An Event-Based Vision Sensor Simulation Framework for Space Domain Awareness Applications B Exam

Rachel Oliver

Cornell University

25 July 2024

Outline

[Introduction](#page-2-0)

- [Space Domain Awareness](#page-3-0)
- [Event-Based Sensors for Space Domain Awareness](#page-5-0)
- [Contributions Overview](#page-8-0)

2 [Event-based Sensor Model](#page-12-0)

- [Dark Shot Noise](#page-14-0)
- [Circuit Noise](#page-19-0)
- 3 [Event-based Tracking Algorithm](#page-24-0)
	- [Tracker Inspiration](#page-25-0)
	- [Grouping](#page-27-0)
	- [Classification](#page-30-0)

4 [Summary](#page-40-0)

• [Contributions Overview](#page-40-0)

Outline

[Introduction](#page-2-0)

- [Space Domain Awareness](#page-3-0)
- [Event-Based Sensors for Space Domain Awareness](#page-5-0)
- [Contributions Overview](#page-8-0)

2 [Event-based Sensor Model](#page-12-0)

- [Dark Shot Noise](#page-14-0)
- [Circuit Noise](#page-19-0)
- 3 [Event-based Tracking Algorithm](#page-24-0)
	- [Tracker Inspiration](#page-25-0)
	- [Grouping](#page-27-0)
	- [Classification](#page-30-0)

[Summary](#page-40-0)

• [Contributions Overview](#page-40-0)

Space Domain Awareness (SDA)

Weisbarth, 2020, [https:](https://media.defense.gov/2020/Mar/15/2002264814/-1/-1/0/190111-F-HF064-002.PNG) [//media.defense.gov/2020/Mar/15/2002264814/-1/-1/0/190111-F-HF064-002.PNG](https://media.defense.gov/2020/Mar/15/2002264814/-1/-1/0/190111-F-HF064-002.PNG)

MDA, 2008, <http://www.mda.mil/mdalink/pdf/too164.pdf>

Growing Complexity

Evolution in All Orbits

ESA's Space Environment Report Office [2023](#page-45-0)

Event-Based Vision Sensors (EVS)

- Asynchronous data collection
- Records time series events, e

$$
\bullet \ e = \{t,x,y,\rho\}
$$

- \bullet recording timestamp, t
- \bullet pixel location, x and y
- change polarity, ρ
- Blue $=$ ON events (positive events)
- $Red = OFF$ events (negative events)
- \bullet Other Names = Neuromorphic Camera, Neuromorphic Sensor, Silicon Retina, Event-Based Camera, Event-Based Sensor, or Dynamic Vision Sensor

EVS Advantages in SDA

- Temporal Sensitivity
- High Dynamic Range
- Space-Based
	- Low SWaP for Space-Based
	- Maximize Information for Downlink
	- Enable Onboard Computation
- Ground-Based
	- Low Cost for Augmenting SDA Operations

<http://greg-cohen.com/project/astrosite/> [The Astrosite:](#page-45-1) [A Mobile Neuromorphic Space Domain Awareness](#page-45-1) [Observatory](#page-45-1) [2019](#page-45-1)

Implementation of EVS in SDA

State of the Art EVS Simulation

State of the Art Event Generation Simulation, Delbruck, Hu, and He [2021,](#page-45-2) <https://sites.google.com/view/video2events/home>

Prior Contributions Overview

Prior Contributions Overview

x pixel

Hough Transform and Clusters

New Contributions

- Photon-Level Event Generation Simulation
	- Dark Shot Noise Generation
	- Circuit Noise Generation
- Event Data Point Source Tracking Algorithm
	- Tracking Methodology
	- Online Grouping Methods
	- Group Classification Methods

Outline

[Introduction](#page-2-0)

- [Space Domain Awareness](#page-3-0)
- [Event-Based Sensors for Space Domain Awareness](#page-5-0)
- [Contributions Overview](#page-8-0)

2 [Event-based Sensor Model](#page-12-0)

- [Dark Shot Noise](#page-14-0)
- [Circuit Noise](#page-19-0)
- 3 [Event-based Tracking Algorithm](#page-24-0)
	- [Tracker Inspiration](#page-25-0)
	- [Grouping](#page-27-0)
	- [Classification](#page-30-0)

[Summary](#page-40-0)

• [Contributions Overview](#page-40-0)

Event-based Sensor Model Updates

Dark Shot Noise State of the Art Methodology

- Sets noise generation from chosen event rate
	- $r = ((F 1) \times (I_{pd}/I_{max}) + 1) \times R_n$ $p = r \times \delta t$ $u < p : event_{OFF}$ $u > (1-p)$: event_{ON}
- Modeling at electron level provides greater insight into EVS noise behavior

Dark Shot Noise Proposed Methodology

• Model the shot noise on dark current as Poisson distribution at the electron level

$$
P(X=k) = \frac{\lambda_e^k e^{-\lambda_e}}{k!}
$$

- Issue with the low pass filter
	- Simulation rate can be up to microsecond rate
	- High frequency Poisson pull does not make it through the low-pass filter
- Proposed solution rolling summation of Poisson

Rolling Poisson Summation

Rolling Poisson Performance

- Desire to Maintain Variation from Nominal
- Maximum Variation Loss
	- \bullet Traditional = 92.3%
	- Rolling $= 5.4\%$
- Standard Deviation Loss
	- Traditional $= 92.2\%$
	- Rolling $= 7.5\%$
- Both generate slightly leptokurtic distributions
- Rolling poisson maintains deviations capable of passing threshold

Dark Shot Noise Sensitivity

Circuit Noise State of the Art Methodology

- Produces consistent 0.1 Hz rate of noise events
- All events induced are ON events
- Dark shot noise dominates at lower induced current levels

$$
\delta_{leak} = \Delta t R_{leak} \theta_{ON}
$$

Problems With State of the Art Circuit Noise Model

- Data from integrating sphere deviates from consistent noise rate
- High frequency noise in circuit at low photocurrent levels dominates over leak noise

New Circuit Noise Model

Treat noise rate as area under a Gaussian distribution

 $\arg \min \left((P_{event}-erfc(z))^2 \right)$

Find standard deviation for empirical data based on negative threshold

$$
\sigma = \frac{|x - \mu|}{z}
$$

Quadratic fit to the standard Quadratic fit to the standard
deviation

Standard Deviation to Create Desired Event Rate by Incident Energy

Simulated Noise Rate

- Offset of ON and OFF events
- Standard deviation drop off of events at higher induced photocurrents
- Low-pass filter drop off of events at lower induced photocurrents
- Low end drop off steepness tied to frequency cutoff model

$$
f_{3dB} = \frac{(I_{dark} + I_{pd})}{I_{dark}} \times f_{3dBmin}
$$

$$
f_{3dB} \le f_{3dBmax}
$$

Model Improvement Summary

¹ Dark shot noise as rolling Poisson

- Maintains expected distribution characteristics
- Carries enough inertia in current value to allow for noise generation with comparison operations
- Two tuning parameters: Threshold and Dark Current
- ² Tuned Gaussian for real signal circuit noise
	- Generates a peak in noise event rate
	- Generates ON and OFF events with OFF events favored
	- Tuning required with better estimate of dark current and thresholds

Outline

[Introduction](#page-2-0)

- [Space Domain Awareness](#page-3-0)
- [Event-Based Sensors for Space Domain Awareness](#page-5-0)
- **[Contributions Overview](#page-8-0)**

2 [Event-based Sensor Model](#page-12-0)

- [Dark Shot Noise](#page-14-0)
- [Circuit Noise](#page-19-0)
- 3 [Event-based Tracking Algorithm](#page-24-0)
	- [Tracker Inspiration](#page-25-0)
	- [Grouping](#page-27-0)
	- [Classification](#page-30-0)

[Summary](#page-40-0)

• [Contributions Overview](#page-40-0)

Classic Multiple Hypothesis Trackers

Proposed Event-Based Tracking Algorithm

Proximity-Based Grouping

- Inspired by temporal clustering for labeling batch data
- Assign each event to a hypothesis group
- Select from most recent pixels from prior hypotheses or generate new hypothesis
- Original noise filter: only group high frequency events

RANSAC-Based Grouping

- Selects cuboid of events around newest event
- Linear regression fit & RANSAC with linear model
- RANSAC selects two data points at random and draws a line between them
- All proceeding events determine total inliers
- Select line with most inliers
- Not only groups, but provides linear slope and intercept

Grouper Results Comparison

• Optimality 1: Percent Events Properly Grouped

$$
group_{opt} = \frac{r+n}{event_{tot}}
$$

• Optimality 2: Percent Events Properly Grouped Assuming Noise Group Rejection

$$
\mathit{group_{opt2}} = \frac{r+n+m}{event_{tot}}
$$

- \bullet r = real events properly grouped
- \bullet n = noise events not grouped
- \bullet m = noise events in majority noise group

Table: Grouping Methods Optimality & Real Duplicate Groups Compared

Pixel-Level Hypothesis Test Inspiration

30/44

Applying Bayes Rule to Event Profile

Applying a Joint Conditional Probability Threshold

Pixel-Level Tracking Performance

Table: Pixel-wise Bayesian Classifier Online with Proximity Grouper Confusion Matrix

Table: Pixel-wise Bayesian Classifier Online with Proximity Grouper TPR and TNR

Pivot to Group-Level Classification

- Use grouped event information (time, x, y, polarity) as input features
- 70/30 Train/Validation data split
- Initially compared several FOSS-library Classifier Models and custom Convolutional and Dense Neural networks
- Chose Random Forest and Dense Neural Network models for tuning and integration with online groupers
- Tuned by training on RANSAC groupings, ROC analyses, and having multiple group-size models

Table: ML Model TPR and TNR for Stars and Satellites based on offline Validation Data

[Introduction](#page-2-0) [Event-based Sensor Model](#page-12-0) [Event-based Tracking Algorithm](#page-24-0) [Summary](#page-40-0)

[Introduction](#page-2-0) [Event-based Sensor Model](#page-12-0) [Event-based Tracking Algorithm](#page-24-0) [Summary](#page-40-0)

Classifier Results

Table: Final Classifier Performance Satellite TPR & TNR

Table: Final Raw Classification Numbers

[Introduction](#page-2-0) [Event-based Sensor Model](#page-12-0) [Event-based Tracking Algorithm](#page-24-0) [Summary](#page-40-0)

Final Online Classification

Bottom Line: This grouper and classifier combination can isolate satellite groups!

Tracker Development Summary

- Focus on filtering prior to state estimation with 2 steps
	- **1** Grouping
		- Proximity-based serves as a starting point
		- RANSAC improves grouping optimality metrics
	- **2** Classification
		- Pixel profile of events with Bayesian classifier serves as starting point
		- Multiple features, not just pixel polarity profile can contribute to classification
		- Dense Network and Random Forest with RANSAC improves overall classification and computational speed
- Proof of concept of online data rejection
- Next Step: Take filtered data to inform satellite state estimation and build a star tracker

Summary of Presented Results

- ¹ Developed new modeling techniques for noise in synthetic data stream creation
	- **0** Utilizes the available electron rate information
	- **2** Dark shot noise as rolling Poisson
		- Inertia of rolling summation allows for variance to trigger events
	- **3** Tuned Gaussian for high frequency noise
		- Follows noise rate behavior on real signals
- ² Developed non-frame-based data rejection techniques for online event-based tracking algorithms
	- ¹ Proves pixel profile information and grouped attributes provide enough information for classification
	- ² Develops two grouping techniques: Proximity-based & RANSAC-based
	- ³ Develops pixel-level and group-level classification techniques
	- ⁴ Combination of DNN and RANSAC grouper outperforms others in data rejection

Contributions Overview: Code

- Event-based Sensor Model for Space Domain Awareness, various modules (physics front end, noise generation, realistic event trigger timings, rate-limited arbiter)
- Event-based post processing clustering algorithm for data association and labeling
- Event-based Online RANSAC Grouper
- Event-based Online Proximity Grouper
- Dense Neural Network for Event Group Classification
- Trained Event Group Classification Models (DNN, Random Forest, Bayesian)

Contributions Overview: Papers

- Conference Papers:
	- Event-Based Sensor Multiple Hypothesis Tracker For Space Domain Awareness, Advanced Maui Optical and Space Surveillance Technologies Conference 2022
	- Event-based Sensor Model for Space Domain Awareness, Advanced Maui Optical and Space Surveillance Technologies Conference 2021
	- Co-author: Modeling and Decoding Event-Based Sensor Lightning Response, SPIE Optical Engineering + Applications 2023
	- Co-author: Demystifying Event-based Sensor Biasing to Optimize Signal to Noise for Space Domain Awareness, Advanced Maui Optical and Space Surveillance Technologies Conference 2023
- Journal Papers:
	- Verification of a Satellite Observing Event-Based Sensor Model, In Preparation 2024
	- Algorithmic Methods for Online Grouping and Classification of Point Source Event-Based Data, In Preparation 2024
	- Co-author: Event Camera Optimization and Photometric Reconstruction for Space Applications, IEEE, In Preparation 2024

Contributions Overview: Presentations & Proposals

- Presentations:
	- Conference Short Course: An Introduction to Event-Based Sensors for SDA: A Hands-On Tutorial, Advanced Maui Optical and Space Surveillance Technologies Conference 2022
	- Invited Presentation: Modeling and Tracking Algorithms for Space Domain Awareness with Event-Based Sensors, Event-Based Sensing Community of Interest, Air Force Research Laboratories, 2023
	- Invited Presentation: Modeling and Tracking Algorithms for Space Domain Awareness with Event-Based Sensors, Raytheon Event-Based Sensing, Processors, Algorithms, and Applications, 2023
- Proposals Written and Awarded:
	- EVS Research AFIT New Faculty Research: \$10k
	- EVS Research with Air Force Research Laboratory: \$37k
	- EVS Research with NPS: \$50k
- NATO Research Task Group: SET-347 Applications of Neuromorphic Sensors, Invited Technical Team Member

Acknowledgements

[Introduction](#page-2-0) [Event-based Sensor Model](#page-12-0) [Event-based Tracking Algorithm](#page-24-0) [Summary](#page-40-0)

Thank you for attending my B exam!

Special thank you to my committee members, colleagues, family, and friends for their support over the past 4 years.

Rachel Oliver

ro234@cornell.edu

References I

- F Delbruck, T., Y. Hu, and Z. He (2021). "V2E: from video frames to realistic DVS event camera streams". In: Conference on Computer Vision and Pattern Recognition Workshops.
- 譶 Office, ESA Space Debris (2023). ESA's Annual Space Environment Report. [https://www.esa.int/Space_Safety/Space_Debris/ESA_s_Space_](https://www.esa.int/Space_Safety/Space_Debris/ESA_s_Space_Environment_Report_2023) [Environment_Report_2023](https://www.esa.int/Space_Safety/Space_Debris/ESA_s_Space_Environment_Report_2023). Darmstadt, Germany.
- Reid, D. (1979). "An Algorithm for Tracking Multiple Targets". In: IEEE 量 Transactions on Automatic Control 24.6.
- F The Astrosite: A Mobile Neuromorphic Space Domain Awareness Observatory (2019). <https://greg-cohen.com/project/astrosite/>. Accessed: 2024-07-24.

Contributions Overview: Teaching & Advising

- Teaching Graduate Level Courses:
	- Instructor: Introductory Spaceflight Dynamics at Air Force Institute of Technology (Winter 2024)
	- Instructor: Intermediate Spaceflight Dynamics at Air Force Institute of Technology (Spring 2024)
	- Instructor: Spacecraft Design and Test at Air Force Institute of Technology (Summer 2024)
- Student Advising:
	- Committee Member for current PhD Candidate: EVS event frequency exploitation
	- Committee Member for PhD Student: EVS star tracking
	- Committee Member for MS Student (2023): Event-based Tracking of Target in a Threat Affect Scene
	- Committee Member for MS Student (2024): Disposal and Earth-Moon Escape from Cislunar Orbits using Non-Linear Programming Techniques

Courses Taken

- For Credit
	- AEP 5400 Nonlinear and Quantum Optics
	- MAE 5180 Autonomous Mobile Robots
	- MAE 5730 Intermediate Dynamics
	- MAE 5780 Feedback Control Systems
	- MAE 5830 Astronautic Optimization
	- MAE 6760 Model-Based Estimation
	- MAE 6780 Multivariable Control Theory
- Audited
	- MAE 6280 Adaptive and Learning Systems
	- MAE 6700 Advanced Dynamics
	- CS 5780 Intro to Machine Learning

Additional Graduate Level Courses

- Taken at the Air Force Institute of Technology
	- Linear Systems Analysis
	- The Space Environment
	- Methods of Applied Mathematics
	- Intermediate Dynamics
	- Space Mission Analysis and Design
	- Satellite Communications
	- Control and State Space Concepts
	- Introduction to Flight Dynamics
	- Applied Linear Alegbra
	- Intermediate Space Flight Dynamics
- Spacecraft Systems Engineering
- Satellite Design and Test
- Modern Methods of Orbital Determination
- Space Surveillance
- Chemical Rocket Propulsion

New Event-based Sensor Model

[References](#page-45-0) [Backup](#page-46-0)

Satellite and Star Generation

Irradiance Calculations [Return](#page-9-1)

- Star by Gaia G: $V_0 = q_v 2.5log(F_v)$
	- q_v zero magnitude flux scaled from Vega
	- Rearrange Equation for Flux

•
$$
F_v = 10^{-0.4(V_0 - q_v)} \left[\frac{W}{cm^2 \text{Angstrom}}\right]
$$

- Multiply by bandpass, filter width, and recieving area
- $P_v = F_vAreaBandpass$
- Satellite by Point Source:
	- Power sent to hemisphere

$$
\bullet \ \ I = \tfrac{L\sum (A_{surf}\rho_{surf})}{2*\pi}
$$

2∗π Calculate energy recieved per steradian

$$
\bullet\ \ \mathcal{E}_{\lambda} = \tfrac{I_{\lambda} * cos(\theta_R)}{R^2}
$$

 \mathcal{L}_{λ} – \mathbb{R}^2
Multiply by receiving area

•
$$
P_{sat} = \mathcal{E}_{\lambda} Area
$$

New Event-based Sensor Model

[Return](#page-9-1)

$$
U(r_n) = \mathcal{Q}\left[\frac{m_{n-1}-1}{m_{n-1}\Delta z_{n-1}}, r_n\right] \times \prod_{i=1}^{n-1} \left\{\mathcal{T}[z_i, z_{i+1}]\mathcal{F}^{-1}\left[f_i, \frac{r_{i+1}}{m_i}\right] \mathcal{Q}_2\left[-\frac{\Delta z_i}{m_i}, f_i\right] \mathcal{F}[r_i, f_i] \frac{1}{m_i}\right\} \times \left\{\mathcal{Q}\left[\frac{1-m_1}{\Delta z_1}\right] \mathcal{T}[z_1, z_2] U(r_1)\right\}
$$

$$
U(r_n) = \mathcal{Q}\left[\frac{m_{n-1}-1}{m_{n-1}\Delta z_{n-1}},r_n\right] \times \prod_{i=1}^{n-1}\left\{\boxed{\mathcal{T}[z_i,z_{i+1}]\mathcal{F}^{-1}\left[f_i,\frac{r_{i+1}}{m_i}\right]\mathcal{Q}_2\left[-\frac{\Delta z_i}{m_i},f_i\right]\mathcal{F}[r_i,f_i]\frac{1}{m_i}}\right\}\times\\ \left\{\mathcal{Q}\left[\frac{1-m_1}{\Delta z_1}\right]\mathcal{T}[z_1,z_2]U(r_1)\frac{1}{\Delta z_1}\mathcal{F}[z_2,z_3]U(r_2)\frac{1}{\Delta z_2}\mathcal{F}[z_3,z_4]\frac{1}{\Delta z_3}\right\}\mathcal{Q}\right\}
$$

$$
U(r_n) = \underbrace{\mathcal{Q}\left[\frac{m_{n-1}-1}{m_{n-1}\Delta z_{n-1}},r_n\right]} \times \prod_{i=1}^{n-1} \bigg\{\mathcal{T}[z_i,z_{i+1}]\mathcal{F}^{-1}\left[f_i,\frac{r_{i+1}}{m_i}\right]\mathcal{Q}_2\left[-\frac{\Delta z_i}{m_i},f_i\right]\mathcal{F}[r_i,f_i]\frac{1}{m_i}\bigg\} \times \bigg\{\underbrace{\mathcal{Q}\left[\frac{1-m_1}{\Delta z_1}\right]}\mathcal{T}[z_1,z_2]U(r_1)\bigg\}
$$

$$
U(r_n) = \mathcal{Q}\left[\frac{m_{n-1}-1}{m_{n-1}\Delta z_{n-1}},r_n\right] \times \prod_{i=1}^{n-1}\left\{\boxed{\mathcal{T}[z_i,z_{i+1}]} \mathcal{F}^{-1}\left[f_i,\frac{r_{i+1}}{m_i}\right]\mathcal{Q}_2\left[-\frac{\Delta z_i}{m_i},f_i\right]\mathcal{F}[r_i,f_i]\frac{1}{m_i}\right\}\times\\ \left\{\mathcal{Q}\left[\frac{1-m_1}{\Delta z_1}\right]\overline{\mathcal{T}[z_1,z_2]}U(r_1)\frac{1}{\Delta z_1}\mathcal{G}[r_1,\frac{r_{i+1}}{m_i}\mathcal{G}_1\mathcal{F}[r_i,f_i]\frac{1}{m_i}\right\}\times\\ \left\{\mathcal{Q}\left[\frac{1-m_1}{\Delta z_1}\right]\overline{\mathcal{T}[z_1,z_2]}U(r_1)\frac{1}{\Delta z_1}\mathcal{G}[r_1,\frac{r_{i+1}}{m_i}\mathcal{G}_1\mathcal{F}[r_i,f_i]\frac{1}{m_i}\right\}\times\\ \left\{\mathcal{Q}\left[\frac{1-m_1}{\Delta z_1}\right]\overline{\mathcal{T}[z_1,z_2]}U(r_1)\frac{1}{\Delta z_1}\mathcal{G}[r_1,\frac{r_{i+1}}{m_i}\mathcal{G}_1\mathcal{F}[r_i,f_i]\frac{1}{m_i}\right\}\right\}
$$

Zernike Mode Phase Screen

 $C_{j,j'}$

Zernike Mode Weighting

$$
Z_{evenj} = \sqrt{n+1} R_n^m(r) \sqrt{2} \cos(m\theta)
$$

\n
$$
Z_{oddj} = \sqrt{n+1} R_n^m(r) \sqrt{2} \sin(m\theta)
$$

\n
$$
Z_j = \sqrt{n+1} R_n^0(r), m = 0
$$

\n
$$
\Theta_{atm}(r, \theta) = \sum_j a_j Z_j(r, \theta).
$$

\n
$$
= E[a_j, a_{j'}] = \frac{K_{zz'} \delta_z \Gamma[(n+n'-5/3)/2](D/r_o)^{5/3}}{\Gamma[(n-n'+17/3)/2] \Gamma[(n'-n+17/3)/2] \Gamma[(n+n'+23/3)/2]}.
$$

\n
$$
a_j = U^T \cdot \vec{n}.
$$

$$
U(r_n) = \mathcal{Q}\left[\frac{m_{n-1}-1}{m_{n-1}\Delta z_{n-1}},r_n\right] \times \prod_{i=1}^{n-1}\left\{\overline{\mathcal{T}[z_i,z_{i+1}]}\mathcal{F}^{-1}\left[f_i,\frac{r_{i+1}}{m_i}\right]\mathcal{Q}_2\left[-\frac{\Delta z_i}{m_i},f_i\right]\mathcal{F}[r_i,f_i]\frac{1}{m_i}\right\}\times\\ \left\{\mathcal{Q}\left[\frac{1-m_1}{\Delta z_1}\right]\overline{\mathcal{T}[z_1,z_2]}U(r_1)\frac{1}{\Delta z_1}\mathcal{G}[r_1,\frac{r_{i+1}}{m_i}\mathcal{G}[z_1,\frac{r_{i+1}}{m_i}]\right\}\mathcal{Q}_{2}\right\}
$$

$$
\boxed{U(r_n)} = \mathcal{Q}\left[\frac{m_{n-1}-1}{m_{n-1}\Delta z_{n-1}}, r_n\right] \times \prod_{i=1}^{n-1} \left\{\mathcal{T}[z_i, z_{i+1}]\mathcal{F}^{-1}\left[f_i, \frac{r_{i+1}}{m_i}\right]\mathcal{Q}_2\left[-\frac{\Delta z_i}{m_i}, f_i\right]\mathcal{F}[r_i, f_i]\frac{1}{m_i}\right\} \times \left\{\mathcal{Q}\left[\frac{1-m_1}{\Delta z_1}\right]\mathcal{T}[z_1, z_2]U(r_1)\right\}
$$

New Event-based Sensor Model

Induced Photocurrent [Return](#page-9-1)

• Responsivity linearly scales Power, $\Phi[W]$

 $I_n = R_{\lambda} \Phi[A]$

- Responsivity, R_{λ} , Scaled by Quantum Efficiency, η $R_{\lambda} = \eta \frac{q}{l_{\lambda}}$ $\frac{q}{hf} \approx \eta \frac{\lambda}{1.23985} \left[\frac{A}{W} \right]$ W 1
- Temperature, T, Dependent Dark Current, $I_{darklog}$

$$
I_{darklog} = \ln(I_{dark}) = constant - \frac{E_a}{kT}
$$

New Event-based Sensor Model

Low Pass Filter [Return](#page-9-1)

- Maximum bandwidth, $f_{3dBmax} \approx 3000[Hz]$
- Resultant bandwidth, f_{3dB}

$$
f_{3dB} = \frac{I_{in} + (\frac{I_{max}}{10})}{I_{max}} \times f_{3dBmax}
$$

$$
\epsilon = e^{2\pi \times \Delta t f_{3db}}
$$

$$
I_{p_{int}} \leftarrow (1 - \epsilon)I_{p-1} + \epsilon I_{in}
$$

$$
I_p \leftarrow (1 - \epsilon)I_{p_{int}} + \epsilon I_{in}
$$

New Event-based Sensor Model

Comparator and Refractory Circuit

[Return](#page-9-1)

Event Trigger Time Determination

$$
t_1 = \begin{cases} t_{pos} = \frac{(\theta_{ON} - I_{p1} + I_{memlog1})\Delta t}{\Delta I_p - \Delta I_{memlog1}} + t_0 & \Delta I_p > 0\\ t_{neg} = \frac{(\theta_{OFF} + I_{p1} - I_{memlog1})\Delta t}{\Delta I_{memlog} - \Delta I_p} + t_0 & \Delta I_p < 0 \end{cases}
$$

New Event-based Sensor Model

Arbitration [Return](#page-9-1)

- Ordered row then column query
- Restricted maximum number of events
- Allows and tracks loss of events
	- Saturation
	- Refractory Period

Rolling Poisson Distribution Analysis [Return](#page-17-0)

Verification

- Goal: Prove Model Creates Data Analogous to Real Data
	- Build trust in simulation output
	- Produce simulated data for algorithm development
	- Test camera settings and designs to maximize low-light performance
- Challenges:
	- Non-deterministic: no one-to-one matching
	- Unknown importance of data characteristics

Data Collection

- Prophessee Gen3 (VGA) camera
- \bullet 85mm f1.4 Lens
- January March 2021
- Collection Procedure
	- **1** Slew to fixed azimuth and elevation
	- ² Stare in fixed position for 30 seconds
	- ³ Slew to next location
- Courtesy of Dr. David Monet of AFRL Space Vehicles Directorate

Sony Prophesee, 2022 [https://www.prophesee.ai/](https://www.prophesee.ai/event-based-evaluation-kits/) [event-based-evaluation-kits/](https://www.prophesee.ai/event-based-evaluation-kits/)

Example Data

Analysis Approaches

- Classic Post Processing
	- ¹ Integrate data over 3 second time slice FITS image
	- ² SExtractor yields: $(column, row, flux)$
	- **a** Conversion of flux to visual magnitude: $(column, row, v_{mag})$
	- ⁴ Astrometry.net maps (*column, row*) to (RA, DEC) and identifies reference stars and satellites
	- ⁵ Correlate satellite (RA, DEC) from each time slice with a satellite detection
- New Temporal Data Association
	- **1** Cluster data in 3-dimensions
	- ² Filter clusters with too few pixels and/or events
	- ³ Combine clusters with Hough transform
	- ⁴ Assign cluster numbers to satellites
	- ⁵ Extract signature and temporal characteristics

Clustering

Clustering

78/44

Hough Transform

Hough Transform and Clusters

000000000000000000000000

New Approach Limitations

- Human involvement is necessary
	- Easier to access in 2-dimensions
	- Poor signal to noise datasets are hard to process
- Time clustering is more consistent, but slow

Pixel Total
Time [sec]

Selected Characteristics

Pixel Correlation Matrix Next Pixel
Distance [pix] Time Between
Events [sec]
Events [sec]

000000000000000000

Characteristic Distributions

Beta Binomial Distribution Fit

- Unknown or random probability of success in each of a fixed or known number of Bernoulli trials
- Binomial distribution modification: probability of success is drawn from beta distribution
- Fit with selection of approximate α and β values defining the continuous beta distribution
- Defined the bin size and center values of those bins
- Curve fit the center locations to a continuous beta distribution

Horas, 2014

Validation Plan

- ¹ Select at random a set of data from those post-processed
- ² Simulate the physics front-end once
- ³ Run sensitivity analysis on camera parameters
- ⁴ Create Jacobian from sensitivity analysis
- ⁵ Find least squares fit of camera parameters
- ⁶ Use best fit parameters to simulate other collections
- **•** Compare the distributions with the Kolmogorov Smirnov Test

Non-linear Least Squares

- Sensitivity analysis is a finite difference approximation
- Produces Jacobian, J_{ij}

$$
J_{ij} = -\frac{\delta r_i}{\delta \beta_j}
$$

- Residuals, r_i
- Input Parameters, β_j
- Least Squares to find change in output, Δy

 $(J^T J)\Delta \beta = J^T \Delta y$

Kolmogorov Smirnov Test

[References](#page-45-0) [Backup](#page-46-0) 000

Event-based Sensor Star Tracker

