Let 𝐺

denote the satellite’s center of mass and𝑂′
the center of the Earth. Furthermore,

let 𝒢 denote the Earth-centered inertial (ECI) frame and ℬ a body-fixed frame.

To simplify calculations, we choose ℬ to be the principal axis frame, though

in theory any other body-fixed frame could be used. The satellite’s dynamical

state consists of the position r𝐺/𝑂′, velocity v𝒢
𝐺/𝑂′, attitude quaternion qℬ/𝒢 , and

angular velocity 𝝎ℬ/𝒢 . The translational dynamics of the satellite are governed

by

¤v𝒢
𝐺/𝑂′ = g + u𝐺 + f𝐺 , (3.1)

where g is the gravitational acceleration, u𝐺 is the specific force due to controls

(e.g., thrusters), and f𝐺 is the sum of all other perturbing specific forces, including
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Figure 3.1: Positions and reference frames used in ACCIS [62]. We model the

motion of the satellite’s center of mass 𝐺 in the Earth-centered inertial (ECI)

frame 𝒢(𝑂′, e1, e2, e3), and for the satellite’s rotational dynamics, we use the

body-fixed frame ℬ(𝐺, b1, b2, b3). The orbital frame 𝒜(𝐺, e𝑡 , e𝑛 , e𝑧) is defined

by the nadir direction e𝑛 , the normal to the orbital plane e𝑧 (which is the orbital

angular momentum direction ĥ), and the tangent vector e𝑡 . As for the camera,

we use the frame 𝒞(𝐶, c1, c2, c3), in which 𝐶 is the camera’s position, and c3 is its

boresight axis. The boresight points to a position 𝑂 on the Earth’s surface, with

geodetic latitude 𝜙 and local sidereal time 𝜃LST. The position of a point 𝑃 near𝑂

can be described by the azimuth, elevation, and range in the topocentric frame

𝒯 (𝑂, Ŝ, Ê, Û). The camera, with focal length 𝑓 , maps 𝑃 to the position 𝑃′
in the

image plane, which is observed at position 𝑃′′
in the image due to distortion.
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atmospheric drag. The rotational dynamics of the satellite are governed by

¤𝝎ℬ
ℬ/𝒢 = I−1

𝐺 (M𝐺 + 𝝉𝐺 − 𝝎ℬ/𝒢 × (I𝐺 · 𝝎ℬ/𝒢)), (3.2)

where I𝐺 is the inertia tensor of the satellite about 𝐺, M𝐺 is the total control

moment due to ADCS actuators, and 𝝉𝐺 is the total disturbance torque. In

the filter, we model f𝐺 and 𝝉𝐺 as random process noise, due to the difficulty

of accurately predicting the atmospheric density, the satellite’s aerodynamics

properties, and other factors.

We define an additional reference frame 𝒜 as the nadir-pointing orbital

frame, which depends on r𝐺/𝑂′ and v𝒢
𝐺/𝑂′. For filtering purposes, we use the

Rodrigues parameter 𝝆ℬ/𝒜 rather than the quaternion qℬ/𝒢 . Thus, we avoid

the “redundancy” of the fourth quaternion component. Also, in normal satellite

operations, 𝝆ℬ/𝒜 is small and never approaches the singularity for Rodrigues

parameters. To maintain an attitude in which the camera frame 𝒞 is close to the

nadir-pointing orbital frame 𝒜, we implement a proportional-derivative (PD)

law for the control torque (see [49]).

For the Earth’s gravitational field, we use a truncated version of the

EGM2008 [53], with the gravitational forces evaluated using the procedures

described by Gottlieb [24]. For transformations between the ECI frame and the

Earth-centered Earth-fixed frame (ECEF), we use the Naval Observatory Vector

Astronomy Subroutines (NOVAS) [36]. When propagating the “ground truth”

state in the simulation, we compute drag forces using the Jacchia-Bowman 2008

(JB2008) atmospheric model [9].
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3.1.2 Camera Model

Let 𝑃 be an arbitrary point in the camera’s field of view. In an ideal pinhole

camera at point 𝐶, this point is projected onto a point 𝑃′
in the image plane, at

the focal distance 𝑢 from the camera origin and opposite of 𝐶. In a real camera,

on the other hand, 𝑃 is projected onto a different point 𝑃′′
due to distortions. For

simplicity, we assume a purely radial distortion model, i.e., that the positions r𝑃′

and r𝑃′′ satisfy

r𝑃′

∥r𝑃′∥ =
r𝑃′′

∥r𝑃′′∥ . (3.3)

Such models are widely used to correct distortions in commercial lenses [23].

Specifically, we use a third-order radial distortion model,

∥r𝑃′′∥ = ∥r𝑃′∥
(
1 − 𝑐1 − 𝑐2 − 𝑐3 + 𝑐1

∥r𝑃′∥
𝑅

+ 𝑐2

∥r𝑃′∥2

𝑅2

+ 𝑐3

∥r𝑃′∥3

𝑅3

)
, (3.4)

where 𝑐1, 𝑐2, and 𝑐3 are the distortion parameters for a particular lens, and 𝑅 is

the radius of a circle circumscribed about the image; that is,

𝑅 =
1

2

√
𝑊2 + 𝐿2, (3.5)

where𝑊 and 𝐿 are the width and length of the image, respectively. This scaling

ensures that the distortion parameters are of the same order of magnitude, which

improves numerical stability in the filter. Furthermore, for filtering purposes,

we combine the distortion parameters into a vector c =

[
𝑐1 𝑐2 𝑐3

]
T

.

In addition to the distortion, we account for imperfect focusing of the camera.

This depends on the focal length 𝑓 of the lens, the pupil diameter 𝐴, the distance

𝑢 from the camera to the object, and the density 𝜌 of pixels per unit length.

The effects of defocusing can be modeled well by a Gaussian blur with standard

deviation [48]

𝜎𝐺 =
𝜎√
2

, (3.6)
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where

𝜎 = 𝜌
𝑓 𝑠

2𝑁

(
1

𝑓
− 1

𝑢
− 1

𝑠

)
(3.7)

and

𝑁 =
𝑓

𝐴
. (3.8)

Finally, we account for the fact that the orientation of the camera frame 𝒞 with

respect to the body frame ℬ is not known exactly. This can be due to structural

tolerances, as well as dynamical or thermal deformation. We parametrize this

attitude by a quaternion q𝒞/ℬ , and in the filter, we use the Rodrigues parameter

𝝆𝒞/ℬ .

All of the camera parameters that are estimated by the filter—namely, c, 𝑓 ,

and q𝒞/ℬ—are assumed to be constant in time. Therefore, in the filter they are

modeled as having unity dynamics with zero process noise. In the future, we

will add a noise term to account for drift in the parameters, particularly for q𝒞/ℬ .

In the simulation, we generate synthetic satellite images based on Landsat

data and our camera model. Specifically, we obtain a sector of a Landsat image

mosaic using the NASA World Wind library [54]. Then, we apply a perspective

transform, based on the satellite’s position, attitude, and camera parameters.

Finally, we apply the radial distortion and defocusing blur. For the image trans-

form, distortion, and blurring, we use the OpenCV library [10].
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3.1.3 Combined State

By combining the dynamical state of the satellite with the camera parameters,

we obtain the overall system state that is estimated by the filter in ACCIS.

x =

[
r𝐺/𝑂′T v𝒢

𝐺/𝑂′
T

𝝎ℬ/𝒢
T 𝝆ℬ/𝒜

T 𝝆𝒞/ℬ
T 𝑓 cT

]
T

. (3.9)

The system state has a total of 19 components. While the rates v𝒢
𝐺/𝑂′ and 𝝎ℬ/𝒢

are not necessary for image calibration (assuming sufficiently short exposure

time), they are needed for state prediction in the filter.

3.2 Measurement Models

The ACCIS framework features two categories of measurements: conventional

measurements of the satellite’s dynamical states and measurements derived

from images.

3.2.1 Conventional Measurements

In our model, the satellite is equipped with a Global Positioning System (GPS)

receiver, which provides measurements of its position and velocity; a gyroscope,

to measure its angular velocity; and a star tracker, to obtain precise attitude

measurements. The GPS and gyroscope measurements are assumed to have

a Gaussian noise distribution. The star tracker measurements are assumed to

have a cross-boresight error and a roll error [49], which we also model using

Gaussian distributions.
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3.2.2 Image-Based Measurements

While straightforward models exist for the conventional measurements, there are

no standard methods for relating image data to the satellite’s dynamical state and

camera parameters. Here, we present a preliminary model for measurements

based on features extracted from images.

The Scale-Invariant Feature Transform (SIFT), proposed by Lowe [46], pro-

vides a robust and efficient method for extracting and matching features from

images. Each feature, or key point, extracted from an image by SIFT includes a

position r𝐾 , orientation angle 𝜃, and scale 𝑆, as well as a gradient-based descrip-

tor that is invariant under translation, rotation, and scaling. Also, the effects

of differences in illumination and perspective are relatively small. Thus, the

descriptors can be matched between images taken from various distances, an-

gles, etc. However, the SIFT descriptors are not fully invariant under affine

transformations. In the simulation, we use the implementation of SIFT from the

OpenCV library [10].

To reduce the chances of “false matches” between key points, we keep only the

key points that are in the overlapping region of the two images on Earth’s surface,

based on the estimates of the satellites’ positions and attitudes. Figure 3.2 shows

an example of two satellite images with matched key points.

To make the SIFT key points more convenient to use in our model, we use an

equivalent representation as two positions, r𝐾′
1

and r𝐾′
2

, given by

r𝐾′
1,2

= r𝐾 ± 1

2

𝑆u, (3.10)
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Figure 3.2: Example of two satellite images with matched SIFT key points.

where u =

[
cos𝜃 sin𝜃

]
T

. Thus, a key point is given by

K =

[
rT

𝐾′
1

rT

𝐾′
2

]T

, (3.11)

and we can directly convert between this and the standard key point represen-

tation. Given the time 𝑡 and the satellite state x, we can geometrically map r𝐾′
𝑖
to

a point on the Earth’s surface and vice versa. For this, we take into account the

position and attitude of the satellite, as well as the attitude, distortion, etc. of the

camera.

Suppose that a descriptor matching algorithm has matched two key points

K1 and K2, from images taken at times 𝑡1 and 𝑡2 by satellites with states x1 and

x2, respectively. We can map K1 to a pair of points on Earth’s surface given 𝑡1

and x1. Then, given 𝑡2 and x2, we can map two ground positions to a “predicted”

key point K̂2. Thus, given estimate distributions of x1 and x2, we can obtain a

distribution of K̂, adding an error term to both K1 and K̂2. Then, we can apply

K2 as the “true” measurement in the filter update step, to obtain a better estimate

of x2.
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To obtain an error estimate for this measurement model, we sampled 1,000

pairs of satellite states and generated corresponding images. We applied SIFT

key point extraction and matching to each pair of images, and we computed the

differences between the true key points and the ones predicted by the measure-

ment model. From these differences, we obtained a covariance matrix, which

we used in the filter.

3.3 Results

We tested the ACCIS methodology using a simulation of two imaging Earth-

imaging satellites. Figure 3.3 shows a flowchart of the entire simulation frame-

work. The spacecraft are in coplanar circular orbits at a nominal altitude of

500 km, with an inclination of 30
◦
. Satellite 2 follows behind Satellite 1, with a

4
◦

difference in phase. Both satellites take one image per minute. We simulated

4000 minutes of flight time, which is approximately 42 orbital periods. The

complete simulation code is available on GitHub [70].

Using conventional measurements, both satellites were able to obtain accu-

rate measurements of their dynamical state, as shown in Figures 3.4 and 3.5.

Also, they are able to accurately maintain a nadir-pointing attitude, as shown in

Figure 3.6.

Figure 3.7 shows the estimation errors for the camera attitude and focal

length. These errors remain nearly constant throughout the simulation. For the

focal length, this was to be expected, since the SIFT-based measurement model

described in Section 3.2.2 does not account for it. As for the camera attitude

error, it starts at the same order of magnitude as the body attitude estimation
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Figure 3.3: Flowchart of the ACCIS simulation framework.
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error, shown in Figure 3.5, and the pointing error, shown in Figure 3.6. Thus, the

estimator cannot determine whether attitude discrepancies detected using the

image-based measurements are due to errors in the body attitude or the camera

attitude. Perhaps if the attitude estimates were made even more accurate, then

the camera attitude could be estimated more accurately as well.

Figure 3.8 shows the estimation errors for the three camera distortion param-

eters. For Satellite 2, the error for 𝑐1 and 𝑐2 drops rapidly early in the simulation

and then remains nearly constant. This shows that the cross-calibration process

using SIFT-based measurements can significantly improve estimates of the dis-

tortion parameters—at least for the lower-order ones. For 𝑐3, on the other hand,

the error increases slightly. As for Satellite 1, the estimation errors remain nearly

constant throughout the simulation, except for very small changes near the be-

ginning. This is because Satellite 1 had fewer opportunities for cross-calibration,

since it was always “ahead” of Satellite 2.

3.4 Conclusion

We have demonstrated the feasibility of fully autonomous, real-time cross-

calibration for Earth-imaging satellites using features extracted from images.

To this end, we have developed a detailed simulation framework for the dynam-

ics, measurements, imaging, and state estimation for a constellation of satellites.

In our future work, we plan to further refine the cross-calibration methodology,

particularly in the emerging area of image-based measurements.
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Figure 3.4: Estimation errors for translational motion.

69



0 500 1000 1500 2000 2500 3000 3500 4000
Time (min)

10 4

10 3

10 2

At
tit

ud
e 

Er
ro

r (
de

g)

Satellite 1
Satellite 2

0 500 1000 1500 2000 2500 3000 3500 4000
Time (min)

10 5

10 4

10 3

10 2

An
gu

la
r V

el
oc

ity
 E

rro
r (

de
g/

s)

Satellite 1
Satellite 2

Figure 3.5: Estimation errors for rotational motion.
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Figure 3.6: Attitude control errors.
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Figure 3.7: Camera attitude and focal length errors. The effects of the cross-

calibration on the estimates of these parameters are negligible.
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Figure 3.8: Camera distortion parameter estimation errors. Early in the simu-

lation, the cross-calibration reduces the error for 𝑐1 and 𝑐2 for Satellite 2 by an

order of magnitude; however, the 𝑐3 error increases slightly. Since Satellite 1 has

fewer cross-calibration opportunities, its errors remain nearly constant.
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CHAPTER 4

UNSCENTED FILTERING FOR DIRECTLY-OBSERVED EXOPLANET

ORBITS

An exoplanet is a planet outside of our solar system. When an exoplanet is

directly observed, we can measure a projection of its position onto the image

plane, as shown in Figure 4.1. Recent developments in imaging instruments,

such as the Gemini Planet Imager (GPI) [47], have enabled increasingly precise

astrometric measurements of directly-imaged exoplanets, with measurement er-

rors within a few milliarcseconds [40, 51, 60, 77]. Still, the problem of fitting

orbits to astrometric data remains challenging, due to the sparsity of the mea-

surements and the highly nonlinear dynamics. Some of the difficulties of the

exoplanet orbit fitting problem are illustrated in Figure 4.2. In this chapter, we

present a new method for exoplanet orbit fitting from direct observations, based

on the unscented Kalman filter and a new set of orbital elements.

4.1 Review of Exoplanet Orbit Fitting Methods

In this section, we briefly review the orbit fitting methods that have been used

for exoplanets. While Monte Carlo methods are the most widely applied, the

popularity of Bayesian rejection sampling methods is increasing. Our method,

on the other hand, is based on nonlinear filtering, which was previously applied

to the exoplanet orbit fitting problem by Savransky and Kasdin [64].
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Figure 4.1: In the direct imaging of exoplanets, we observe the projection of the

exoplanet’s position 𝑃 with respect to the star 𝑆 onto the image plane.

4.1.1 Monte Carlo Methods

The majority of exoplanet fitting techniques in the literature are based on Monte

Carlo methods, which are very versatile, though they tend to be computation-

ally expensive. These include Bayesian Markov chain Monte Carlo (MCMC)

methods, first applied to this problem by Ford [22, 21] and subsequently used by

Rameau et al. [60], and Millar-Blanchaer et al. [51] among others. Others, such

as Chauvin et al. [13], have used least-squares Monte Carlo (LSMC) methods,

which were introduced by Press, Rybicki, and Hewitt. [58]

The following are the basic steps of MCMC for exoplanet orbit fitting based on

the Metropolis-Hastings algorithm, as described in [52]. It works with Keplerian

orbits, using a classical orbit parametrization (see Section 4.2.1).
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Figure 4.2: Orbit fits from direct imaging measurements for 51 Eridani b by De

Rosa et al. using a Markov chain Monte Carlo method [16]. Here, as with most

exoplanets, it is possible to fit a wide range of orbits to the same measurements.

This is because the few measurements that are available have significant uncer-

tainty and cover only a small fraction of the orbital period.

1. The start of the chain: Initial values are chosen for each free parameter.

2. Generating the chain:

(a) For each parameter, a displacement is randomly drawn from the Gaus-

sian centered on the current value of the parameter with fixed stan-

dard deviations.

(b) Based on the ratio between the measurement likelihood of the current

and trial parameters and a random number, the trial parameters are

adopted or rejected.
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4.1.2 Bayesian Rejection Sampling Methods

Another class of methods, such as those used by Konopacky et al. [39], Price-

Whelan et al. [59], are based on rejection sampling. Here, we briefly describe

Orbits for the Impatient, a Bayesian rejection sampling method for orbit fitting

introduced by Blunt et al. in [7]. Like the MCMC method previously discussed,

it works with Keplerian orbits and classical elements.

The basic OFTI algorithm consists of the following steps.

1. Monte Carlo orbit generation from priors: Trial orbits are drawn randomly

from priors, i.e., initial sets of seven random orbital parameters are drawn

from the prior probability distributions.

2. Scale-and-rotate: The trial orbits are adjusted to match the data, by scaling

the semimajor axis and rotating. For each adjusted orbit, the algorithm

solves Kepler’s equation and computes a likelihood.

3. Rejection sampling: Each orbit is either accepted or rejected by comparing

its likelihood to a uniform random number.

This process is repeated until the number of accepted orbits reaches a desired

value. How quickly this happens depends on the acceptance rate, which is

inversely proportional to the number of measurements. That is, if more orbit

measurements are available, a much smaller set of orbits will fit the data and

more sample orbits will be rejected. According to [7], the OFTI algorithm is most

efficient for astrometry covering a short fraction of an orbit, typically less than

15% of the full orbital period. An open-source software library for running the

OFTI algorithm, as well as a Markov chain Monte Carlo algorithm, is presented

in [8].
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4.1.3 Filtering Methods

All of the aforementioned orbit fitting methods are batch estimators; that is,

they process all measurements simultaneously. Another approach is recursive

estimation, or filtering, in which measurements are processed one by one, and

the state estimate is gradually refined [5]. Savransky and Kasdin [64] took the

latter approach, applying the extended Kalman filter to the problem of exoplanet

orbit fitting. Due to the highly nonlinear dynamics and large measurement errors

in this problem, they suggested that using an unscented filter could improve the

orbit estimates. In this work, we follow their lead and develop a methodology

for fitting exoplanet orbits based on direct observations using a higher-order

unscented Kalman filter. This is a continuation of our work presented in [73].

4.2 Orbit Parametrizations and Measurements

This section starts with a review of the relations between the classical orbital

elements, the Thiele-innes parameters, and the astrometric measurements, fol-

lowed by a discussion of the Cohen-Hubbard nonsingular elements. We then

present a new set of orbital elements, combining features of the Thiele-Innes

parameters and the Cohen-Hubbard elements, which we developed specifically

for exoplanet orbit fitting using filters. In addition, we present techniques for

solving Kepler’s equation in terms of the nonsingular elements. Finally, we de-

scribe how measurements of the host star’s mass are related to the exoplanet’s

orbital elements.
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Figure 4.3: Orbital elements for binary stars, illustrated by Heintz [29]. The

same definitions of the orbital elements are used for exoplanets. (This diagram

denotes the inclination by 𝑖; in the rest of this work, we denote it by 𝐼, to avoid

confusion with the imaginary unit.)

4.2.1 Classical Orbital Elements and the Measurement Model

Traditionally, Keplerian orbits are parametrized by the semi-major axis 𝑎, eccen-

tricity 𝑒, inclination 𝐼, longitude of the ascending node Ω, argument of periapsis

𝜔, mean anomaly at epoch 𝑀0, and period 𝑃. The definitions of 𝐼, Ω, and 𝜔

used for exoplanet orbits are shown in Figure 4.3.

We measure the projected position of the exoplanet with respect to its host

star in terms of the declination difference 𝑥 and right ascension difference 𝑦,

or alternatively, the angular separation 𝜌 and the position angle 𝜃. These two
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parametrizations of the measurements are related by

𝑥 = 𝜌 cos𝜃, (4.1)

𝑦 = 𝜌 sin𝜃. (4.2)

To relate these measurements to Keplerian orbital motion, we use an approach

that was originally developed for binary stars but is equally applicable to exo-

planets. In addition to the Keplerian orbital elements, the astrometric measure-

ments depend on the parallax 𝜛 of the host star. The stellar parallax is defined

as the maximum angular distance between lines-of-sight from the Earth and the

Sun to the star; because the parallax is very small, it can be accurately approx-

imated as being inversely proportional to the star’s distance from the Sun [6].

Here, it is useful to introduce the Thiele-Innes parameters, which are defined in

terms of the classical elements as [29]

𝐴 = 𝑎(cos 𝜔 cosΩ − sin 𝜔 sinΩ cos 𝐼), (4.3)

𝐵 = 𝑎(cos 𝜔 sinΩ + sin 𝜔 cosΩ cos 𝐼), (4.4)

𝐹 = 𝑎(− sin 𝜔 cosΩ − cos 𝜔 sinΩ cos 𝐼), (4.5)

𝐺 = 𝑎(− sin 𝜔 sinΩ + cos 𝜔 cosΩ cos 𝐼). (4.6)

In terms of these quantities, the measurements are given by

𝑥 = 𝜛(𝐴𝑋𝒫 + 𝐹𝑌𝒫), (4.7)

𝑦 = 𝜛(𝐵𝑋𝒫 + 𝐺𝑌𝒫), (4.8)

where (𝑋𝒫 , 𝑌𝒫) is the position of the planet relative to the star in the perifocal

frame 𝒫 scaled by 1/𝑎. Thus, the astrometric measurements are linear with

respect to the Thiele-Innes parameters, making them a convenient fitting basis

for orbit estimation.
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As for the scaled perifocal positions 𝑋𝒫 and 𝑌𝒫 , they can be expressed most

simply in terms of the eccentric anomaly 𝐸 as

𝑋𝒫 = cos𝐸 − 𝑒 , (4.9)

𝑌𝒫 =
√

1 − 𝑒2
sin𝐸. (4.10)

To relate the orbital position to time, we use the mean anomaly, which is defined

as

𝑀 = 𝑛(𝑡 − 𝑡𝑝), (4.11)

where 𝑡𝑝 is the time of periapse passage and 𝑛 = 2𝜋/𝑃 is the mean motion. This

is equivalent to

𝑀 = 𝑀0 + 𝑛(𝑡 − 𝑡0), (4.12)

where 𝑡0 is the reference epoch. Finally, the eccentric anomaly and the mean

anomaly are related by Kepler’s equation

𝑀 = 𝐸 − 𝑒 sin𝐸, (4.13)

which is a consequence of Kepler’s second law.

Kepler’s third law relates the mean motion or period to the semi-major axis;

these elements obey the relation [55]

𝜇 = 𝑎3𝑛2 =
4𝜋2𝑎3

𝑃2

, (4.14)

where 𝜇 is the gravitational parameter, defined as

𝜇 = 𝐺𝑀tot, (4.15)

where 𝑀tot is the combined mass of the star and the exoplanet, and 𝐺 is the

universal gravitational constant.

81



4.2.2 The Cohen-Hubbard Nonsingular Elements

It is well known that the classical Keplerian elements produce a number of sin-

gularities, such as when 𝑒 = 0, 𝐼 = 0, and 𝐼 = 180
◦
. Thus, if an estimator uses the

classical elements, it may behave badly at or near these singularities. Further-

more, while the Thiele-Innes parameters offer a significant improvement over

the angles Ω, 𝐼, and 𝜔 for orbit fitting, they still do not remove the singularities

associated with the eccentricity. Because of this, the fully nonsingular set of

orbital elements introduced by Cohen and Hubbard [14] is of particular interest

to us. These elements are defined as

𝑞0 = 𝑝
1

4 cos

(
𝐼

2

)
cos

(
Ω + 𝜔 +𝑀0

2

)
, (4.16)

𝑞1 = 𝑝
1

4 sin

(
𝐼

2

)
cos

(
Ω − 𝜔 −𝑀0

2

)
, (4.17)

𝑞2 = 𝑝
1

4 sin

(
𝐼

2

)
sin

(
Ω − 𝜔 −𝑀0

2

)
, (4.18)

𝑞3 = 𝑝
1

4 cos

(
𝐼

2

)
sin

(
Ω + 𝜔 +𝑀0

2

)
, (4.19)

𝑒𝑋 = 𝑒 cos𝑀0, (4.20)

𝑒𝑌 = −𝑒 sin𝑀0, (4.21)

where 𝑝 is the semilatus rectum, which is related to 𝑎 and 𝑒 by

𝑝 = 𝑎(1 − 𝑒2). (4.22)

These elements are based on a reference frame, which we call 𝒬, that is rotatated

from the perifocal frame 𝒫 by the angle 𝑀0 about the perifocal 𝑧-axis (the

direction of the orbital angular momentum vector), as illustrated in Figure 4.4.

The 𝑞 elements, when normalized, form a quaternion representation of 𝒬 with

respect to the celestial frame in which Ω, 𝐼, and 𝜔 are defined.

82



To compute the orbital position, Cohen and Hubbard use the angle 𝜑 defined

as

𝜑 = 𝐸 −𝑀0, (4.23)

which was proposed by Herget [14]. Substituting this into Kepler’s equation

(4.13) along with the relation (4.12) and the definitions (4.20–4.21) gives

𝜑 = 𝑛(𝑡 − 𝑡0) + 𝑒𝑋 sin 𝜑 − 𝑒𝑌 cos 𝜑. (4.24)

Methods of solving for 𝜑 as a function of time are discussed in Section 4.2.4. The

orbital position in 𝒬 scaled by 1/𝑎 is then given by

𝑋𝒬 = cos 𝜑 − 𝑒𝑋 + 𝑒𝑌𝑠, (4.25)

𝑌𝒬 = sin 𝜑 − 𝑒𝑌 − 𝑒𝑋 𝑠, (4.26)

where

𝑠 =
𝑒𝑋 sin 𝜑 − 𝑒𝑌 cos 𝜑

1 + 𝑓
, (4.27)

and

𝑓 =

√
1 − 𝑒2

𝑋
− 𝑒2

𝑌
. (4.28)

4.2.3 Nonsingular Elements for Astrometric Orbit Fitting

For the purposes of exoplanet orbit fitting, in an attempt to combine the best

features of the Cohen-Hubbard elements and the Thiele-Innes parameters, we
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Figure 4.4: The perifocal frame 𝒫 and the auxiliary frame 𝒬.

define a new set of nonsingular orbital elements:

Ξ11 = 𝜛𝑎(cos(𝜔 +𝑀0) cosΩ − sin(𝜔 +𝑀0) sinΩ cos 𝐼), (4.29)

Ξ21 = 𝜛𝑎(cos(𝜔 +𝑀0) sinΩ + sin(𝜔 +𝑀0) cosΩ cos 𝐼), (4.30)

Ξ12 = 𝜛𝑎(− sin(𝜔 +𝑀0) cosΩ − cos(𝜔 +𝑀0) sinΩ cos 𝐼), (4.31)

Ξ22 = 𝜛𝑎(− sin(𝜔 +𝑀0) sinΩ + cos(𝜔 +𝑀0) cosΩ cos 𝐼), (4.32)

𝜂1 =
𝑒 cos𝑀0√

1 − 𝑒2

, (4.33)

𝜂2 = − 𝑒 sin𝑀0√
1 − 𝑒2

. (4.34)

Since the gravitational parameter for an exoplanetary system is assumed not to

be known a priori, Kepler’s third law cannot be applied exactly, so the orbital

period is considered to be independent of the semi-major axis. Therefore, we

introduce an additional parameter

𝜆 = ln

(
𝑃

𝑃0

)
, (4.35)

where 𝑃 is the period, and 𝑃0 is an arbitrary time scale. Throughout this work,

we set 𝑃0 to one year.
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Properties of the Eccentricity-Related Parameters

We can recover 𝑒𝑋 and 𝑒𝑌 from the 𝜂𝑖 by

𝑒𝑋 =
𝜂1√

1 + 𝜂2

1
+ 𝜂2

2

, (4.36)

𝑒𝑌 =
𝜂2√

1 + 𝜂2

1
+ 𝜂2

2

. (4.37)

Thus, for any 𝜼 ∈ R2
, we have

𝑒 =

√
𝑒2

𝑋
+ 𝑒2

𝑌
=

√
𝜂2

1
+ 𝜂2

2

1 + 𝜂2

1
+ 𝜂2

2

< 1, (4.38)

which describes an elliptic orbit. Furthermore, we have 𝑒 = 0 for 𝜼 = 0, and

𝑒 → 1 as ∥𝜼∥ → ∞.

The Measurement Model

The Ξ𝑖 𝑗 are closely related to the Thiele-Innes parameters, but are defined in

frame 𝒬 rather than 𝒫 and are scaled by the parallax. In other words, we take

(4.3–4.6) and replace 𝜔 with 𝜔+𝑀0 and 𝑎with 𝜛𝑎. Because of this scaling, theΞ𝑖 𝑗

are measured in angular units. Thus, the measurement model in Eqs. (4.7–4.8)

can be modified to give

z = 𝚵𝜻 + w, (4.39)

where

𝜻 =


𝑋𝒬

𝑌𝒬

 , (4.40)

in which 𝑋𝒬 and 𝑌𝒬 are given by (4.25–4.26), and w is an additive noise term.
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Recovering the Classical Elements

From (4.35), we can obtain the period,

𝑃 = 𝑃0 exp𝜆, (4.41)

and from (4.33–4.34), we can solve for the eccentricity,

𝑒 =

√
𝜂2

1
+ 𝜂2

2

1 + 𝜂2

1
+ 𝜂2

2

, (4.42)

and the mean anomaly at epoch,

𝑀0 = atan2(−𝜂2, 𝜂1). (4.43)

For the remaining elements, we develop formulae based on the ones for the

Thiele-Innes parameters. To obtain Ω and 𝜔, we can use the relations [29]

𝐴 + 𝐺 = 𝑎(1 + cos 𝐼) cos(Ω + 𝜔), (4.44)

𝐴 − 𝐺 = 𝑎(1 − cos 𝐼) cos(Ω − 𝜔), (4.45)

𝐵 − 𝐹 = 𝑎(1 + cos 𝐼) sin(Ω + 𝜔), (4.46)

𝐵 + 𝐹 = 𝑎(1 − cos 𝐼) sin(Ω − 𝜔), (4.47)

which give

Ω + 𝜔 = atan2(𝐵 − 𝐹, 𝐴 + 𝐺), (4.48)

Ω − 𝜔 = atan2(𝐵 + 𝐹, 𝐴 − 𝐺). (4.49)

Since the Ξ𝑖 𝑗 replace 𝜔 with 𝜔 +𝑀0, and the scaling by 𝜛 is independent of the

angles, we have

Ω + 𝜔 +𝑀0 = atan2(Ξ21 − Ξ12,Ξ11 + Ξ22), (4.50)

Ω − 𝜔 −𝑀0 = atan2(Ξ21 + Ξ12,Ξ11 − Ξ22). (4.51)
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Note that these solution leave an ambiguity of ±180
◦

for Ω. This is not a fault

of the parameterization, but rather of the measurements themselves: using

only astrometry, we can determine the line of nodes (i.e., where the orbital

plane intersects with a plane parallel to the image), but we cannot distinguish

the ascending and descending node (i.e., at which node the object is moving

towards or away from the observer). However, this ambiguity may be resolved

with additional radial velocity measurements. When solving for Ω from the

Thiele-Innes parameters alone, by convention, we take 0 ≤ Ω < 180
◦
, and we

adopt the same convention for the Ξ𝑖 𝑗 .

As for 𝑎 and 𝐼, we can use the relations [29]

𝑎2(1 + cos
2 𝐼) = 𝐴2 + 𝐵2 + 𝐹2 + 𝐺2, (4.52)

𝑎2

cos 𝐼 = 𝐴𝐺 − 𝐵𝐹. (4.53)

This is equivalent to

𝑎2(1 + cos
2 𝐼) = ∥T∥2, (4.54)

𝑎2

cos 𝐼 = det T, (4.55)

where T is the matrix

T =


𝐴 𝐹

𝐵 𝐺

 , (4.56)

and ∥ · ∥ denotes the Frobenius norm. Then, defining

𝛾 =
∥T∥2

2 det T
, (4.57)

we obtain the quadratic equation

cos
2 𝐼 − 2𝛾 cos 𝐼 + 1 = 0. (4.58)
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The solution to this equation, with the sign chosen so that it lie in the interval

[−1, 1], is

cos 𝐼 = 𝛾 − sgn(𝛾)
√
𝛾2 − 1. (4.59)

Finally, we can solve (4.54) to obtain 𝑎. An alternative expression for 𝑎 is [6]

𝑎2 = 𝑢 +
√
(𝑢 + 𝑣)(𝑢 − 𝑣), (4.60)

where

𝑢 =
1

2

∥T∥2, (4.61)

𝑣 = det T. (4.62)

We can use the same approaches to obtain 𝑎 and 𝐼 from 𝚵, with the substitutions

∥T∥2 =
1

𝜛2

∥𝚵∥2, (4.63)

det T =
1

𝜛2

det𝚵. (4.64)

These relations hold because 𝚵 has the same form as T except for the rotation

by 𝑀0 and the scaling by 𝜛, but only the scaling affects the norm and the

determinant. In addition, from (4.60), we have

𝜛2𝑎2 = 𝑢 +
√
(𝑢 + 𝑣)(𝑢 − 𝑣), (4.65)

where

𝑢 =
1

2

∥𝚵∥2, (4.66)

𝑣 = det𝚵. (4.67)

4.2.4 Solutions of the Nonsingular Kepler Equation

Despite its simplicity, the classical Kepler equation (4.13) has no closed-form

solution for𝐸 as a function of𝑀; however, it can be reliably solved using Newton-
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Raphson iteration, or alternatively using Fourier-Bessel series. The same is true

for the equation’s nonsingular counterpart (4.24), which can be expressed as

𝜑 = Δ𝑀 + 𝑒𝑋 sin 𝜑 − 𝑒𝑌 cos 𝜑, (4.68)

where

Δ𝑀 = 𝑛(𝑡 − 𝑡0). (4.69)

Here, we present analogous methods for solving for 𝜑 as a function of Δ𝑀.

Newton-Raphson Iteration

Newton-Raphson iteration is a simple but often very efficient method for solving

equations of the form 𝑓 (𝑥) = 0 for 𝑥, where 𝑓 is a continuously differentiable

function. We take an initial guess 𝑥0 for 𝑥, and we iteratively refine the estimate

by

𝑥𝑛+1 = 𝑥𝑛 −
𝑓 (𝑥𝑛)
𝑓 ′(𝑥𝑛)

. (4.70)

This process is repeated until |𝑥𝑛+1 − 𝑥𝑛 | < 𝜀, where 𝜀 is a specified tolerance.

Thus, we can solve for 𝐸 given 𝑀 using the iteration [76]

𝐸𝑛+1 = 𝐸𝑛 +
𝑀 − 𝐸𝑛 + 𝑒 sin𝐸𝑛

1 − 𝑒 cos𝐸𝑛
, (4.71)

and for the initial guess, we can use

𝐸0 = 𝑀 + 𝑒 sin𝑀, (4.72)

which is an approximation to the first order in 𝑒 [55]. As for 𝜑, we solve the

equation

𝑓 (𝜑) = Δ𝑀 + 𝑒𝑋 sin 𝜑 − 𝑒𝑌 cos 𝜑 − 𝜑 = 0, (4.73)

which gives the Newton-Raphson iteration

𝜑𝑛+1 = 𝜑𝑛 −
Δ𝑀 + 𝑒𝑋 sin 𝜑𝑛 − 𝑒𝑌 cos 𝜑𝑛 − 𝜑𝑛

𝑒𝑋 cos 𝜑𝑛 + 𝑒𝑌 sin 𝜑𝑛 − 1

, (4.74)
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and for the first estimate, we can express (4.72) in terms of the nonsingular

variables to obtain

𝜑0 = Δ𝑀 + 𝑒𝑋 sinΔ𝑀 − 𝑒𝑌 cosΔ𝑀. (4.75)

Fourier-Bessel Series

While iterative techniques are the most useful in practice, it is worth noting

that we can obtain exact solutions to Kepler’s equation using infinite series. (In

practice, of course, these series must be truncated to a finite number of terms.)

Since 𝐸 is a periodic function of 𝑀, and therefore of time, we can express

functions of 𝐸 as Fourier series in 𝑀. The coefficients in these Fourier series

give rise to the Bessel functions of the first kind, denoted by 𝐽𝑘 , which Bessel

represented by the integrals

𝐽𝑘(𝑧) =
1

𝜋

∫ 𝜋

0

cos(𝑧 sin𝜃 − 𝑘𝜃)d𝜃 (4.76)

for integer 𝑘 and complex 𝑧 [31].

The Bessel functions have the following useful property [31]: if 𝑎, 𝑏, 𝑐, 𝛽, and

𝛾 are real numbers such that

𝑐 exp(𝑖𝛽) = 𝑎 − 𝑏 exp(−𝑖𝛾), (4.77)

where 𝑖 is the imaginary unit, then

𝐽𝑚(𝑐) exp(𝑖𝑚𝛽) =
∞∑

𝑙=−∞
𝐽𝑚+𝑙(𝑎)𝐽𝑙(𝑏) exp(𝑖𝑙𝛾). (4.78)

In the special case 𝛾 = 𝜋/2, we have a somewhat simpler result: if 𝑎, 𝑏, 𝑐, and 𝛽

are real numbers such that

𝑎 =𝑐 cos 𝛽, (4.79)

𝑏 =𝑐 sin 𝛽, (4.80)
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then

𝐽𝑘(𝑐) cos(𝑘𝛽) =
∞∑

𝑚=−∞
(−1)𝑚 𝐽𝑘+2𝑚(𝑎)𝐽2𝑚(𝑏), (4.81)

𝐽𝑘(𝑐) sin(𝑘𝛽) =
∞∑

𝑚=−∞
(−1)𝑚 𝐽𝑘+2𝑚+1(𝑎)𝐽2𝑚+1(𝑏). (4.82)

For 𝐸 as a function of 𝑀, Plummer [55] gives the Fourier-Bessel series

𝐸 = 𝑀 + 2

∞∑
𝑘=1

1

𝑘
𝐽𝑘(𝑘𝑒) sin(𝑘𝑀). (4.83)

Substituting 𝜑 = 𝐸 −𝑀0 and 𝑀 = 𝑀0 +Δ𝑀 and applying trigonometric identi-

ties, we can obtain a similar series for 𝜑, namely

𝜑 = Δ𝑀 +
∞∑
𝑘=1

(𝑎𝑘 cos(𝑘Δ𝑀) + 𝑏𝑘 sin(𝑘Δ𝑀)), (4.84)

where the coefficients 𝑎𝑘 and 𝑏𝑘 are given by

𝑎𝑘 =
2

𝑘
𝐽𝑘(𝑘𝑒) sin(𝑘𝑀0), (4.85)

𝑏𝑘 =
2

𝑘
𝐽𝑘(𝑘𝑒) cos(𝑘𝑀0). (4.86)

To express the coefficients in terms of 𝑒𝑋 and 𝑒𝑌 rather than 𝑒 and 𝑀0, we use

the definitions (4.20–4.21) and the Bessel function identities (4.81–4.82) to obtain

𝑎𝑘 = − 2

𝑘

∞∑
𝑚=−∞

(−1)𝑚 𝐽𝑘+2𝑚+1(𝑒𝑋)𝐽2𝑚+1(𝑒𝑌), (4.87)

𝑏𝑘 =
2

𝑘

∞∑
𝑚=−∞

(−1)𝑚 𝐽𝑘+2𝑚(𝑒𝑋)𝐽2𝑚(𝑒𝑌). (4.88)

Using a similar approach, we can obtain a series expansion for exp(𝑖𝑘𝜑),

where 𝑘 is an integer. In the classical elements, for exp(𝑖𝑘𝐸) as a function 𝑀,

Plummer [55] gives the series

exp(𝑖𝑘𝐸) =
∞∑

𝑚=−∞
𝐴𝑘𝑚 exp(𝑖𝑚𝑀), (4.89)
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with the coefficients

𝐴𝑘𝑚 =



𝑘
𝑚 𝐽𝑚−𝑘(𝑚𝑒), 𝑚 ≠ 0

1, 𝑚 = 𝑘 = 0

−1

2
𝑒 , 𝑚 = 0, 𝑘 = ±1

0, 𝑚 = 0, |𝑘 | > 1

. (4.90)

Now, we wish to find the coefficients 𝐶𝑘𝑚 of an analogous series for exp(𝑖𝑘𝜑) of

the form

exp(𝑖𝑘𝜑) =
∞∑

𝑚=−∞
𝐶𝑘𝑚 exp(𝑖𝑚Δ𝑀). (4.91)

Again using the relations 𝜑 = 𝐸 −𝑀0 and 𝑀 = 𝑀0 + Δ𝑀, we have

𝐶𝑘𝑚 = 𝐴𝑘𝑚 exp(𝑖(𝑚 − 𝑘)𝑀0), (4.92)

and substituting (4.90) gives

𝐶𝑘𝑚 =



𝑘
𝑚 𝐽𝑚−𝑘(𝑚𝑒) exp(𝑖(𝑚 − 𝑘)𝑀0), 𝑚 ≠ 0

1, 𝑚 = 𝑘 = 0

−1

2
𝑒 exp(−𝑖𝑘𝑀0), 𝑚 = 0, 𝑘 = ±1

0, 𝑚 = 0, |𝑘 | > 1

. (4.93)

For the case 𝑚 = 0 and 𝑘 = ±1, we can apply Euler’s formula and the definitions

of 𝑒𝑋 and 𝑒𝑌 (4.20–4.21) to obtain

𝐶𝑘𝑚 = −1

2

(𝑒𝑋 + 𝑖𝑘𝑒𝑌). (4.94)

As for 𝑚 ≠ 0, we can apply the general property (4.78) of Bessel functions: in

this case, we have

𝑚𝑒 exp(𝑖𝑀0) = 𝑚𝑒𝑋 − 𝑖𝑚𝑒𝑌 , (4.95)
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and it follows that

𝐽𝑚−𝑘(𝑚𝑒) exp(𝑖(𝑚 − 𝑘)𝑀0) =
∞∑

𝑙=−∞
(−𝑖)𝑙 𝐽𝑚−𝑘+𝑙(𝑚𝑒𝑋)𝐽𝑙(𝑚𝑒𝑌). (4.96)

Thus, the coefficients for the series (4.91) can be expressed in terms of the non-

singular parameters 𝑒𝑋 and 𝑒𝑌 as

𝐶𝑚𝑘 =



𝑘
𝑚

∑∞
𝑙=−∞(−𝑖)𝑙 𝐽𝑚−𝑘+𝑙(𝑚𝑒𝑋)𝐽𝑙(𝑚𝑒𝑌), 𝑚 ≠ 0

1, 𝑚 = 𝑘 = 0

−1

2
(𝑒𝑋 + 𝑖𝑘𝑒𝑌) 𝑚 = 0, 𝑘 = ±1

0, 𝑚 = 0, |𝑘 | > 1

. (4.97)

Convergence

We numerically tested the convergence of both iterative and series solutions for

𝜑 as a function of Δ𝑀. For the Newton-Raphson iteration (4.74), we counted

the number of steps needed to achieve a tolerance 𝜀 = 10
−9

. For the Fourier-

Bessel series (4.84), we found the number of terms 𝐾 required to achieve the

same tolerance, with the series (4.84) truncated to 𝑘 ≤ 𝐾 and (4.87–4.88) to

−𝐾 ≤ 𝑚 ≤ 𝐾. Since the nonsingular form of Kepler’s equation depends on 𝑒,

𝑀0, and Δ𝑀, we tested each method with fixed 𝑀0 and varying Δ𝑀, and vice

versa. In both cases, we varied the eccentricity, with 0 ≤ 𝑒 ≤ 0.99, covering

almost the entire range for elliptic orbits.

Figures 4.5 and 4.6 show the convergence results for the Newton-Raphson

iteration. In all cases, the desired tolerance was achieved with fewer than nine

iterations, and for 𝑒 < 0.2, with three or fewer. As for the Fourier-Bessel series,

for which the convergence results are shown in Figures 4.7 and 4.8, between
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Figure 4.5: Convergence of Newton-Raphson iteration for 𝜑 with 𝑀0 = 120
◦
.

three and five series terms were required in all cases. These results indicate that

both methods converge quickly.

4.2.5 Mass Measurements

As noted in Section 4.2.3, we cannot apply Kepler’s third law exactly to the

problem of exoplanet orbit fitting, since the gravitational parameter of the system

is not known a priori. However, we do have some prior knowledge of the

gravitational parameter, based on estimates of the star’s mass. Here, we treat

the mass of the star as 𝑀tot, since the mass of the planet is assumed to be much

smaller and well within the margin of error for the star’s mass.

A rough estimate of a star’s mass 𝑀 can be obtained from its luminosity 𝐿,
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Figure 4.6: Convergence of Newton-Raphson iteration for 𝜑 with Δ𝑀 = 120
◦
.

using a mass-luminosity relation of the form

𝐿 = 𝐿⊙

(
𝑀

𝑀⊙

)𝛼
, (4.98)

where 𝐿⊙ and 𝑀⊙ are the luminosity and mass of the Sun, and 𝛼 is an empirical

constant. For main-sequence stars, 3 ≲ 𝛼 ≲ 4 [28].

For the purposes of orbit fitting, we account for estimates of the star’s mass

using a measurement that is a function of the parallax and the total mass, defined

as

𝑧PM = ln

(
𝑀tot𝜛3

𝑀⊙𝜛3

0

)
, (4.99)

where 𝜛0 is a constant having units of parallax (e.g., 𝜛0 = 1 as). To express this

measurement in terms of the orbital elements, we substitute (4.14) and (4.15) to
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Figure 4.7: Convergence of Fourier-Bessel series for 𝜑 with 𝑀0 = 120
◦
.

obtain

𝑧PM = ln

(
4𝜋2𝜛3𝑎3

𝐺𝑀⊙𝑃2𝜛3

0

)
, (4.100)

and substituting (4.35) gives

𝑧PM = ln

(
4𝜋2

𝐺𝑀⊙𝑃2

0
𝜛3

0

)
+ 3

2

ln(𝜛2𝑎2) − 2𝜆, (4.101)

where the second term depends only on 𝚵 and can be evaluated using (4.65).

Finally, given the mean values (𝑀̄, 𝜛̄) and standard deviations (𝜎𝑀 , 𝜎𝜛) of 𝑀tot

and 𝜛, we have a first-order estimate of the variance of 𝑧PM, given by

𝜎2

PM
=

(
𝜎𝑀
𝑀̄

)
2

+
(
3𝜎𝜛
𝜛̄

)
2

. (4.102)
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Figure 4.8: Convergence of Fourier-Bessel series for 𝜑 with Δ𝑀 = 120
◦
.

4.3 The Nonsingular Estimator for Exoplanet Orbits

In this section, we present the Nonsingular Estimator for Exoplanet Orbits

(NEXO), a new method for exoplanet orbit fitting that combines the unscented

Kalman filter with a batch estimator. It applies Gaussian mixture models, de-

scribed in Section 1.4.4, with the the square-root sigma point filter (SRSPF),

described in Section 1.4.3. The use of Gaussian mixtures was suggested to us

by Trevor Wolf. Furthermore, we compute the sigma points using a fifth-order

cubature rule for Gaussian distributions, and we run the filter multiple times

with the same measurements to refine the estimates.

For the fitting basis, we use the nonsingular orbital elements described in
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Section 4.2.3, and we define the state vector as

x =

[
𝜆 𝜂1 𝜂2 Ξ11 Ξ21 Ξ12 Ξ22

]
T

. (4.103)

For an unperturbed Keplerian orbit, this state vector is constant in time. Here, we

assume that all perturbations on the exoplanet’s orbit are negligible. Therefore,

we only use the correction step of the filter, and there is no need for the prediction

step.

4.3.1 Motivation for Gaussian mixtures

Among the components of x, the strongest nonlinearities in the astrometric mea-

surements are due to variations in the log-period 𝜆. As shown in Section 4.2.3,

the astrometric measurements are linear in 𝚵, and their dependence on 𝜼 can

be approximated well by low-order polynomials. On the other hand, 𝜆 causes

oscillations, and the frequency of these oscillations increases exponentially as

𝜆 → −∞. Thus, if the variance of 𝜆 is large, the unscented transform does not

accurately represent the distribution of the measurements. Because of this, our

early tests found the plain SRSPF to be highly sensitive to the prior distribution

parameters.

While the nonlinearities in 𝜆 can be problematic for a simple unscented

transform, they can be handled much more robustly using Gaussian mixtures.

Specifically, we can represent a diffuse distribution of 𝜆 using a mixture of Gaus-

sian distributions with different values for the mean of 𝜆 and small values for

the variance of 𝜆. Then, because of the small variances, each mixture compo-

nent effectively covers only a small range of 𝜆 values, and the dependence of the

measurements on 𝜆 can be accurately approximated by low-order polynomials.
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Thus, the unscented transform for each component of the mixture can represent

the measurement distribution very accurately. In addition, since the unscented

transform is accurate for 𝜼 and 𝚵 even when their covariances are large, their

distributions do not have to be “broken up” using Gaussian mixtures.

4.3.2 Sigma Points

To obtain more accurate approximations of z̄, P𝑧𝑧 , and P𝑥𝑧 for each component

of the mixture, we use a set of sigma points that matches statistical moments up

to the fifth order for Gaussian distributions. It is based on Stroud’s fifth-order

cubature rule of dimension 𝑛 ≥ 3 for the weighting function exp(−∥x∥2) with

𝑁𝑆 = 2
𝑛 + 2𝑛 points [74]. Given Stroud’s points x̃(𝑗) and weights 𝑤̃ 𝑗 , we compute

the sigma points

x(𝑗) = x̄ +
√

2P𝑥𝑥 x̃(𝑗), (4.104)

and the corresponding weights

𝑤 𝑗 =
𝑤̃ 𝑗∑𝑁𝑆
𝑗=1
𝑤̃ 𝑗

. (4.105)

Then, the x(𝑗) and 𝑤 𝑗 form a fifth-order cubature rule, whose weighting function

is a Gaussian probability density with mean x̄ and covariance P𝑥𝑥 .

4.3.3 The Prior Distribution

For the prior distribution of 𝜆, we assume that it is uniform on the interval

[ln(𝑃min/𝑃0), ln(𝑃max/𝑃0)], where 𝑃min and 𝑃max are minimum and maximum

values for the period, chosen to cover the entire range of realistic values of
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𝑃. Then, we form the prior Gaussian mixture based on a Gauss-Legendre

quadrature rule with 𝑁 nodes on this interval: for the prior mean values of 𝜆

for the components of the mixture, we take the abscissae of the quadrature rule,

and we take the corresponding quadrature weights to be the prior weights of

the mixture components. This is effectively treating the prior mean of 𝜆 as a

nuisance parameter and integrating over it using a quadrature approximation.

As for the prior covariances of the mixture components, we take√
P𝑥𝑥 = diag(𝜎𝜆 , 𝜎𝜂 , 𝜎𝜂 , 𝜎Ξ, 𝜎Ξ, 𝜎Ξ, 𝜎Ξ), (4.106)

where 𝜎𝜆, 𝜎𝜂, and 𝜎Ξ are the same for all components of the mixture.

With this form of the prior distribution, we have to choose the parameters

𝑃min, 𝑃max, 𝜎𝜂, and 𝜎Ξ. As discussed in Chapter 1, the purpose of the prior dis-

tribution is to represent our knowledge of the system before any measurements

are obtained. This is particularly difficult for exoplanets; for an individual exo-

planet, the prior distribution is necessarily diffuse. However, we do have some

prior knowledge of exoplanet populations. Several such population models are

implemented in EXOSIMS, a simulation framework for exoplanet imaging mis-

sions developed by Savransky et al. in the Space Imaging and Optical Systems

(SIOS) Lab [17, 63]. This open-source library is available on GitHub. We use the

“Kepler-like” distributions of orbital elements and masses for exoplanets from

EXOSIMS, which are based on the exoplanets detected using transit photometry

methods by the Kepler space telescope [38]. Based on the statistics of 10,000 or-

bits sampled from the “Kepler-like” population model, we chose 𝑃min = 0.1 yr,

𝑃max = 10, 000 yr, 𝜎𝜆 = 0.5 and 𝜎𝜂 = 0.15, with 𝑁 = 1000 Gaussian mixture

components. In addition, for the semi-major axis, we chose 𝜎𝑎 = 100 au. Since

|Ξ𝑖 𝑗 | ≤ 𝜛𝑎, we set 𝜎Ξ = 𝜛̄𝜎𝑎 , where 𝜛̄ is defined in Section 4.2.5.
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4.3.4 Repeated Filtering

We found that running the filter repeatedly with the same measurements, step-

ping through the measurements forward in time at each iteration, increased the

accuracy of its estimates. Specifically, we found that running 10 such filter passes

gave lower root-mean-square error values than simply running the filter once

or using a smoothing procedure (i.e., running the filter forward in time, then

backward, then forward again). Because of this, we ran 10 filter passes in all of

the examples in this work. However, determining the optimal number of filter

passes will require further testing and analysis.

4.4 Validation

To test the performance of our estimation method over a wide range of possible

orbits where the “ground truth” is known, we used large sets of synthetic orbital

parameters and astrometric measurements.

4.4.1 Generation of Sample Orbits and Measurements

Using the “Kepler-like” population model from EXOSIMS, we generated 100

sets of random orbital elements and planet masses, with the mass of the host

star fixed at one solar mass. Then, for each orbit, we computed five pairs of

astrometric measurements (𝑥, 𝑦), evenly spaced in time over two years, using

the orbitize! library [8]. Then, we added simulated measurement errors sampled

from a central Gaussian distribution with a standard deviation of 5 mas.
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4.4.2 Testing and Comparison of Estimation Methods

We ran NEXO, MCMC, and OFTI with the 100 sets of synthetic measurements.

With MCMC and OFTI, we attempted to sample 10,000 sample orbits for each set

of measurements. If an estimator took longer than 15 minutes to fit one orbit, the

run was stopped. This occurred in 13% of cases for OFTI, but in no case for NEXO

and MCMC. We compared the three estimators based on the credible intervals

that they generated for the classical orbital elements. For NEXO, we computed

the mean estimates and credible intervals using the unscented transform and

the Chebyshev and Markov inequalities, as described in Section 1.4.5. As for

MCMC and OFTI, we applied the same method, but slightly modified to use

their outputs: instead of sigma points, we used the 10,000 generated orbits with

equal weights. We computed non-angular credible intervals for 𝑎, 𝑒, and 𝑃, and

angular credible intervals for 𝐼, Ω, 𝜔, and 𝑀0.

Figures 4.9–4.15 show the means and 95% credible intervals for each of the

seven classical elements using the three estimation methods. The accuracy of the

estimates varies greatly between the orbital parameters for all three estimation

techniques. This is likely due to the varying observability of the elements from

the measurements.

The estimates of the semi-major axis are shown in Figure 4.9. This parameter

is highly observable, since it is closely related to the measured angular separa-

tion. Because of this, the expected values of 𝑎 obtained using all three methods

follow the true values closely. However, the methods appear to have different

biases: NEXO and MCMC tend to underestimate 𝑎, while OFTI often overesti-

mates it. As for the credible intervals, they are very wide for MCMC and even

wider for OFTI, in some cases covering the entire range of 𝑎 values of the gener-
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ated orbits. On the other hand, the credible intervals are too narrow for NEXO,

since many of them do not even contain the true value. In this regard, none of

the three methods generates credible intervals that are informative. This trend—

that the credible intervals are too wide for MCMC and OFTI and too narrow for

NEXO—is present for all seven orbital elements.

Figure 4.10 shows the estimates of the eccentricity, which is more difficult to

observe than the semi-major axis, especially when the orbit is nearly circular. For

this parameter, NEXO gives significantly more accurate estimates than MCMC

or OFTI. A possible explanation is that the process of filtering, which recursively

refines the estimates, can better capture the effects of 𝑒 on the measurements

than methods based on random sampling.

The estimates of the inclination are presented in Figure 4.11. The most

noticeable feature in the MCMC and OFTI estimates is that many of them have

an expected value near 90
◦
. However, this does not necessarily mean that these

estimators favor edge-on orbits: in particular, a uniform distribution for 𝐼 has

a mean of 90
◦
. In many of the cases where the inclination estimate is near 90

◦
,

the credible interval covers the entire range of 𝐼 from 0 to 180
◦
, which suggests

that the distribution could be close to uniform. A similar but less prominent

phenomenon appears for the longitude of the ascending node, which has the

same range, shown in Figure 4.12. NEXO, on the other hand, does not appear to

have this bias, and it gives much more accurate estimates of both 𝐼 and Ω overall.

Perhaps the least observable orbital elements are the argument of periapsis

and the mean anomaly at epoch. Consequently, none of the three estimators

gives accurate results for these two parameters, as shown in Figures 4.13 and 4.14.

For both 𝜔 and 𝑀0, MCMC exhibits a bias towards 180
◦
, with credible intervals
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covering most of the range from 0 to 360
◦
; as with 𝐼 and Ω, this could be due to

nearly uniform distributions. However, this does not occur for NEXO or OFTI.

The estimates of the period, shown in Figure 4.15, exhibit similar trends to

those of the semi-major axis, shown in Figure 4.15. This is not surprising, since 𝑎

and𝑃 are related by Kepler’s third law (4.14), and the estimators are given a mean

and standard deviation for 𝑀tot. Despite the uncertainty in 𝑀tot, estimating

the orbital period would be much more difficult without this information. For

example, some tests of an early variant of NEXO without the mass measurements

described in Section 4.2.5 produced orbits in which multiple periods elapsed

between measurements. Of course, such orbits are extremely unlikely.

Table 4.1 shows the root-mean-square error (RMSE) values of the mean esti-

mates for each orbit element and estimation method. For most of the parameters,

NEXO has a lower RMSE than MCMC or OFTI; the only exceptions are 𝑎, for

which MCMC has a slightly lower error, and 𝑀0 for which OFTI has a lower

error. In particular, NEXO has a significantly lower RMSE than MCMC or OFTI

for the eccentricity and the period.

Table 4.2 shows percentages of cases where the true values lie within the

95% credible intervals. Unlike for MCMC or OFTI, these values are significantly

lower than 95% for NEXO. This suggests that NEXO can become “overconfident”

in its estimates.

Table 4.3 shows the average run time for successful orbit fits for each of the

three estimators, excluding the cases where OFTI was terminated because it

failed to generate 10,000 orbits in 15 minutes. NEXO is over times 40 faster than

OFTI, which in turn is faster than MCMC.
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Figure 4.9: Credible intervals for the semi-major axis. All three methods give

accurate central estimates. However, the credible intervals for NEXO are much

narrower than for MCMC or OFTI, and they sometimes fail to include the true

value.
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Figure 4.10: Credible intervals for the eccentricity. NEXO gives the best estimates

overall; MCMC tends to overestimate it, while the eccentricity errors for OFTI

appear to be spread out more or less uniformly.
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Figure 4.11: Credible intervals for the inclination. NEXO gives the most accurate

estimates, while MCMC and OFTI exhibit a strong bias towards edge-on orbits,

or 𝐼 = 90
◦
.
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Figure 4.12: Credible intervals for the longitude of the ascending node. NEXO

gives the most accurate estimates, followed by MCMC.
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Figure 4.13: Credible intervals for the argument of periapsis. None of the three

methods gives reliable estimates.
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Figure 4.14: Credible intervals for the mean anomaly at epoch. None of the three

methods gives reliable estimates, but OFTI gives the closest estimates.
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Figure 4.15: Credible intervals for the period. Unlike MCMC or OFTI, NEXO

never significantly overestimates the period. As with the semi-major axis, how-

ever, the credible intervals for NEXO appear to be too narrow.
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Table 4.1: Root-mean-square errors for the orbit estimators.

NEXO MCMC OFTI

𝑎 (%) 32.0 29.2 38.2

𝑒 (%) 93.1 336.2 328.9

𝐼 (
◦
) 19.7 25.8 22.1

Ω (
◦
) 34.4 40.4 45.1

𝜔 (
◦
) 82.1 108.0 105.0

𝑀0 (
◦
) 78.6 89.0 69.8

𝑃 (%) 59.7 571.9 143.9

Table 4.2: Percentages of orbital elements within credible intervals.

NEXO MCMC OFTI

𝑎 42.0 90.7 100.0

𝑒 44.0 96.9 100.0

𝐼 42.0 99.0 100.0

Ω 40.0 100.0 100.0

𝜔 29.0 93.8 100.0

𝑀0 26.0 94.8 100.0

𝑃 33.0 90.7 100.0

4.5 Examples of Application

In this section, we present orbit fits using NEXO for two exoplanets and compare

the results to previous orbit fits. The first planet is 𝛽 Pictoris b, with measure-

ments by Lagrange et al. [43] and Nielsen et al. [52]. The second is GJ 504 b,

with measurements by Kuzuhara et al. [42]. The orbits of these two planets were

previously fitted, respectively, using MCMC by Nielsen et al. [52] and using

OFTI by Blunt et al. [8].

Table 4.3: Average run times for the orbit estimators.

Method Time (s)

NEXO 1.5

MCMC 353.0

OFTI 66.1
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Figures 4.16 and 4.17 show the true measurements and the predicted mea-

surements based on the NEXO orbit fit for the two exoplanets. In both cases, the

predicted measurements follow the true measurements very closely. Figure 4.18

compares the orbital element estimates for 𝛽 Pictoris b using NEXO and MCMC,

and Figure 4.19 does the same for GJ 504 b using NEXO and OFTI. Overall, the

central estimates using NEXO are quite close to the previous fits, particularly

in the first case. In both cases, the credible intervals obtained from NEXO are

significantly narrower than the confidence intervals from the MCMC or OFTI

fits; however, as discussed in Section 4.4.2, it is possible that the NEXO intervals

are too narrow.

4.6 Conclusion

We have presented a new method for estimating exoplanet orbits, based on non-

linear filtering and a set of nonsingular orbital elements developed specifically

for this purpose. Using both simulated and real astrometric measurements, we

have shown that NEXO obtains estimates with accuracy comparable to or higher

than that of the MCMC and OFTI methods, but with much faster execution. The

next step in the development of NEXO would be to ensure that its output co-

variances and credible intervals reflect the true uncertainty of the state estimate.

In the future, we plan to work on further improving the accuracy of NEXO by

fine-tuning the existing filter or using other filtering techniques.
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Figure 4.16: Astrometric measurements and orbit fits for 𝛽 Pictoris b. The

predicted measurements follow the true measurements very closely, despite the

apparent “jump” in both 𝜌 and 𝜃.
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Figure 4.17: Astrometric measurements and orbit fits for GJ 504 b. We see

good agreement between the orbit fit and the true measurements. However, the

measurements appear to cover a smaller fraction of the orbit than for 𝛽 Pictoris b,

making this a more challenging fit.
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Figure 4.18: Orbital parameter estimates for 𝛽 Pictoris b. For NEXO, we show the

means and 95% credible intervals, and for MCMC we show the medians and 95%

confidence intervals reported by Nielsen et al. using the fixed-mass method [52].

We shift Ω and 𝜔 in the MCMC fit by 180
◦

for consistency. The central estimates

using the two methods are remarkably close for all seven elements. Furthermore,

the credible intervals for NEXO are contained within the confidence intervals

for MCMC for all elements.
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Figure 4.19: Orbital parameter estimates for GJ 504 b. For NEXO, we show the

means and 95% credible intervals, and for OFTI we show the medians and 95%

confidence intervals reported by Blunt et al. [7]. NEXO and OFTI give the closest

central estimates for 𝑎, 𝑃, and 𝑡𝑝 ; the larger differences in the other elements may

be due to the long period of the orbit.
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CHAPTER 5

CONCLUSION

This thesis presents advancements in nonlinear estimation, particularly for

problems in astrodynamics. It includes several projects with the common goal

of obtaining more accurate state estimates in a broader range of nonlinear dy-

namical systems. The contributions include the development of new nonlinear

filtering methods, as well as new applications of nonlinear filtering. We hope

that the results of our work might contribute to the wider applicability of non-

linear filters in aerospace and astronomy.

First, we developed the Higher-Order Unscented Estimator (HOUSE), which

extends the unscented Kalman filter (UKF) to account for skewness and kurtosis

in addition to the mean and covariance. In simulations of nonlinear dynamical

systems, HOUSE performed better than other state-of-the-art estimators when

the noise produced many outliers. Thus, we have shown that a relatively small

modification to the UKF can significantly improve the accuracy of state estimates

in certain cases. With this in mind, it is worth investigating what other extensions

to the UKF and HOUSE could be developed. For example, it is possible—at least

in theory—to develop a filter that uses sigma points to propagate any finite set

of moments, which could include marginal and mixed moments of the third,

fourth, and higher orders. We expect such a filter to be even more accurate

and applicable to a wider range of systems. However, increasing the number

of moments that the filter propagates inevitably increases its computational

complexity, and the trade-off between accuracy and computational efficiency

has to be considered, particularly for real-time applications. Furthermore, it is

necessary to investigate which moments are significant for particular systems
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and noise distributions.

The second project is called Autonomous Cross-Calibration for Imaging

Satellites (ACCIS). It applies nonlinear filtering methods with a combination

of conventional and image-based measurements to cross-calibrate a constella-

tion of Earth-imaging satellites. In this framework, satellites transmit features

extracted from images along with their state estimates to other members of the

constellations, and they use these data to achieve cross-calibration in real time.

Using a detailed simulation, we showed that this method is feasible. However,

further development of the ACCIS methodology is required to achieve a useful

cross-calibration accuracy. In particular, since there are currently no standard

models relating the state of a satellite to the image features, we have thus far only

used a basic image-based measurement model in the ACCIS filters. We expect

that, with appropriate refinements of this model, the accuracy of ACCIS can be

significantly increased.

In the third project, we applied nonlinear filtering techniques to the problem

of fitting exoplanet orbits to measurements from direct observations, develop-

ing the Nonsingular Estimator for Exoplanet Orbits (NEXO). Some of the main

difficulties in this estimation problem are that the prior distribution of the or-

bital parameters is very diffuse and that the measurements are highly nonlinear.

Consequently, the representation of the state distribution using a single mean

and covariance has limitations, which we overcame by using Gaussian mix-

tures. Furthermore, with the development of a new set of nonsingular orbital

elements, we demonstrated how the parametrization of the system state can be

tailored to the estimation problem at hand. In particular, we were able to obtain

orbital parameters with no singularities or bounds and with a partly linear mea-
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surement model, both of which are useful features for filtering. Our testing of

NEXO showed that filter-based methods can provide faster and more accurate

exoplanet orbit fits than Monte Carlo methods. Still, we expect that the filtering

techniques in NEXO can be further improved to give more accurate orbit fits and

more reliable error estimates.

Throughout this work, we have shown that there is plenty of room for devel-

oping new filtering techniques and applying them to new dynamical systems.

We plan to continue to explore these questions in our future work.
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