An Event-Based Vision Sensor Simulation Framework for Space Domain Awareness Applications B Exam

Rachel Oliver

Cornell University

 $25 \ \mathrm{July} \ 2024$

Outline

1 Introduction

- Space Domain Awareness
- Event-Based Sensors for Space Domain Awareness
- Contributions Overview

2 Event-based Sensor Model

- Dark Shot Noise
- Circuit Noise
- (3) Event-based Tracking Algorithm
 - Tracker Inspiration
 - Grouping
 - Classification

4 Summary

• Contributions Overview

Outline

1 Introduction

- Space Domain Awareness
- Event-Based Sensors for Space Domain Awareness
- Contributions Overview

2 Event-based Sensor Model

- Dark Shot Noise
- Circuit Noise
- ③ Event-based Tracking Algorithm
 - Tracker Inspiration
 - Grouping
 - Classification

4 Summary

• Contributions Overview

Event-based Sensor Model

Event-based Tracking Algorithm

Summary 00000

Space Domain Awareness (SDA)

Weisbarth, 2020, https: //media.defense.gov/2020/Mar/15/2002264814/-1/-1/0/190111-F-HF064-002.PNG

MDA, 2008, http://www.mda.mil/mdalink/pdf/too164.pdf

Event-based Tracking Algorithm

Growing Complexity

ESA's Space Environment Report Office 2023

 Event-based Sensor Model

Event-based Tracking Algorithm

Summary 00000

Event-Based Vision Sensors (EVS)

- Asynchronous data collection
- Records time series events, e

•
$$e = \{t, x, y, \rho\}$$

- $\bullet\,$ recording timestamp, t
- pixel location, x and y
- $\bullet\,$ change polarity, $\rho\,$
- Blue = ON events (positive events)
- Red = OFF events (negative events)
- Other Names = Neuromorphic Camera, Neuromorphic Sensor, Silicon Retina, Event-Based Camera, Event-Based Sensor, or Dynamic Vision Sensor

EVS Advantages in SDA

- Temporal Sensitivity
- High Dynamic Range
- Space-Based
 - Low SWaP for Space-Based
 - Maximize Information for Downlink
 - Enable Onboard Computation
- Ground-Based
 - Low Cost for Augmenting SDA Operations

http://greg-cohen.com/project/astrosite/ The Astrosite: A Mobile Neuromorphic Space Domain Awareness Observatory 2019

Event-based Tracking Algorithm

Implementation of EVS in SDA

Challenges to Implement EVS for SDA	My Contributions	
Existing data has limited edge cases		
for algorithm development	Photon-Level Event Generation Simulation	
Difficult to collect space-based data		
Current synthetic event generators		
take shortcuts		
Leveraging data sparsity requires	Event Data Point Source Tracking Algorithm	
frame-less processing techniques	Event Data Foint Source Hacking Algorith	
Point sources generate events on sin-		
gle pixels which resemble noise		

Event-based Sensor Model

Event-based Tracking Algorithm

Summary 00000

State of the Art EVS Simulation

State of the Art Event Generation Simulation, Delbruck, Hu, and He 2021, https://sites.google.com/view/video2events/home

Event-based Tracking Algorithm

Prior Contributions Overview

Event-based Sensor Mode

Event-based Tracking Algorithm

Prior Contributions Overview

Hough Transform and Clusters

New Contributions

- Photon-Level Event Generation Simulation
 - Dark Shot Noise Generation
 - Circuit Noise Generation
- Event Data Point Source Tracking Algorithm
 - Tracking Methodology
 - Online Grouping Methods
 - Group Classification Methods

Outline

1 Introduction

- Space Domain Awareness
- Event-Based Sensors for Space Domain Awareness
- Contributions Overview

2 Event-based Sensor Model

- Dark Shot Noise
- Circuit Noise
- 8 Event-based Tracking Algorithm
 - Tracker Inspiration
 - Grouping
 - Classification

4 Summary

• Contributions Overview

Event-based Sensor Model

Event-based Tracking Algorithm

Event-based Sensor Model Updates

Event-based Sensor Model

Event-based Tracking Algorithm

Dark Shot Noise State of the Art Methodology

• Sets noise generation from chosen event rate

$$r = ((F - 1) \times (I_{pd}/I_{max}) + 1) \times R_n$$
$$p = r \times \delta t$$
$$u$$

 $u > (1-p): event_{ON}$

• Modeling at electron level provides greater insight into EVS noise behavior

Event-based Sensor Model

Event-based Tracking Algorithm

Dark Shot Noise Proposed Methodology

• Model the shot noise on dark current as Poisson distribution at the electron level

$$P(X=k) = \frac{\lambda_e^k e^{-\lambda_e}}{k!}$$

- Issue with the low pass filter
 - Simulation rate can be up to microsecond rate
 - High frequency Poisson pull does not make it through the low-pass filter
- Proposed solution rolling summation of Poisson

Event-based Sensor Model

Event-based Tracking Algorithm

Summary 00000

Rolling Poisson Summation

Event-based Tracking Algorithm

Rolling Poisson Performance

- Desire to Maintain Variation from Nominal
- Maximum Variation Loss
 - Traditional = 92.3%
 - Rolling = 5.4%
- Standard Deviation Loss
 - Traditional = 92.2%
 - Rolling = 7.5%
- Both generate slightly leptokurtic distributions
- Rolling poisson maintains deviations capable of passing threshold

Event-based Tracking Algorithm

Dark Shot Noise Sensitivity

Event-based Sensor Model

Event-based Tracking Algorithm

۲

Circuit Noise State of the Art Methodology

- Produces consistent 0.1 Hz rate of noise events
- All events induced are ON events
- Dark shot noise dominates at lower induced current levels

$$\delta_{leak} = \Delta t R_{leak} \theta_{ON}$$

Event-based Sensor Model

Event-based Tracking Algorithm

Problems With State of the Art Circuit Noise Model

- Data from integrating sphere deviates from consistent noise rate
- High frequency noise in circuit at low photocurrent levels dominates over leak noise

Event-based Sensor Model

Event-based Tracking Algorithm

New Circuit Noise Model

• Treat noise rate as area under a Gaussian distribution

 $\arg\min\left((P_{event} - erfc(z))^2\right)$

• Find standard deviation for empirical data based on negative threshold

$$\sigma = \frac{|x - \mu|}{z}$$

• Quadratic fit to the standard deviation

Standard Deviation to Create Desired Event Rate by Incident Energy

Event-based Tracking Algorithm

Simulated Noise Rate

- Offset of ON and OFF events
- Standard deviation drop off of events at higher induced photocurrents
- Low-pass filter drop off of events at lower induced photocurrents
- Low end drop off steepness tied to frequency cutoff model

$$f_{3dB} = \frac{(I_{dark} + I_{pd})}{I_{dark}} \times f_{3dBmin}$$
$$f_{3dB} \le f_{3dBmax}$$

Model Improvement Summary

O Dark shot noise as rolling Poisson

- Maintains expected distribution characteristics
- Carries enough inertia in current value to allow for noise generation with comparison operations
- Two tuning parameters: Threshold and Dark Current
- **2** Tuned Gaussian for real signal circuit noise
 - Generates a peak in noise event rate
 - Generates ON and OFF events with OFF events favored
 - Tuning required with better estimate of dark current and thresholds

Outline

Introduction

- Space Domain Awareness
- Event-Based Sensors for Space Domain Awareness
- Contributions Overview

2 Event-based Sensor Model

- Dark Shot Noise
- Circuit Noise

(3) Event-based Tracking Algorithm

- Tracker Inspiration
- Grouping
- Classification

Summary

• Contributions Overview

Event-based Sensor Model

Event-based Tracking Algorithm

Classic Multiple Hypothesis Trackers

Event-based Sensor Model

Proposed Event-Based Tracking Algorithm

Event-based Tracking Algorithm

Summary 00000

Proximity-Based Grouping

- Inspired by temporal clustering for labeling batch data
- Assign each event to a hypothesis group
- Select from most recent pixels from prior hypotheses or generate new hypothesis
- Original noise filter: only group high frequency events

RANSAC-Based Grouping

- Selects cuboid of events around newest event
- Linear regression fit & RANSAC with linear model
- RANSAC selects two data points at random and draws a line between them
- All proceeding events determine total inliers
- Select line with most inliers
- Not only groups, but provides linear slope and intercept

Event-based Sensor Model

Event-based Tracking Algorithm

Grouper Results Comparison

• Optimality 1: Percent Events Properly Grouped

$$group_{opt} = \frac{r+n}{event_{tot}}$$

• Optimality 2: Percent Events Properly Grouped Assuming Noise Group Rejection

$$group_{opt2} = \frac{r+n+m}{event_{tot}}$$

- r = real events properly grouped
- n =noise events not grouped
- m = noise events in majority noise group

Grouper	Opt 1	Opt 2	Real
			Dupli-
			\mathbf{cates}
Proximity-	91.0%	93.0%	697
Based			
Proximity-	73.4%	98.9%	1587
Based No			
Pruning			
RANSAC	94.5%	96.2%	33

Table: Grouping Methods Optimality &Real Duplicate Groups Compared

Event-based Tracking Algorithm

Pixel-Level Hypothesis Test Inspiration

Positive Event = 1. Negative Event = 0.

Event-based Sensor Model

Event-based Tracking Algorithm

Applying Bayes Rule to Event Profile

Event-based Sensor Model

Event-based Tracking Algorithm

Applying a Joint Conditional Probability Threshold

Pixel-Level Tracking Performance

	Predict Hot Pix	Pred Noise	Pred Star	Pred Sat
Actual Hot Pix	0	5242	13601	558
Actual Noise	0	123108	12128	17298
Actual Star	0	30609	351974	4929
Actual Sat	0	6191	7435	12392

Table: Pixel-wise Bayesian Classifier Online with Proximity Grouper Confusion Matrix

	Hot Pixel	Noise	Star	Sat
TPR	0	0.807086	0.908292	0.476286
\mathbf{TNR}	1	0.90289	0.832465	0.959272

Table: Pixel-wise Bayesian Classifier Online with Proximity Grouper TPR and TNR

Event-based Tracking Algorithm

Pivot to Group-Level Classification

- Use grouped event information (time, x, y, polarity) as input features
- 70/30 Train/Validation data split
- Initially compared several FOSS-library Classifier Models and custom Convolutional and Dense Neural networks
- Chose Random Forest and Dense Neural Network models for tuning and integration with online groupers
- Tuned by training on RANSAC groupings, ROC analyses, and having multiple group-size models

Model	Star TPR	Sat TPR	Star TNR	Sat TNR
KNN	0.96173	0.93700	0.97499	0.98393
Gaussian	0.85800	0.87008	0.95149	0.93451
NB				
Random	0.98108	0.98016	0.99305	0.99200
Forest				
Extra	0.98081	0.76108	0.91053	0.99193
Trees				
Gradient	0.92277	0.96291	0.98410	0.96504
Boosting				
Dense	0.98889	0.99642	0.99808	0.99526
Network				
CNN	0.97562	0.98092	0.98339	0.98643

Table: ML Model TPR and TNRfor Stars and Satellites based onoffline Validation Data
Introduction 0000000000 Event-based Sensor Model

Event-based Tracking Algorithm

Choosing Thresholds

Event-based Sensor Model

Classifier Results

Satellite	RANS	AC w/Star Filter	Proximity		
Model	TPR	TNR	TPR	TNR	
Bayesian	0.7474	0.9970	0.3517	0.9539	
Random Forest	0.9688	0.9997	0.9817	0.9924	
Dense Network	0.9762	0.9995	0.9516	0.9988	

Table: Final Classifier Performance Satellite TPR & TNR

Satellite	RANSAC w/Star Filter				Proximity			
Model	TP	\mathbf{TN}	\mathbf{FP}	FN	TP	\mathbf{TN}	\mathbf{FP}	\mathbf{FN}
Bayesian	19445	557765	1682	6573	9151	533678	25769	16867
Random Forest	25207	559260	187	811	25543	555186	4261	475
Dense Network	25399	559164	283	619	24759	558723	724	1259

Table: Final Raw Classification Numbers

Introduction 0000000000 Summary 00000

Final Online Classification

Bottom Line: This grouper and classifier combination can isolate satellite groups!

Tracker Development Summary

- Focus on filtering prior to state estimation with 2 steps
 - Grouping
 - Proximity-based serves as a starting point
 - RANSAC improves grouping optimality metrics
 - ② Classification
 - Pixel profile of events with Bayesian classifier serves as starting point
 - Multiple features, not just pixel polarity profile can contribute to classification
 - Dense Network and Random Forest with RANSAC improves overall classification and computational speed
- Proof of concept of online data rejection
- Next Step: Take filtered data to inform satellite state estimation and build a star tracker

Summary of Presented Results

- Developed new modeling techniques for noise in synthetic data stream creation
 - Utilizes the available electron rate information
 - **2** Dark shot noise as rolling Poisson
 - Inertia of rolling summation allows for variance to trigger events
 - **③** Tuned Gaussian for high frequency noise
 - Follows noise rate behavior on real signals
- ② Developed non-frame-based data rejection techniques for online event-based tracking algorithms
 - Proves pixel profile information and grouped attributes provide enough information for classification
 - **2** Develops two grouping techniques: Proximity-based & RANSAC-based
 - **③** Develops pixel-level and group-level classification techniques
 - **0** Combination of DNN and RANSAC grouper outperforms others in data rejection

Contributions Overview: Code

- Event-based Sensor Model for Space Domain Awareness, various modules (physics front end, noise generation, realistic event trigger timings, rate-limited arbiter)
- Event-based post processing clustering algorithm for data association and labeling
- Event-based Online RANSAC Grouper
- Event-based Online Proximity Grouper
- Dense Neural Network for Event Group Classification
- Trained Event Group Classification Models (DNN, Random Forest, Bayesian)

- Contributions Overview: Papers
 - Conference Papers:
 - Event-Based Sensor Multiple Hypothesis Tracker For Space Domain Awareness, Advanced Maui Optical and Space Surveillance Technologies Conference 2022
 - Event-based Sensor Model for Space Domain Awareness, Advanced Maui Optical and Space Surveillance Technologies Conference 2021
 - Co-author: Modeling and Decoding Event-Based Sensor Lightning Response, SPIE Optical Engineering + Applications 2023
 - Co-author: Demystifying Event-based Sensor Biasing to Optimize Signal to Noise for Space Domain Awareness, Advanced Maui Optical and Space Surveillance Technologies Conference 2023
 - Journal Papers:
 - Verification of a Satellite Observing Event-Based Sensor Model, In Preparation 2024
 - Algorithmic Methods for Online Grouping and Classification of Point Source Event-Based Data, In Preparation 2024
 - Co-author: Event Camera Optimization and Photometric Reconstruction for Space Applications, IEEE, In Preparation 2024

Contributions Overview: Presentations & Proposals

۲

- Presentations:
 - Conference Short Course: An Introduction to Event-Based Sensors for SDA: A Hands-On Tutorial, Advanced Maui Optical and Space Surveillance Technologies Conference 2022
 - Invited Presentation: Modeling and Tracking Algorithms for Space Domain Awareness with Event-Based Sensors, Event-Based Sensing Community of Interest, Air Force Research Laboratories, 2023
 - Invited Presentation: Modeling and Tracking Algorithms for Space Domain Awareness with Event-Based Sensors, Raytheon Event-Based Sensing, Processors, Algorithms, and Applications, 2023
- Proposals Written and Awarded:
 - EVS Research AFIT New Faculty Research: \$10k
 - EVS Research with Air Force Research Laboratory: \$37k
 - EVS Research with NPS: \$50k
- NATO Research Task Group: SET-347 Applications of Neuromorphic Sensors, Invited Technical Team Member

Acknowledgements

Thank you for attending my B exam!

Special thank you to my committee members, colleagues, family, and friends for their support over the past 4 years.

Rachel Oliver

ro234@cornell.edu

References I

- Delbruck, T., Y. Hu, and Z. He (2021). "V2E: from video frames to realistic DVS event camera streams". In: Conference on Computer Vision and Pattern Recognition Workshops.
- Office, ESA Space Debris (2023). ESA's Annual Space Environment Report. https://www.esa.int/Space_Safety/Space_Debris/ESA_s_Space_ Environment_Report_2023. Darmstadt, Germany.
- Reid, D. (1979). "An Algorithm for Tracking Multiple Targets". In: *IEEE Transactions on Automatic Control* 24.6.
- The Astrosite: A Mobile Neuromorphic Space Domain Awareness Observatory (2019). https://greg-cohen.com/project/astrosite/. Accessed: 2024-07-24.

Contributions Overview: Teaching & Advising

- Teaching Graduate Level Courses:
 - Instructor: Introductory Spaceflight Dynamics at Air Force Institute of Technology (Winter 2024)
 - Instructor: Intermediate Spaceflight Dynamics at Air Force Institute of Technology (Spring 2024)
 - Instructor: Spacecraft Design and Test at Air Force Institute of Technology (Summer 2024)
- Student Advising:
 - Committee Member for current PhD Candidate: EVS event frequency exploitation
 - Committee Member for PhD Student: EVS star tracking
 - Committee Member for MS Student (2023): Event-based Tracking of Target in a Threat Affect Scene
 - Committee Member for MS Student (2024): Disposal and Earth-Moon Escape from Cislunar Orbits using Non-Linear Programming Techniques

Courses Taken

• For Credit

- AEP 5400 Nonlinear and Quantum Optics
- MAE 5180 Autonomous Mobile Robots
- MAE 5730 Intermediate Dynamics
- MAE 5780 Feedback Control Systems
- MAE 5830 Astronautic Optimization
- MAE 6760 Model-Based Estimation
- MAE 6780 Multivariable Control Theory
- Audited
 - MAE 6280 Adaptive and Learning Systems
 - MAE 6700 Advanced Dynamics
 - $\bullet~\mathrm{CS}$ 5780 Intro to Machine Learning

Additional Graduate Level Courses

- Taken at the Air Force Institute of Technology
 - Linear Systems Analysis
 - The Space Environment
 - Methods of Applied Mathematics
 - Intermediate Dynamics
 - Space Mission Analysis and Design
 - Satellite Communications
 - Control and State Space Concepts
 - Introduction to Flight Dynamics
 - Applied Linear Alegbra
 - Intermediate Space Flight Dynamics

- Spacecraft Systems Engineering
- Satellite Design and Test
- Modern Methods of Orbital Determination
- Space Surveillance
- Chemical Rocket Propulsion

New Event-based Sensor Model

Satellite and Star Generation

Irradiance Calculations

- Star by Gaia G: $V_0 = q_v 2.5 log(F_v)$
 - q_v zero magnitude flux scaled from Vega
 - Rearrange Equation for Flux

•
$$F_v = 10^{-0.4(V_0 - q_v)} [\frac{W}{cm^2 Angstrom}]$$

- Multiply by bandpass, filter width, and recieving area
- $P_v = F_v Area Bandpass$
- Satellite by Point Source:
 - Power sent to hemisphere

•
$$I = \frac{L \sum (A_{surf} \rho_{surf})}{2*\pi}$$

• Calculate energy recieved per steradian

•
$$\mathcal{E}_{\lambda} = \frac{I_{\lambda} * cos(\theta_R)}{R^2}$$

• Multiply by receiving area

•
$$P_{sat} = \mathcal{E}_{\lambda}Area$$

New Event-based Sensor Model

Backup

۲

Simulating Atmospheric Propagation

 $U(r_n) = \mathcal{Q}\left[\frac{m_{n-1}-1}{m_{n-1}\Delta z_{n-1}}, r_n\right] \times \prod_{i=1}^{n-1} \left\{ \mathcal{T}[z_i, z_{i+1}] \mathcal{F}^{-1}\left[f_i, \frac{r_{i+1}}{m_i}\right] \mathcal{Q}_2\left[-\frac{\Delta z_i}{m_i}, f_i\right] \mathcal{F}[r_i, f_i] \frac{1}{m_i} \right\} \times \left\{ \mathcal{Q}\left[\frac{1-m_1}{\Delta z_1}\right] \mathcal{T}[z_1, z_2] U(r_1) \right\}$

۲

$$U(r_n) = \mathcal{Q}\left[\frac{m_{n-1}-1}{m_{n-1}\Delta z_{n-1}}, r_n\right] \times \prod_{i=1}^{n-1} \left\{ \mathcal{T}[z_i, z_{i+1}] \mathcal{F}^{-1}\left[f_i, \frac{r_{i+1}}{m_i}\right] \mathcal{Q}_2\left[-\frac{\Delta z_i}{m_i}, f_i\right] \mathcal{F}[r_i, f_i] \frac{1}{m_i} \right\} \times \left\{ \mathcal{Q}\left[\frac{1-m_1}{\Delta z_1}\right] \mathcal{T}[z_1, z_2] U(r_1) \right\}$$

۲

$$U(r_n) = \mathcal{Q}\left[\frac{m_{n-1}-1}{m_{n-1}\Delta z_{n-1}}, r_n\right] \times \prod_{i=1}^{n-1} \left\{ \mathcal{T}[z_i, z_{i+1}] \mathcal{F}^{-1}\left[f_i, \frac{r_{i+1}}{m_i}\right] \mathcal{Q}_2\left[-\frac{\Delta z_i}{m_i}, f_i\right] \mathcal{F}[r_i, f_i] \frac{1}{m_i} \right\} \times \left\{ \mathcal{Q}\left[\frac{1-m_1}{\Delta z_1}\right] \mathcal{T}[z_1, z_2] U(r_1) \right\}$$

۲

$$U(r_n) = \mathcal{Q}\left[\frac{m_{n-1}-1}{m_{n-1}\Delta z_{n-1}}, r_n\right] \times \prod_{i=1}^{n-1} \left\{ \mathcal{T}[z_i, z_{i+1}] \mathcal{F}^{-1}\left[f_i, \frac{r_{i+1}}{m_i}\right] \mathcal{Q}_2\left[-\frac{\Delta z_i}{m_i}, f_i\right] \mathcal{F}[r_i, f_i] \frac{1}{m_i} \right\} \times \left\{ \mathcal{Q}\left[\frac{1-m_1}{\Delta z_1}\right] \mathcal{T}[z_1, z_2] U(r_1) \right\}$$

۲

$$U(r_n) = \mathcal{Q}\left[\frac{m_{n-1}-1}{m_{n-1}\Delta z_{n-1}}, r_n\right] \times \prod_{i=1}^{n-1} \left\{ \mathcal{T}[z_i, z_{i+1}] \mathcal{F}^{-1}\left[f_i, \frac{r_{i+1}}{m_i}\right] \mathcal{Q}_2\left[-\frac{\Delta z_i}{m_i}, f_i\right] \mathcal{F}[r_i, f_i] \frac{1}{m_i} \right\} \times \left\{ \mathcal{Q}\left[\frac{1-m_1}{\Delta z_1}\right] \mathcal{T}[z_1, z_2] U(r_1) \right\}$$

Zernike Mode Phase Screen

۲

 $C_{j,j'}$

Zernike Mode Weighting

$$\begin{split} Z_{evenj} &= \sqrt{n+1} R_n^m(r) \sqrt{2} cos(m\theta) \\ Z_{oddj} &= \sqrt{n+1} R_n^m(r) \sqrt{2} sin(m\theta) \\ Z_j &= \sqrt{n+1} R_n^0(r), m = 0 \\ \Theta_{atm}(r,\theta) &= \sum_j a_j Z_j(r,\theta). \\ &= E[a_j,a_{j'}] = \frac{K_{zz'} \delta_z \Gamma[(n+n'-5/3)/2] (D/r_o)^{5/3}}{\Gamma[(n-n'+17/3)/2] \Gamma[(n'-n+17/3)/2] \Gamma[(n+n'+23/3)/2]}. \\ &= a_j = U^T \cdot \overrightarrow{n}. \end{split}$$

۲

$$U(r_n) = \mathcal{Q}\left[\frac{m_{n-1}-1}{m_{n-1}\Delta z_{n-1}}, r_n\right] \times \prod_{i=1}^{n-1} \left\{ \mathcal{T}[z_i, z_{i+1}] \mathcal{F}^{-1}\left[f_i, \frac{r_{i+1}}{m_i}\right] \mathcal{Q}_2\left[-\frac{\Delta z_i}{m_i}, f_i\right] \mathcal{F}[r_i, f_i] \frac{1}{m_i} \right\} \times \left\{ \mathcal{Q}\left[\frac{1-m_1}{\Delta z_1}\right] \mathcal{T}[z_1, z_2] U(r_1) \right\}$$

$$U(r_n) = \mathcal{Q}\left[\frac{m_{n-1}-1}{m_{n-1}\Delta z_{n-1}}, r_n\right] \times \prod_{i=1}^{n-1} \left\{ \mathcal{T}[z_i, z_{i+1}] \mathcal{F}^{-1}\left[f_i, \frac{r_{i+1}}{m_i}\right] \mathcal{Q}_2\left[-\frac{\Delta z_i}{m_i}, f_i\right] \mathcal{F}[r_i, f_i] \frac{1}{m_i} \right\} \times \left\{ \mathcal{Q}\left[\frac{1-m_1}{\Delta z_1}\right] \mathcal{T}[z_1, z_2] U(r_1) \right\}$$

۲

Backup ००००००००००००००**०००००००००**००००००००००००

New Event-based Sensor Model

Induced Photocurrent

• Responsivity linearly scales Power, $\Phi[W]$

 $I_p = R_\lambda \Phi[A]$

• Responsivity, R_{λ} , Scaled by Quantum Efficiency, η $R_{\lambda} = \eta \frac{q}{hf} \approx \eta \frac{\lambda}{1.23985} \left[\frac{A}{W}\right]$

• Temperature, T, Dependent Dark Current, $I_{darklog}$

$$I_{darklog} = \ln(I_{dark}) = constant - \frac{E_a}{kT}$$

Backup

New Event-based Sensor Model

Low Pass Filter

- Maximum bandwidth, $f_{3dBmax}{\approx}\,3000[Hz]$
- Resultant bandwidth, f_{3dB}

$$f_{3dB} = \frac{I_{in} + (\frac{I_{max}}{10})}{I_{max}} \times f_{3dBmax}$$
$$\epsilon = e^{2\pi * \Delta t f_{3db}}$$
$$I_{p_{int}} \longleftarrow (1 - \epsilon)I_{p-1} + \epsilon I_{in}$$
$$I_p \longleftarrow (1 - \epsilon)I_{p_{int}} + \epsilon I_{in}$$

Backup

New Event-based Sensor Model

Comparator and Refractory Circuit

▲ Return

Event Trigger Time Determination

$$t_1 = \begin{cases} t_{pos} = \frac{(\theta_{ON} - I_{p1} + I_{memlog1})\Delta t}{\Delta I_p - \Delta I_{memlog}} + t_0 & \Delta I_p > 0\\ t_{neg} = \frac{(\theta_{OFF} + I_{p1} - I_{memlog1})\Delta t}{\Delta I_{memlog} - \Delta I_p} + t_0 & \Delta I_p < 0 \end{cases}$$

New Event-based Sensor Model

Arbitration • Return

- Ordered row then column query
- Restricted maximum number of events
- Allows and tracks loss of events
 - Saturation
 - Refractory Period

Rolling Poisson Distribution Analysis

Verification

- Goal: Prove Model Creates Data Analogous to Real Data
 - Build trust in simulation output
 - Produce simulated data for algorithm development
 - Test camera settings and designs to maximize low-light performance
- Challenges:
 - Non-deterministic: no one-to-one matching
 - Unknown importance of data characteristics

Data Collection

- Prophessee Gen3 (VGA) camera
- 85mm f1.4 Lens
- January March 2021
- Collection Procedure
 - **(**) Slew to fixed azimuth and elevation
 - **2** Stare in fixed position for 30 seconds
 - **3** Slew to next location
- Courtesy of Dr. David Monet of AFRL Space Vehicles Directorate

Sony Prophesee, 2022 https://www.prophesee.ai/ event-based-evaluation-kits/

Example Data

Backup oo

Analysis Approaches

- Classic Post Processing
 - Integrate data over 3 second time slice FITS image
 - SExtractor yields:
 (column, row, flux)
 - **3** Conversion of flux to visual magnitude: $(column, row, v_{mag})$
 - Astrometry.net maps (column, row) to (RA, DEC) and identifies reference stars and satellites
 - Correlate satellite (RA, DEC) from each time slice with a satellite detection

- New Temporal Data Association
 - Cluster data in 3-dimensions
 - Pilter clusters with too few pixels and/or events
 - Combine clusters with Hough transform
 - **4** Assign cluster numbers to satellites
 - Extract signature and temporal characteristics

Clustering

Clustering

Grouping with Proximity and Time • . 400 . . . 300 y pixel --. -200 . ۰. ٠ 100 •• . 0 100 200 300 400 500 600 0

x pixel

Hough Transform

New Approach Limitations

- Human involvement is necessary
 - Easier to access in 2-dimensions
 - Poor signal to noise datasets are hard to process
- Time clustering is more consistent, but slow

Selected Characteristics

Evenue Evenue Events Forents F

Backup ०००००००००००००००००००००००**०००००००००**

Characteristic Distributions

Beta Binomial Distribution Fit

- Unknown or random probability of success in each of a fixed or known number of Bernoulli trials
- Binomial distribution modification: probability of success is drawn from beta distribution
- Fit with selection of approximate α and β values defining the continuous beta distribution
- Defined the bin size and center values of those bins
- Curve fit the center locations to a continuous beta distribution

Horas, 2014

Validation Plan

- **9** Select at random a set of data from those post-processed
- **2** Simulate the physics front-end once
- ³ Run sensitivity analysis on camera parameters
- **(**) Create Jacobian from sensitivity analysis
- **6** Find least squares fit of camera parameters
- **(3)** Use best fit parameters to simulate other collections
- **②** Compare the distributions with the Kolmogorov Smirnov Test

Non-linear Least Squares

- Sensitivity analysis is a finite difference approximation
- Produces Jacobian, J_{ij} $J_{ij} = -\frac{\delta r_i}{\delta \beta_i}$
- \bullet Residuals, r_i
- Input Parameters, β_j
- Least Squares to find change in output, Δy

 $(J^TJ)\Delta\beta=J^T\Delta {\pmb y}$

Backup

Kolmogorov Smirnov Test

Backup

Event-based Sensor Star Tracker

