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• [Natural] The ages of binary 

asteroids in equilibrium

• [Artificial] Thrust-enabled periodic 

trajectories in Cislunar space

• [Nat + Art] Binary asteroid 

mission designs

Outline
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• 15% of asteroids 

have moons[1] formed 

via rotational 

fission[2]

• Absolute age data

– Geologic history

– Family formation

– Physical properties

– Dynamical history

Topic 1: Binary Asteroid Equilibrium Ages
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[1] Pravec et al., 2006, Icarus; [2] Walsh et al., 2008, Nature; [3] Chabot et al., 2024, PSJ; 

[4] Levison et al., 2024, Nature

[3, 4]
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[3] Chabot et al., 2024, PSJ; [4] Levison et al., 2024, Nature; [5] Agrusa et al., 2024, PSJ 4

GOAL: How 

long does this 

process take?

[5]

[3, 4]



• Spin-fission conditions

– Secondary at Roche limit

• Nearly in tidal-BYORP 

equilibrium

– No eccentricity

– Synchronous rotation

• Evolution dominated by 

tides, YORP, BYORP
[5] Agrusa et al., 2024, PSJ
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Method Assumptions



Photos, illustrations, graphics here.

Tides, YORP, and BYORP

Tides Tides BYORP

YORP

Tides shift angular momentum from primary to secondary

YORP + BYORP alter angular momentum
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Photos, illustrations, graphics here.

Changes to Secondary’s Orbit

BYORP and tides

When secondary is at aeq, there is a stable equilibrium

[6] McMahon and Scheeres, 2010, Icarus; [7] Murray and Dermott, 1999 7

[6, 7]
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Changes to Primary’s Spin

YORP and tides

When secondary is at aY, there is an equilibrium

[7] Murray and Dermott, 1999; [8] Rossi et al., 2009, Icarus 8

[7, 8]
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Monte Carlo Analysis: Dinkinesh + Selam
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Current system 

(final conditions)

Unknown parameters

Initial conditions



10[9] Merrill et al., 2024, A&A



• Crater SFD indicates 

Selam’s age = 2 Ma[10]

– k/Q > 6.0e-5 

– CY > -1.0e-2 

• Consistent with tidal-

BYORP eq.

– |B|Q/k = 10.1 ± 37%

– |B| > 6.1e-4 ± 37%
11

Pairing with Crater SFD

[9] Merrill et al., 2024, A&A; [10] Marchi, personal communication



• Selam’s age is consistent with crater SFD 

– Evidence for BQ/k equilibrium for Dinkinesh

– Constraints placed on k/Q, CY , B

• Improved condition for tidal-BYORP equilibrium 

• New condition for tidal-YORP equilibrium 
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Topic 1 Findings



• Spacecraft often exploit 

periodic trajectories

• Very specific coverage 

of Cislunar space

• Thrust can expand this 

coverage

– By how much?

Topic 2: Energy-Optimal Periodic Trajectories
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• Assume circular 

orbits for m1 and m2

• Massless third body

• Rotating frame

 

 r = r3/0

CR3BP (Synodic) Frame

m2 = μ*
 

m1 = 1 – μ*

r3/0 = (x, y, z)T

ereθ

eh = er × eθ   ̂̂ ̂̂̂̂

̂̂̂̂

m3 

r2/0

0



• Optimality is achieved by 

finding the minimum value 

of J under control and 

constraints

– Subject to constraints enforced 

by costates (e.g., λr and λv)

– Meets boundary conditions 

(solves BVP)
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Optimization
Thrust

State

Costates

Augmented 

state



1. Define system of ODEs

– Enforce constraints via 

Lagrange multipliers (costates)

2. Apply linear approximation

– Introduce STMs

3. Solve for costates

4. Define cost as a function of 

state deviation and single 

matrix 16

Roadmap: Solution to BVP
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The system of ODEs:

Propagate the state 

(x) and costates (λ)

CR3BP dynamics

Thrust 

(control)
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Introducing a linear approximation

Notation 

for STMs

STM

Initial 

deviation

Final deviation 

to state
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Solve for δλv

Solve for J: (λv= δλv)
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Explicitly solve the BVP

Define a new matrix: E*



21

• J is defined by the initial 

deviations in position 

and velocity and E*

• Maximum expended 

cost over one orbit = J*

• Can now introduce the 

reachable set…

Introducing a Thrust Constraint
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• Takes the form of a 6-D 

ellipsoid

• Mutually orthogonal 

semi-axes directions

• First semi-axis is not 

included in analysis

[11] Savransky, personal communication

The Reachable Set
[11]

semi-axis

eigenvector,

eigenvalue of E*
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• We have produced artificial periodic trajectories that 

were not known before

• Given J*, the reachable set is a hyper-ellipsoid around 

a reference

• It is possible to reduce perilune distance (initial 

deviation along second eigenvector)
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Topic 2 Findings



• Models of evolution but 

no observed processes

– Contact binary

– Tidal disruption

– Asteroid pair

• Spacecraft can reproduce 

binary evolution

• What is feasible?
26

Topic 3: Binary Asteroid Mission Designs



• More than 10% of all 

small bodies [12, 13, 14]

– 30% of NEOs [15]

• Extensive process 

models, no observations

• Via spacecraft impact, 

one can create a CB

• Binary system
– Contact speed < Vesc

[16]

[12] Benner et al., 2006, Icarus; [13] Sheppard and Jewitt, 2004, The Astronomical Journal; [14] Mann et al., 2007, The Astronomical Journal; 

[15] Virkki et al., PSJ, 2022; [16] Jutzi and Asphaug, Science, 2015; Images courtesy of NASA, JAXA, ESA

Contact Binaries (CB)
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520 m

50 m

230 m

[17] Johnston, W. R., Johnston’s Archive, 2022 ; [3] Chabot et al., 2024, PSJ; [18] Michel et al., 2022, PSJ

Case Study: (350761) 2002 AW
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• Required impact speed of 

< 2.69 km/s [17]

– Dimorphos = 488 km/s

• Leaner DART (Impactor) 

& Hera (Observer) [3, 18]

– Impactor wet = 1465 kg

– Observer wet = 995 kg

– Falcon 9 margin = 200 kg



Contact Binary Mission Anatomy
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(1) Impactor 

and Observer 

launch

[19] Merrill et al., 2024, Acta Astronautica
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(2) Impactor 

maneuver

(1) Impactor 

and Observer 

launch

Contact Binary Mission Anatomy

[19] Merrill et al., 2024, Acta Astronautica
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(2) Impactor 

maneuver

(3) Observer 

rendezvous

(1) Impactor 

and Observer 

launch

Contact Binary Mission Anatomy

[19] Merrill et al., 2024, Acta Astronautica
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(2) Impactor 

maneuver

(4) Impact to 

secondary

(3) Observer 

rendezvous

(1) Impactor 

and Observer 

launch

Contact Binary Mission Anatomy

[19] Merrill et al., 2024, Acta Astronautica
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Transfer Orbit Design

[19] Merrill et al., 2024, Acta Astronautica



Momentum Enhancement Factor: 𝛽 
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• The 𝛽 factor will 

increase the 

effect of 

momentum

• Bounds exist for 

a min. and max. 

𝛽 value
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483 kg Impactor at 2.39 km/s rel. velocity

[19] Merrill et al., 2024, Acta Astronautica
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Gravity Tractor  

• Slower effects 

available from a 

hovering gravity 

tractor

• Initial investigation 

via Gauss equations

ereθ

m2

m1

eh = er × eθ   ̂̂ ̂̂̂̂

̂̂̂̂

m3 

r3/0

r2/0

r2/1

0
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• Spacecraft effects can reproduce binary asteroid 

evolutionary processes

• A mission to create a contact binary via impact is 

currently feasible 

• A gravity tractor demonstration mission is nearly 

feasible but is not optimized

38

Topic 3 Findings
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• [Natural] Created new aging 

method for binary asteroids

• [Artificial] Generated new 

energy-optimal periodic 

trajectories in CR3BP

• [Nat+Art] Demonstrated that 

binary evolution can be 

reproduced with a spacecraft

Conclusions
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• [Natural] Apply aging method to all binary asteroids in 

equilibrium

• [Artificial] Turn “energy-optimal” trajectories in 

CR3BP into “fuel-optimal” in a high-fidelity model

• [Nat+Art] Design (optimal) orbits for a gravity tractor 

in a binary system

Future Work
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Secular Equations of Motion

BYORP and tides affect Selam’s orbit

YORP and tides affect Dinkinesh’s spin

[6] McMahon and Scheeres, 2010, Icarus; [7] Murray and Dermott, 1999; [8] Rossi et al., 2009, Icarus 47

[6, 7]
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Equilibria

Tides

YORP

48

Tides BYORP
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ω ∝ CY

a ∝ k/Q



Photos, illustrations, graphics here.
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k/Q = 1e-4    CY = 1.7e-3    Age = 2.007 Ma
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• 88% of angular momentum content indicates that 

BYORP+YORP have decreased the net ang. mom.

– Supports YORP spin-down

– Supports contractive BYORP

• Model outputs:

– μ = 33.1 ± 1.6 m3 s-2 

– ρ = 2420 ± 1.6 kg m-3 

Some Extra Notes
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520 m

50 m

230 m

Period of Secondary = 1.05 days [5]

Density = 1580 kg/m3 (derived)

Mass of Secondary = 108 kg (derived)

Mass of Primary = 1010 kg (derived)

Heliocentric Data:

P = 405 days   i = 0.575°

e = 0.256   Ω = 162°

ω = 119°   a = 1.07 AU

[5] Johnston, W. R., Johnston’s Archive, 2022

(350761) 2002 AW Characteristics
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Effects of Eccentricity

62
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m2 = μ*
 

m1 = 1 – μ*

r3/0 = (x, y, z)

CR3BP

ereθ

eh = er × eθ   ̂̂ ̂̂̂̂

̂̂̂̂

m3 

r2/0
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Gauss

ereθ

m2

m1

eh = er × eθ   ̂̂ ̂̂̂̂

̂̂̂̂

m3 

r3/0

r2/0

r2/1
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