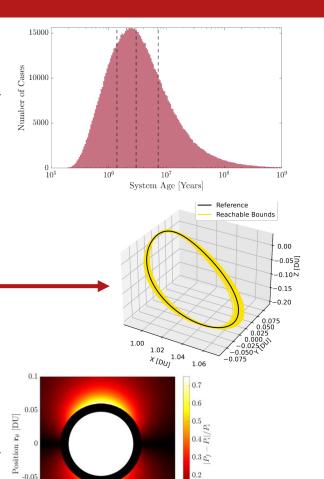


Selected Problems in the Mechanics of Natural and Artificial Small Bodies


Presented by Colby Merrill (They/Them)

July 30, 2024

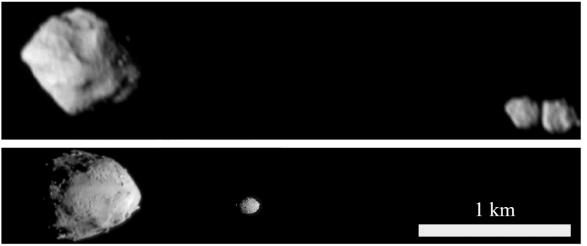
Admission to Candidacy Examination

Outline

- [Natural] The ages of binary asteroids in equilibrium
- [Artificial] Thrust-enabled periodic trajectories in Cislunar space
- [Nat + Art] Binary asteroid mission designs

0.9

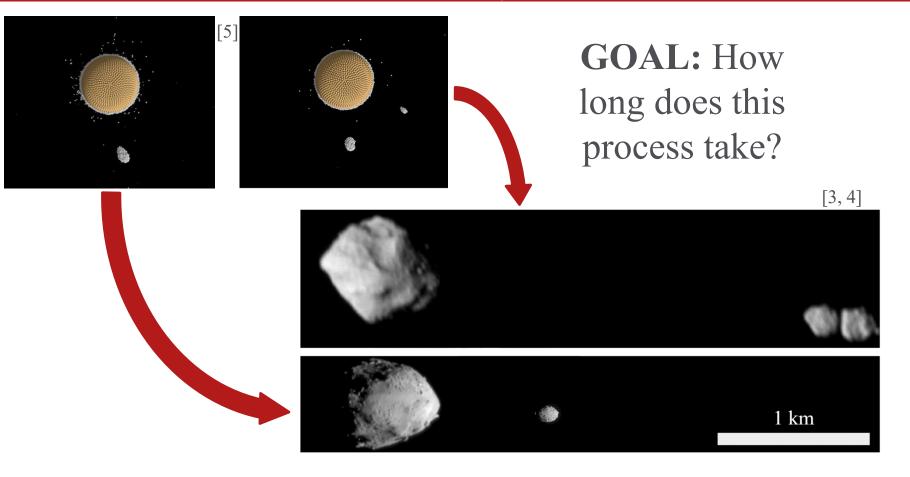
0.95


Position \mathbf{r}_r [DU]

1.05

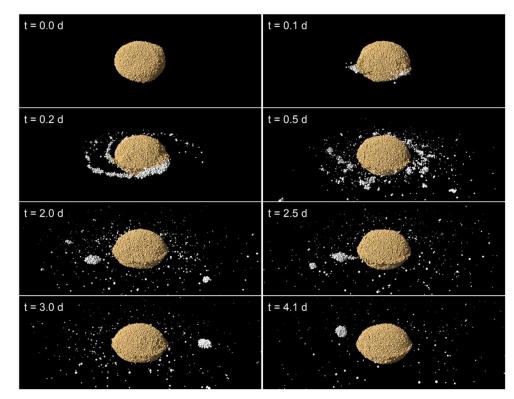
2

Topic 1: Binary Asteroid Equilibrium Ages


- 15% of asteroids have moons^[1] formed via rotational fission^[2]
- Absolute age data
 - Geologic history
 - Family formation
 - Physical properties
 - Dynamical history

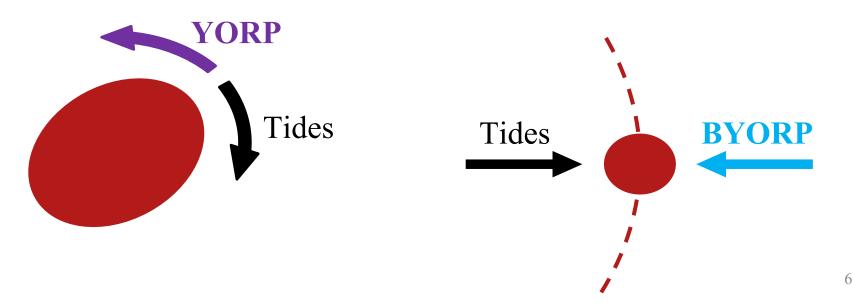
[1] Pravec et al., 2006, *Icarus*; [2] Walsh et al., 2008, *Nature*; [3] Chabot et al., 2024, *PSJ*;
[4] Levison et al., 2024, *Nature*

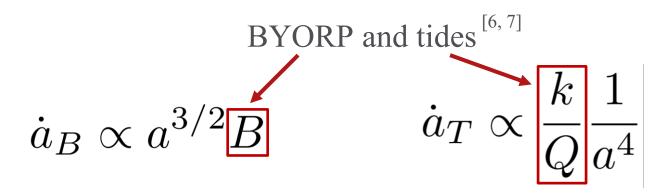
[3, 4]


Cornell University

[3] Chabot et al., 2024, PSJ; [4] Levison et al., 2024, Nature; [5] Agrusa et al., 2024, PSJ

Method Assumptions

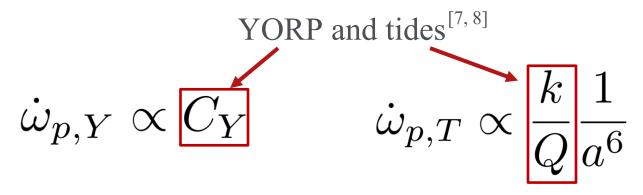

- Spin-fission conditions
 - Secondary at Roche limit
- *Nearly* in tidal-BYORP equilibrium
 - No eccentricity
 - Synchronous rotation
- Evolution dominated by tides, YORP, BYORP


[5] Agrusa et al., 2024, *PSJ*

Tides, YORP, and BYORP

Tides shift angular momentum from primary to secondary YORP + BYORP alter angular momentum

Changes to Secondary's Orbit

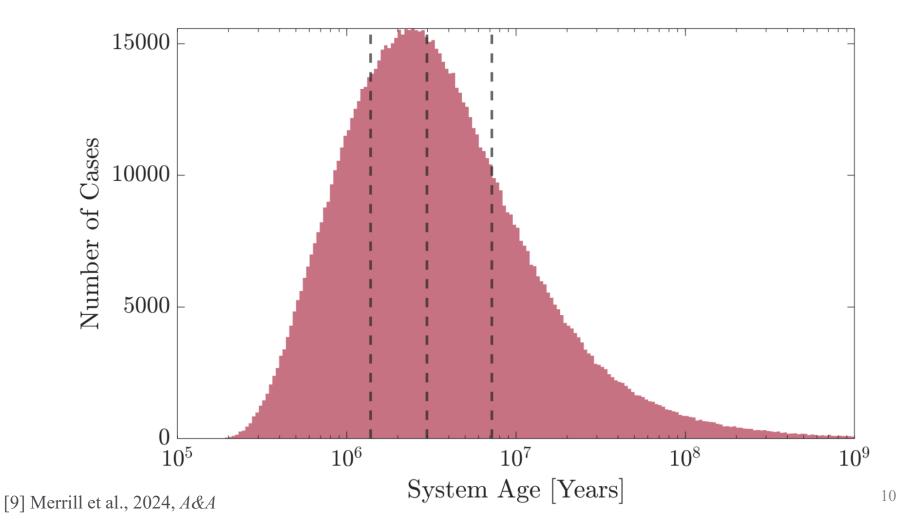


When secondary is at a_{eq} , there is a **stable** equilibrium

$$a_{eq} \propto \left(\frac{k}{|B|Q}\right)^{1/7}$$

[6] McMahon and Scheeres, 2010, *Icarus*; [7] Murray and Dermott, 1999

Changes to Primary's Spin

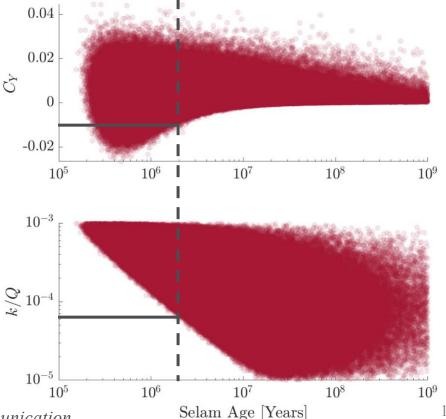

When secondary is at a_{Y} , there is an equilibrium

$$a_Y \propto \left(\frac{k}{|C_Y|Q}\right)^{1/6}$$

[7] Murray and Dermott, 1999; [8] Rossi et al., 2009, *Icarus*

Monte Carlo Analysis: Dinkinesh + Selam

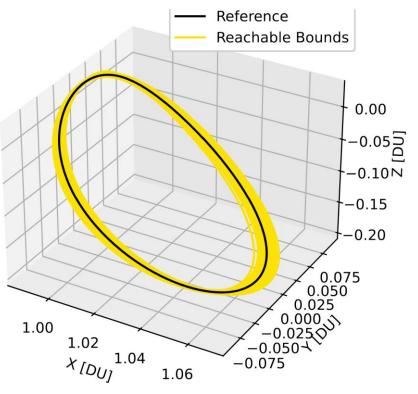
	Parameter	Variable type
Current system (final conditions)	Final mutual orbit period [h]	Fixed
	Eccentricity	Fixed
	Diameter of Dinkinesh [m]	Gaussian
	Diameter of Selam [m]	Gaussian
	$a_{\rm eq}$ [m]	Gaussian
Unknown parameters ◄	k/Q	Log-Uniform
	Coefficient for YORP	Gaussian
	Coefficient for BYORP	Derived
	Density $[\text{kg m}^{-3}]$	Derived
Initial conditions	\int Initial primary spin [rad s ⁻¹]	Derived
	Initial semi-major axis [m]	Uniform


Pairing with Crater SFD

- Crater SFD indicates Selam's age = 2 Ma^[10]
 - k/Q > 6.0e-5
 - $-C_{Y} > -1.0e-2$
- Consistent with tidal-BYORP eq.

$$-|B|Q/k = 10.1 \pm 37\%$$

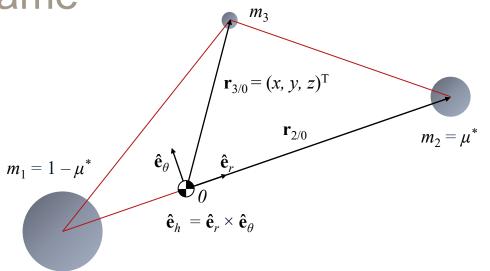
 $-|B| > 6.1e-4 \pm 37\%$



Topic 1 Findings

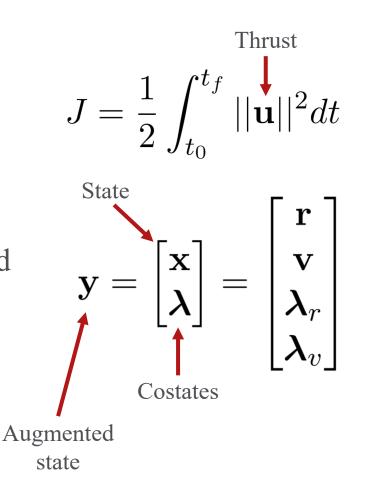
- Selam's age is consistent with crater SFD
 - Evidence for BQ/k equilibrium for Dinkinesh
 - Constraints placed on k/Q, C_Y , B
- Improved condition for tidal-BYORP equilibrium
- New condition for tidal-YORP equilibrium

Topic 2: Energy-Optimal Periodic Trajectories

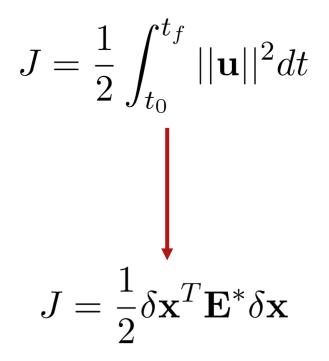

- Spacecraft often exploit periodic trajectories
- Very specific coverage of Cislunar space
- Thrust can expand this coverage
 - By how much?

13

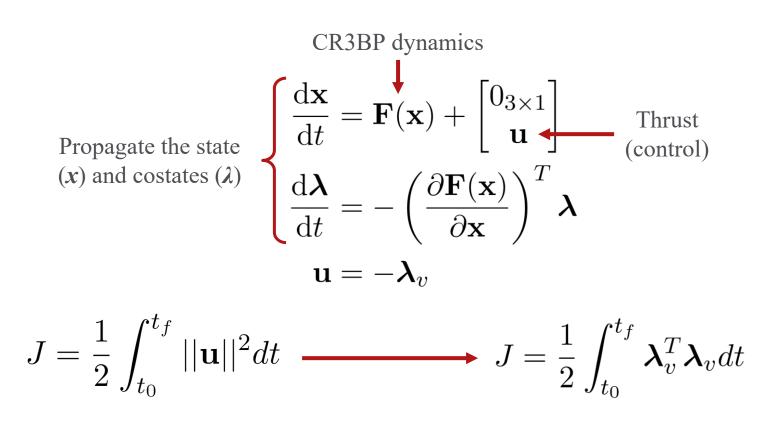
CR3BP (Synodic) Frame


- Assume circular orbits for m_1 and m_2
- Massless third body
- Rotating frame

$$r = r_{3/0}$$


Optimization

- Optimality is achieved by finding the minimum value of *J* under control and constraints
 - Subject to constraints enforced by costates (e.g., λ_r and λ_v)
 - Meets boundary conditions (solves BVP)



Roadmap: Solution to BVP

- 1. Define system of ODEs
 - Enforce constraints via Lagrange multipliers (costates)
- 2. Apply linear approximation
 - Introduce STMs
- 3. Solve for costates
- 4. Define cost as a function of state deviation and single matrix

The system of ODEs:

Introducing a linear approximation

$$\delta \mathbf{y}(t_{f}) = \begin{bmatrix} \delta \mathbf{r}(t_{f}) \\ \delta \mathbf{v}(t_{f}) \\ \delta \boldsymbol{\lambda}_{r}(t_{f}) \\ \delta \boldsymbol{\lambda}_{v}(t_{f}) \end{bmatrix} \approx \underbrace{\begin{bmatrix} \boldsymbol{\Phi}_{\mathbf{r}}^{\mathbf{r}} & \boldsymbol{\Phi}_{\mathbf{v}}^{\mathbf{r}} & \boldsymbol{\Phi}_{\boldsymbol{\lambda}r}^{\mathbf{r}} & \boldsymbol{\Phi}_{\boldsymbol{\lambda}v}^{\mathbf{r}} \\ \boldsymbol{\Phi}_{\mathbf{r}}^{\mathbf{v}} & \boldsymbol{\Phi}_{\mathbf{v}}^{\mathbf{v}} & \boldsymbol{\Phi}_{\boldsymbol{\lambda}r}^{\mathbf{v}} & \boldsymbol{\Phi}_{\boldsymbol{\lambda}v}^{\mathbf{v}} \\ \boldsymbol{\Phi}_{\mathbf{r}}^{\lambda_{v}} & \boldsymbol{\Phi}_{\mathbf{v}}^{\lambda_{v}} & \boldsymbol{\Phi}_{\boldsymbol{\lambda}r}^{\lambda_{v}} & \boldsymbol{\Phi}_{\boldsymbol{\lambda}v}^{\lambda_{v}} \\ \mathbf{\Phi}(t_{f}, t_{0}) \leftarrow & \text{STM} \end{aligned}$$
Notation for STMs
$$\begin{cases} \mathbf{\Phi}_{\mathbf{a}}^{\mathbf{b}}(t, t_{0}) = \frac{\partial \mathbf{b}(t)}{\partial \mathbf{a}(t_{0})} \end{cases}$$

Solve for
$$\delta \lambda_{v}$$

$$\delta \mathbf{y}(t_{f}) = \begin{bmatrix} \delta \mathbf{r}(t_{f}) \\ \delta \mathbf{v}(t_{f}) \\ \delta \lambda_{r}(t_{f}) \\ \delta \lambda_{v}(t_{f}) \end{bmatrix} = \underbrace{\begin{bmatrix} \Phi_{\mathbf{r}}^{\mathbf{r}} & \Phi_{\mathbf{v}}^{\mathbf{r}} & \Phi_{\lambda_{r}}^{\mathbf{r}} & \Phi_{\lambda_{v}}^{\mathbf{r}} \\ \Phi_{\mathbf{v}}^{\mathbf{\lambda}_{r}} & \Phi_{\mathbf{v}}^{\mathbf{\lambda}_{r}} & \Phi_{\lambda_{v}}^{\mathbf{\lambda}_{r}} & \Phi_{\lambda_{v}}^{\mathbf{\lambda}_{r}} \\ \Phi_{\mathbf{r}}^{\mathbf{\lambda}_{r}} & \Phi_{\mathbf{v}}^{\mathbf{\lambda}_{r}} & \Phi_{\lambda_{v}}^{\mathbf{\lambda}_{r}} & \Phi_{\lambda_{v}}^{\mathbf{\lambda}_{r}} \\ \Phi_{\mathbf{r}}^{\mathbf{\lambda}_{v}} & \Phi_{\mathbf{v}}^{\mathbf{\lambda}_{v}} & \Phi_{\lambda_{v}}^{\mathbf{\lambda}_{v}} & \Phi_{\lambda_{v}}^{\mathbf{\lambda}_{v}} \\ \Phi_{\mathbf{v}}^{\mathbf{\lambda}_{v}} & \Phi_{\mathbf{v}}^{\mathbf{\lambda}_{v}} & \Phi_{\lambda_{v}}^{\mathbf{\lambda}_{v}} \\ \Phi_{\mathbf{v}}^{\mathbf{\lambda}_{v}} & \Phi_{\lambda_{v}}^{\mathbf{\lambda}_{v}} & \Phi_{\lambda_{v}}^{\mathbf{\lambda}_{v}} \\ \Psi_{\mathbf{v}}^{\mathbf{\lambda}_{v}} & \Phi_{\lambda_{v}}^{\mathbf{\lambda}_{v}} & \Phi_{\lambda_{v}}^{\mathbf{\lambda}_{v}} \\ \Psi_{\mathbf{v}}^{\mathbf{\lambda}_{v}} & \Phi_{\lambda_{v}}^{\mathbf{\lambda}_{v}} & \Phi_{\lambda_{v}}^{\mathbf{\lambda}_{v}} \\ \Psi_{\mathbf{v}}^{\mathbf{\lambda}_{v}} & \Phi_{\lambda_{v}}^{\mathbf{\lambda}_{v}} \\ \Psi_{\mathbf{v}}^{\mathbf{\lambda}_{v}} & \Phi_{\lambda_{v}}^{\mathbf{\lambda}_{v}} & \Phi_{\lambda_{v}}^{\mathbf{\lambda}_{v}} \\ \Psi_{\mathbf{v}}^{\mathbf{\lambda}_{v}} & \Phi_{\lambda_{v}}^$$

Explicitly solve the BVP

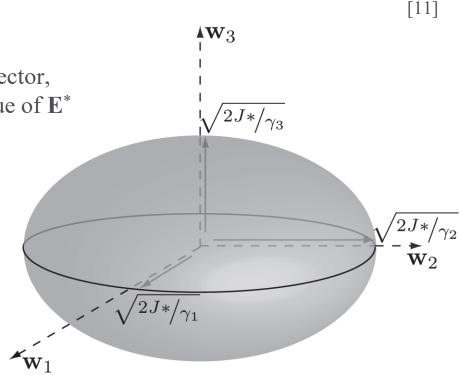
$$\delta \mathbf{y}_0 = \begin{bmatrix} \delta \mathbf{x}_0 \\ \delta \boldsymbol{\lambda}_0 \end{bmatrix} = \begin{bmatrix} \mathbf{I}_6 & \mathbf{0}_6 \\ -(\mathbf{\Phi}_{\boldsymbol{\lambda}}^{\mathbf{x}})^{-1} \mathbf{\Phi}_{\mathbf{x}}^{\mathbf{x}} & (\mathbf{\Phi}_{\boldsymbol{\lambda}}^{\mathbf{x}})^{-1} \end{bmatrix} \begin{bmatrix} \delta \mathbf{x}_0 \\ \delta \mathbf{x}_f \end{bmatrix}$$

Define a new matrix: **E**^{*}

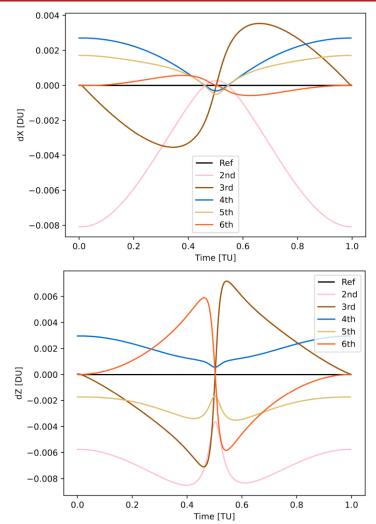
$$\mathbf{E} = \begin{bmatrix} \mathbf{I}_{6} & \mathbf{0}_{6} \\ -\left(\mathbf{\Phi}_{\boldsymbol{\lambda}}^{\mathbf{x}}\right)^{-1} \mathbf{\Phi}_{\mathbf{x}}^{\mathbf{x}} & \left(\mathbf{\Phi}_{\boldsymbol{\lambda}}^{\mathbf{x}}\right)^{-1} \end{bmatrix}^{T} \int_{t_{0}}^{t_{f}} \left(\mathbf{\Phi}_{\mathbf{y}}^{\boldsymbol{\lambda}_{v}}(t,t_{0})\right)^{T} \left(\mathbf{\Phi}_{\mathbf{y}}^{\boldsymbol{\lambda}_{v}}(t,t_{0})\right) dt \begin{bmatrix} \mathbf{I}_{6} & \mathbf{0}_{6} \\ -\left(\mathbf{\Phi}_{\boldsymbol{\lambda}}^{\mathbf{x}}\right)^{-1} \mathbf{\Phi}_{\mathbf{x}}^{\mathbf{x}} & \left(\mathbf{\Phi}_{\boldsymbol{\lambda}}^{\mathbf{x}}\right)^{-1} \end{bmatrix} \\ \mathbf{E}^{*} = \begin{bmatrix} \mathbf{I}_{6} & \mathbf{I}_{6} \end{bmatrix} \mathbf{E} \begin{bmatrix} \mathbf{I}_{6} & \mathbf{I}_{6} \end{bmatrix}^{T} \\ J = \frac{1}{2} \delta \mathbf{y}_{0}^{T} \left(\int_{t_{0}}^{t_{f}} \left(\mathbf{\Phi}_{\mathbf{y}}^{\boldsymbol{\lambda}_{v}}(t,t_{0})\right)^{T} \left(\mathbf{\Phi}_{\mathbf{y}}^{\boldsymbol{\lambda}_{v}}(t,t_{0})\right) dt \right) \delta \mathbf{y}_{0} \longrightarrow \begin{bmatrix} J = \frac{1}{2} \delta \mathbf{x}^{T} \mathbf{E}^{*} \delta \mathbf{x} \\ J = \frac{1}{2} \delta \mathbf{y}_{0}^{T} \left(\int_{t_{0}}^{t_{f}} \left(\mathbf{\Phi}_{\mathbf{y}}^{\boldsymbol{\lambda}_{v}}(t,t_{0})\right)^{T} \left(\mathbf{\Phi}_{\mathbf{y}}^{\boldsymbol{\lambda}_{v}}(t,t_{0})\right) dt \right) \delta \mathbf{y}_{0} \longrightarrow \begin{bmatrix} J = \frac{1}{2} \delta \mathbf{x}^{T} \mathbf{E}^{*} \delta \mathbf{x} \\ J = \frac{1}{2} \delta \mathbf{y}_{0}^{T} \left(\int_{t_{0}}^{t_{f}} \left(\mathbf{\Phi}_{\mathbf{y}}^{\boldsymbol{\lambda}_{v}}(t,t_{0})\right)^{T} \left(\mathbf{\Phi}_{\mathbf{y}}^{\boldsymbol{\lambda}_{v}}(t,t_{0})\right) dt \right) \delta \mathbf{y}_{0} \longrightarrow \begin{bmatrix} J = \frac{1}{2} \delta \mathbf{x}^{T} \mathbf{E}^{*} \delta \mathbf{x} \\ J = \frac{1}{2} \delta \mathbf{y}_{0}^{T} \left(\int_{t_{0}}^{t_{f}} \left(\mathbf{\Phi}_{\mathbf{y}}^{\boldsymbol{\lambda}_{v}}(t,t_{0})\right)^{T} \left(\mathbf{\Phi}_{\mathbf{y}}^{\boldsymbol{\lambda}_{v}}(t,t_{0})\right) dt \right) \delta \mathbf{y}_{0} \longrightarrow \begin{bmatrix} J = \frac{1}{2} \delta \mathbf{x}^{T} \mathbf{E}^{*} \delta \mathbf{x} \\ J = \frac{1}{2} \delta \mathbf{y}_{0}^{T} \mathbf{y}_{0}^{T} \left(\int_{t_{0}}^{t_{0}} \left(\mathbf{y}_{0}^{T} \mathbf{y}_{0}^{T} \left(\mathbf{y}_{0}^{T} \mathbf{y}_{0}^{T} \mathbf{$$

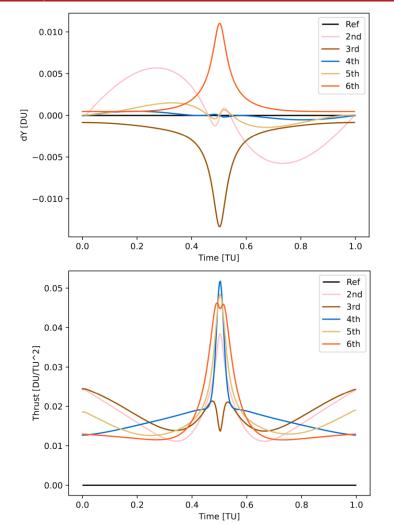
Introducing a Thrust Constraint

- *J* is defined by the initial deviations in position and velocity and **E**^{*}
- Maximum expended cost over one orbit = J^*
- Can now introduce the reachable set...

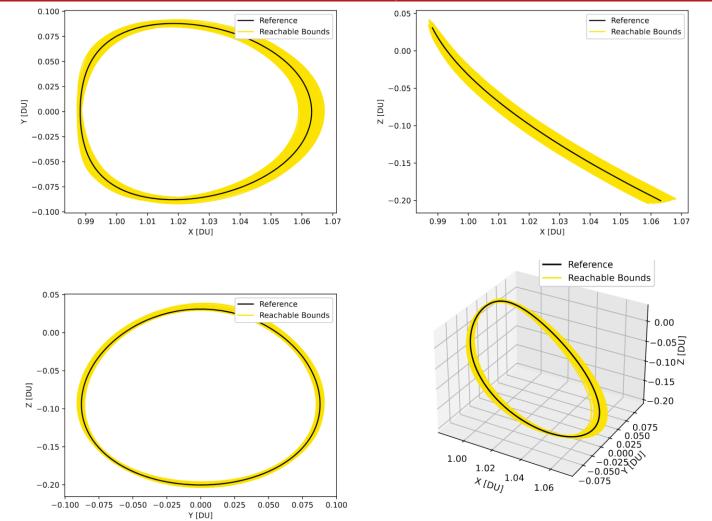

$$J = \frac{1}{2} \delta \mathbf{x}^T \mathbf{E}^* \delta \mathbf{x}$$

$$J^* = \frac{1}{2}u_{\max}^2(t_f - t_0)$$

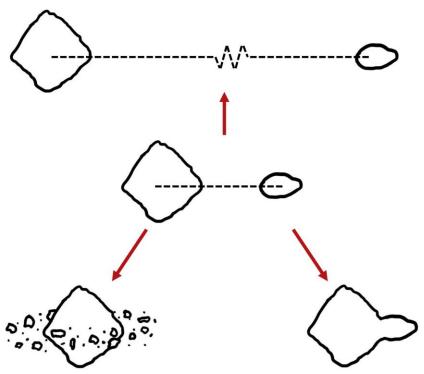

The Reachable Set


semi-axis

- is $\mathbf{a}_i = \sqrt{\frac{2J^*}{\gamma_i}} \mathbf{w}_i$ eigenvector, eigenvalue of \mathbf{E}^*
- Takes the form of a 6-D ellipsoid
- Mutually orthogonal semi-axes directions
- First semi-axis is not included in analysis

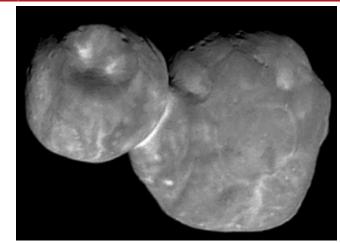

Cornell University

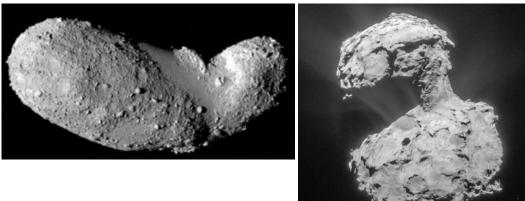
23



Topic 2 Findings

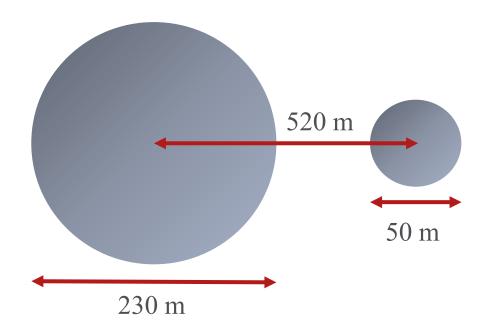
- We have produced artificial periodic trajectories that were not known before
- Given *J*^{*}, the reachable set is a hyper-ellipsoid around a reference
- It is possible to reduce perilune distance (initial deviation along second eigenvector)

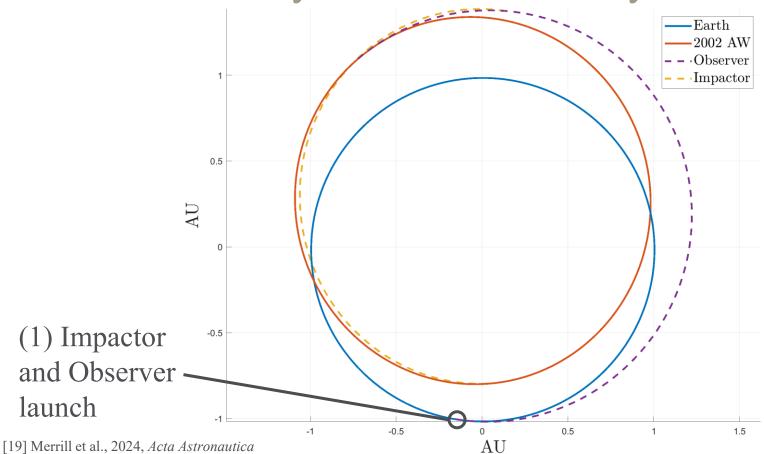

Topic 3: Binary Asteroid Mission Designs


- Models of evolution but no observed processes
 - Contact binary
 - Tidal disruption
 - Asteroid pair
- Spacecraft can reproduce binary evolution
- What is feasible?

Contact Binaries (CB)

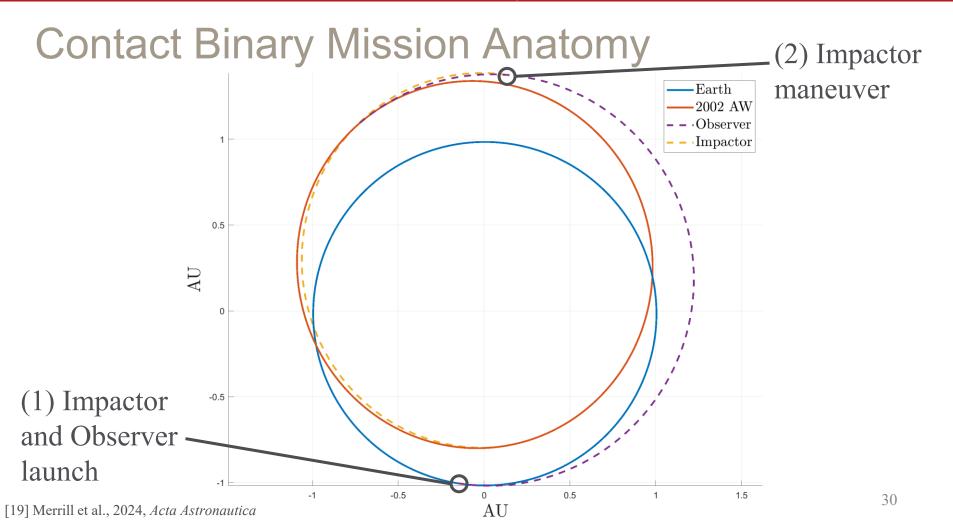
- More than 10% of all small bodies ^[12, 13, 14]
 - 30% of NEOs ^[15]
- Extensive process models, no observations
- Via spacecraft impact, one can **create** a CB
- Binary system
 - Contact speed $< V_{esc}^{[16]}$

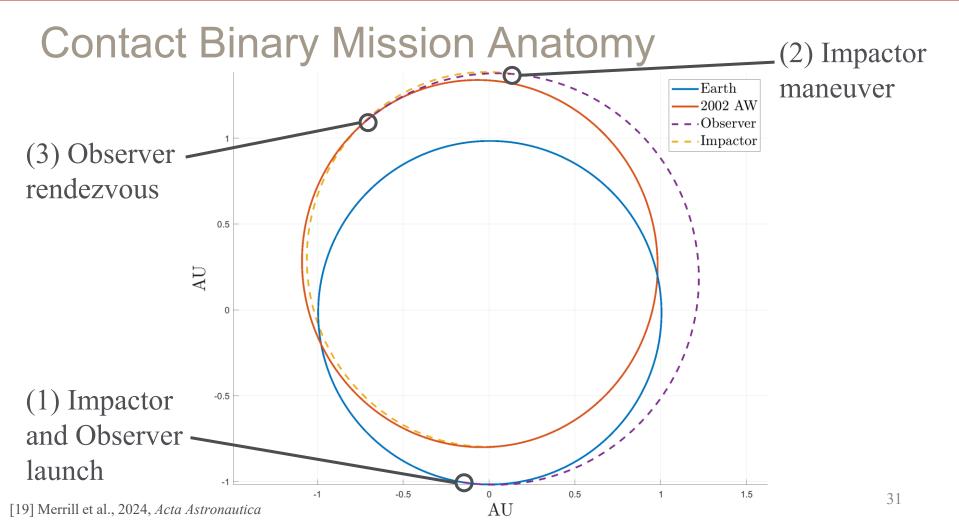


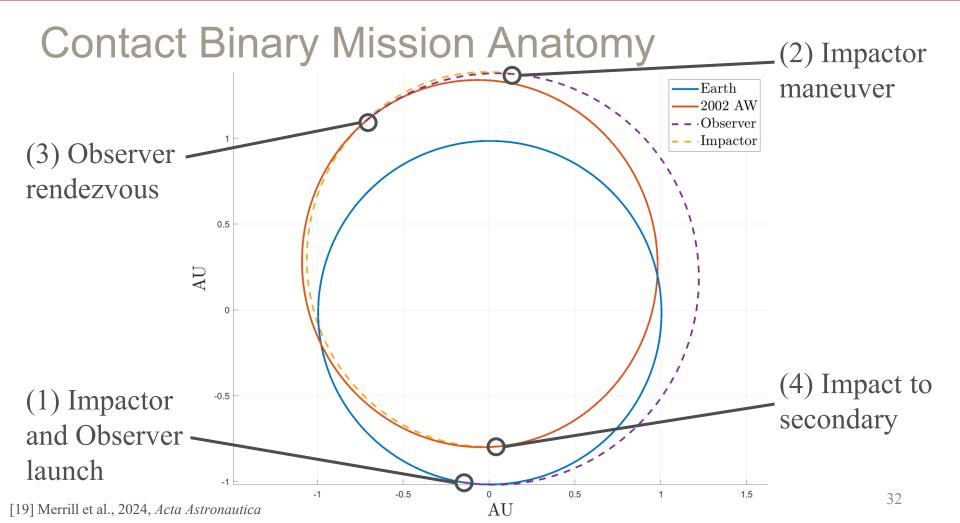

[12] Benner et al., 2006, *Icarus*; [13] Sheppard and Jewitt, 2004, *The Astronomical Journal*; [14] Mann et al., 2007, *The Astronomical Journal*; [15] Virkki et al., *PSJ*, 2022; [16] Jutzi and Asphaug, *Science*, 2015; Images courtesy of NASA, JAXA, ESA

Case Study: (350761) 2002 AW

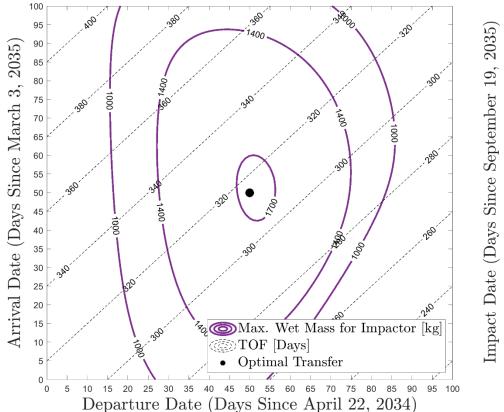
- Required impact speed of < 2.69 km/s ^[17]
 - Dimorphos = 488 km/s
- Leaner DART (Impactor)
 & Hera (Observer) ^[3, 18]
 - Impactor wet = 1465 kg
 - Observer wet = 995 kg
 - Falcon 9 margin = 200 kg

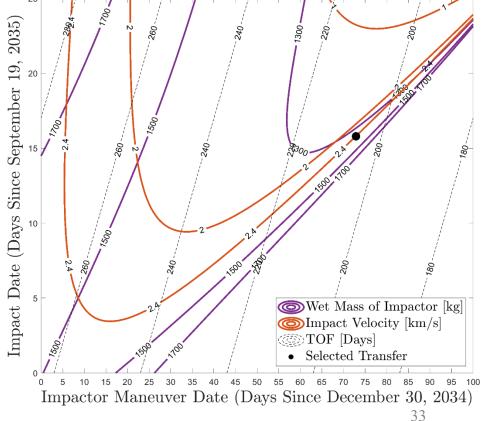



Contact Binary Mission Anatomy

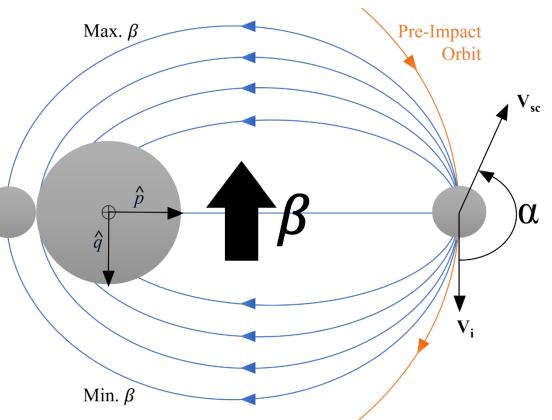


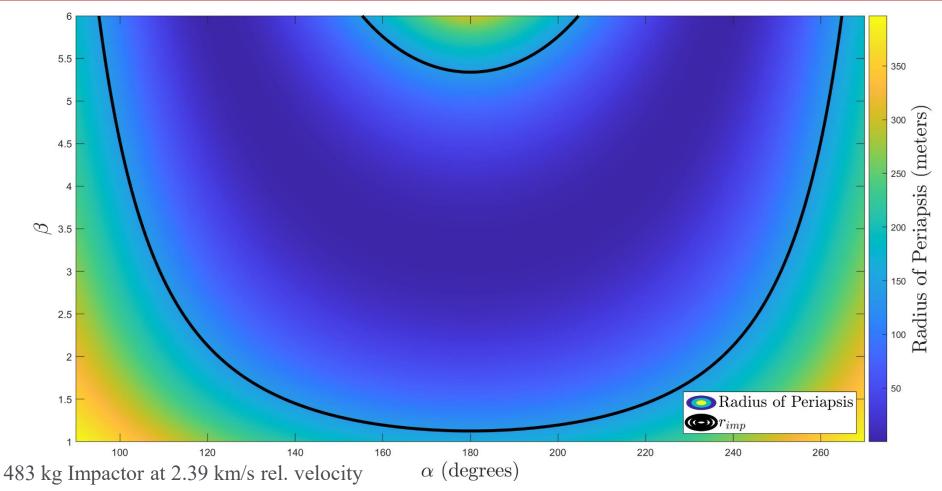
29


Cornell University



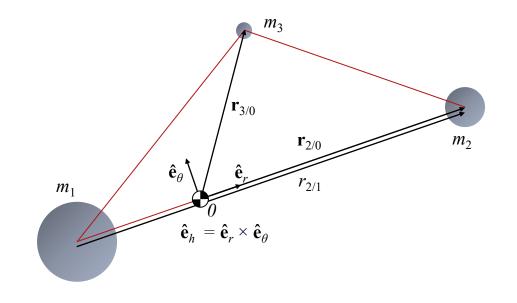
Transfer Orbit Design



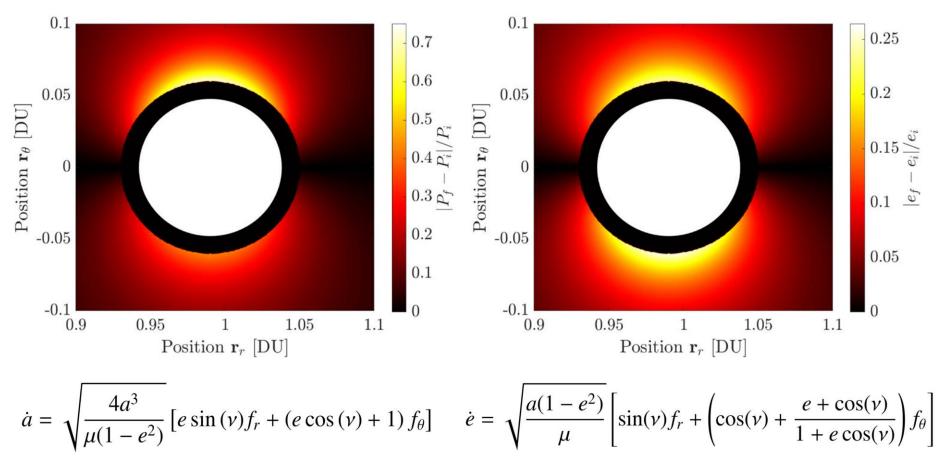

^[19] Merrill et al., 2024, Acta Astronautica

Momentum Enhancement Factor: β

- The β factor will increase the effect of momentum
- Bounds exist for a min. and max.
 β value



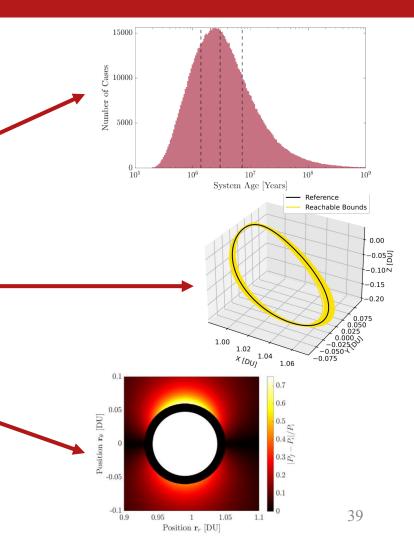
Cornell University



Gravity Tractor

- Slower effects available from a hovering gravity tractor
- Initial investigation via Gauss equations

$$\ddot{\mathbf{r}}_{2/0} = -\frac{G(m_1 + m_2)}{r_{2/1}^3} \mathbf{r}_{2/1} + f_r \hat{\mathbf{e}}_r + f_\theta \hat{\mathbf{e}}_\theta + f_h \hat{\mathbf{e}}_h$$


37

Topic 3 Findings

- Spacecraft effects can reproduce binary asteroid evolutionary processes
- A mission to create a contact binary via impact is **currently feasible**
- A gravity tractor demonstration mission is **nearly feasible** but is not optimized

Conclusions

- [Natural] Created new aging method for binary asteroids
- [Artificial] Generated new energy-optimal periodic trajectories in CR3BP
- [Nat+Art] Demonstrated that binary evolution can be reproduced with a spacecraft

Future Work

- [Natural] Apply aging method to all binary asteroids in equilibrium
- [Artificial] Turn "energy-optimal" trajectories in CR3BP into "fuel-optimal" in a high-fidelity model
- [Nat+Art] Design (optimal) orbits for a gravity tractor in a binary system

Courses

<u>Teaching Assistantships:</u> ASTRO 1102 – Our Solar System MAE 3260 – System Dynamics

<u>Technical Courses:</u> ASTRO 6570 – Physics of the Planets ASTRO 6577 – Planetary Surface Processes (Audit) ECE 5210 – Theory of Linear Systems MAE 5065 – Introduction to Spaceflight Mechanics MAE 5780 – Feedback Control Systems MAE 5730 – Intermediate Dynamics MAE 6720 – Advanced Astrodynamics (Coming Semester) MAE 6760 – Model-Based Estimation

<u>Other:</u> LGBT 3635 – Queer Classics (Audit; Coming Semester) MAE 6949 – MAE Seminar MAE 7999 – MAE Colloquium (x2) VIEN 1102 – Introduction to Wines & Vines

Presentations

Invited Talks:

- The Aerospace Corporation UPLIFT Seminar, Jun. 2024
- NASA Lucy Mission Science Team Meeting Presentation, May 2024
- University of Maryland Department of Astronomy Center for Theory and Computing Seminar, Feb. 2024
- Johns Hopkins University Applied Physics Laboratory Seminar, Nov. 2022

Conference Presentations:

- Merrill, C. C., Kulik, J., Savransky, D., "Investigation of Low-Thrust Enabled State Return Trajectories in the CR3BP," 2024 AAS/AIAA Astrodynamics Specialist Conference, 2024. Oral Presentation.
- Merrill, C. C., Savransky, D., "Investigating Orbits for a Gravity Tractor Demonstration Mission," *13th Annual oSTEM Conference*, 2023. Poster Presentation.
- Merrill, C. C. "Creating a Contact Binary via Spacecraft Impact: The Effects of Eccentricity," 29th Meeting of the Small Bodies Assessment Group, 2023. Oral Presentation.
- Merrill, C. C., Geiger, C. J., Tahsin, A. T. M., Banginwar, P., Peck, M., and Savransky, D. "Mission Design to Create a Contact Binary via Spacecraft Impact to Near-Earth Binary Asteroid (350751) 2002 AW," 8th International Planetary Defense Conference, 2023. Oral Presentation.

Publications

Conference:

• Merrill, C. C., Kulik, J., and Savransky, D. "Generation of Energy-Optimal Low-Thrust Forced Periodic Structures in the CR3BP," 2024 AAS/AIAA Astrodynamics Specialist Conference, 2024.

Journal:

- Merrill, C. C., Kubas, A. R., Meyer, A. J., and Raducan, S. D. "Age of (152830) Dinkinesh I Selam constrained by secular tidal-BYORP theory," *Astronomy and Astrophysics*, 2024. <u>10.1051/0004-6361/202449716</u>
- Merrill, C. C., Geiger, C. J., Tahsin, A. T. M., Savransky, D., and Peck, M. "Creating a Contact Binary via Spacecraft Impact to Near-Earth Binary Asteroid (350751) 2002 AW," *Acta Astronautica*, 2024. <u>10.1016/j.actaastro.2023.11.030</u>

Contributing Author:

- Ferrari, F., and 32 colleagues incl. Merrill, C. C. "Morphology of ejecta features from the DART impact on Dimorphos and their implications," Nature Communications, Submitted.
- Hirabayashi, M., and 75 colleagues incl. Merrill, C. C. "Kinetic deflection change due to target global curvature as revealed by NASA/DART," Nature Communications, Submitted.
- Richardson, D. C., and 52 colleagues incl. Merrill, C. C. "The Dynamical State of the Didymos System Before and After the DART Impact," *The Planetary Science Journal*, 2024. 10.3847/PSJ/ad62f5
- Nakano, R., and 19 colleagues incl. Merrill, C. C. "Dimorphos's Orbit Period Change and Attitude Perturbation due to Its Reshaping after the DART Impact," *The Planetary Science Journal*, 2024. <u>10.3847/PSJ/ad4350</u>
- Raducan, S., and 6 colleagues incl. Merrill, C. C. "Lessons learned from NASA's DART impact about disrupting rubble-pile asteroids," *The Planetary Science Journal*, 2024. <u>10.3847/PSJ/ad29f6</u>
- Chabot, N. L., and 128 colleagues incl. Merrill, C. C. "Achievement of the Planetary Defense Investigations of the Double Asteroid Redirection Test (DART) Mission," *The Planetary Science Journal*, 2024. <u>10.3847/PSJ/ad16e6</u>
- Cueva, R. H., and 7 colleagues incl. Merrill, C. C. "The Secular Dynamical Evolution of Binary Asteroid System (65803) Didymos Post-DART," *The Planetary Science Journal*, 2024. <u>10.3847/PSJ/ad2173</u>
- Meyer, A. J., and 22 colleagues incl. Merrill, C. C. "The Perturbed Full Two-Body Problem: Applications to Post-DART Didymos," *The Planetary Science Journal*, 2023. <u>10.3847/PSJ/acebc7</u>

Acknowledgements

Thank you to my family, friends, colleagues, mentors, and committee members for all your support!

See you at the B! (hopefully before then, too)

References

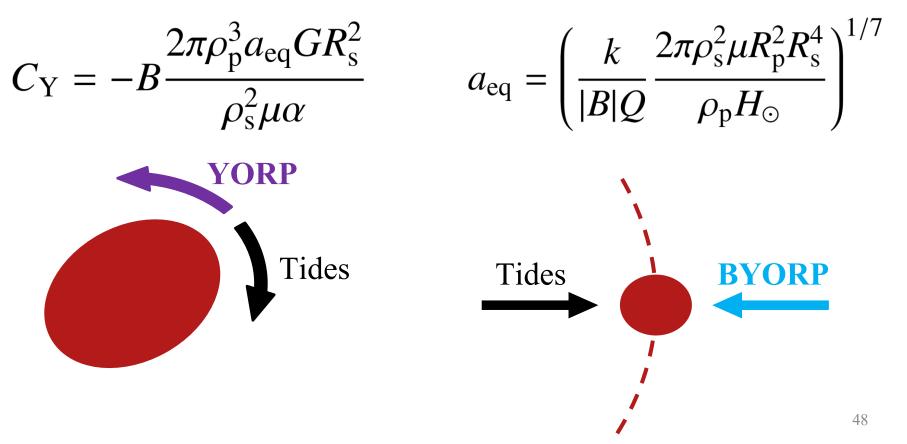
[1] Pravec et al., 2006, *Icarus*, doi.org/10.1016/j.icarus.2005.10.014 [2] Walsh et al., 2008, Nature, doi.org/10.1038/nature07078 [3] Chabot et al., 2024, *PSJ*, doi.org/10.3847/PSJ/ad16e6 [4] Levison et al., 2024, *Nature*, doi.org/10.1038/s41586-024-07378-0 [5] Agrusa et al., 2024, *PSJ*, doi.org/10.3847/PSJ/ad206b [6] McMahon and Scheeres, 2010, *Icarus*, doi.org/10.1016/j.icarus.2010.05.016 [7] Murray and Dermott, 1999 [8] Rossi et al., 2009, Icarus, doi.org/10.1016/j.icarus.2009.02.030 [9] Merrill et al., 2024, *A&A* [10] Marchi, personal communication [11] Savransky, personal communication [12] Benner et al., 2006, *Icarus*, doi.org/10.1016/j.icarus.2006.01.016 [13] Sheppard and Jewitt, 2004, The Astronomical Journal, doi.org/10.1086/383558 [14] Mann et al., 2007, The Astronomical Journal, doi.org/10.1086/520328 [15] Virkki et al., 2022, *PSJ*, doi.org/10.3847/PSJ/ac8b72 [16] Jutzi and Asphaug, 2015, Science, doi.org/10.1126/science.aaa4747 [17] Johnston, 2022, Johnston's Archive [18] Michel et al., 2022, *PSJ*, doi.org/10.3847/PSJ/ac6f52 [19] Merrill et al., 2024, Acta Astronautica

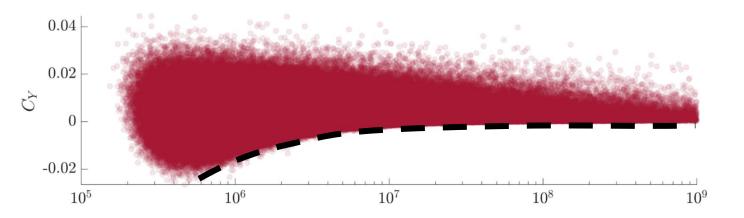
Images courtesy of NASA, JAXA, and ESA

Parameter	Didymos ^(a)	Dinkinesh (b)
Volume-equivalent diameter of primary [m]	730 ± 17	719 ± 24
Volume-equivalent diameter of secondary [m]	150.0 ± 2.5	282 ± 28
Bulk density of primary, secondary $[kg m^{-3}]$	$2790 \pm 140, 2400 \pm 300$	2400 ± 350
Semi-major axis [m]	1189 ± 17	3110 ± 50
Secondary shape	Oblate ellipsoid	Bilobate
Mutual orbital period [h]	11.921493 ± 0.000016	52.67 ± 0.04
Mutual orbital eccentricity	< 0.03	0
Primary rotation period [h]	2.2600 ± 0.0001	3.7387 ± 0.0013
Heliocentric semi-major axis [AU]	1.64266506 ^(c)	2.1915426 ^(c)
Heliocentric eccentricity	0.383264789 ^(c)	0.1121065 (c)

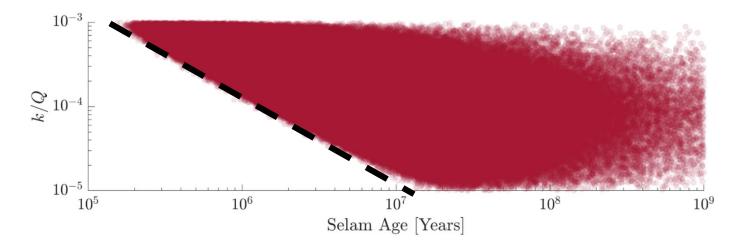
Secular Equations of Motion

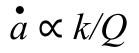
BYORP and tides affect Selam's orbit^[6, 7]

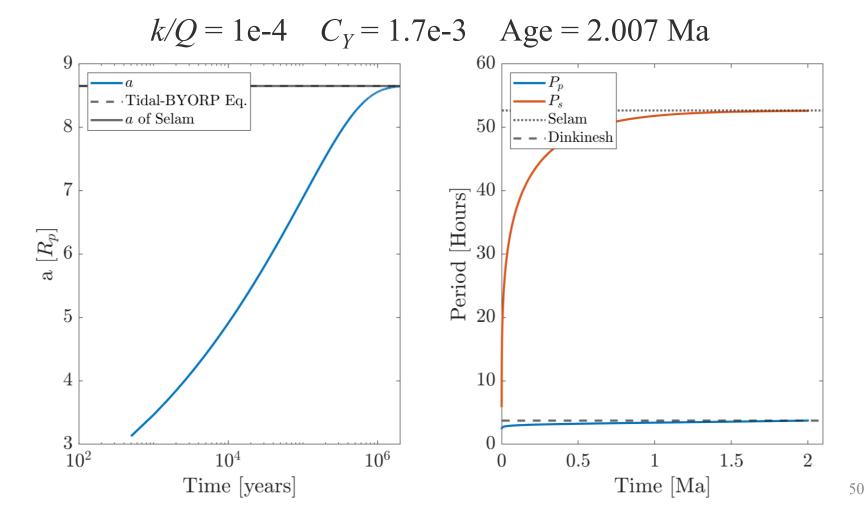

$$\dot{a}_{\rm B} = \frac{3H_{\odot}}{2\pi\rho_{\rm s}R_{\rm s}} \sqrt{\frac{a^3(1-e^2)}{\mu}B} \quad \dot{a}_{\rm T} = sign(\omega_{\rm p}-n)3n\frac{k}{\overline{Q}}\frac{M_{\rm s}}{M_{\rm p}}\frac{R_{\rm p}^5}{a^4}$$

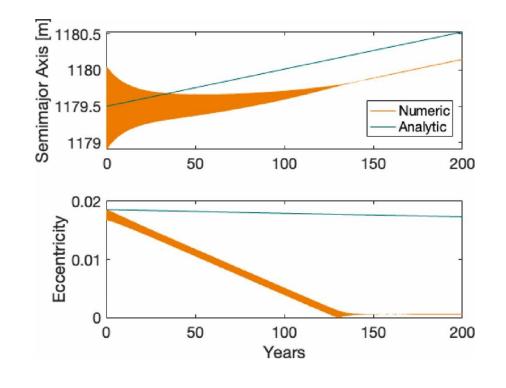

YORP and tides affect **Dinkinesh's spin**^[7, 8]

$$\dot{\omega}_{\rm p,Y} = \frac{H_{\odot}}{2\pi R_{\rm p}^2 \rho_{\rm p}} C_{\rm Y} \qquad \dot{\omega}_{\rm p,T} = -sign(\omega_{\rm p} - n) \frac{3k}{2\alpha Q} \frac{GM_{\rm s}^2 R_{\rm p}^3}{M_{\rm p} a^6}$$


[6] McMahon and Scheeres, 2010, Icarus; [7] Murray and Dermott, 1999; [8] Rossi et al., 2009, Icarus


Equilibria

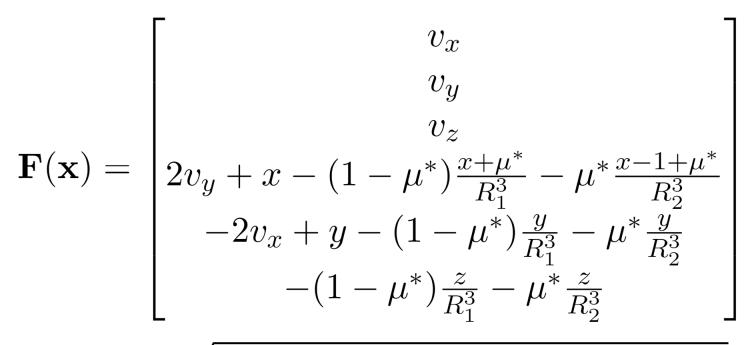




Parameter	Variable type	Mean value $\pm 1\sigma$; [bounds]	Note and source
Final mutual orbit period [h]	Fixed	52.67	Mottola et al. (2023)
Eccentricity	Fixed	0	Levison et al. (2024)
Diameter of Dinkinesh [m]	Gaussian	719 ± 24	Levison et al. (2024)
Diameter of Selam [m]	Gaussian	282 ± 28	Levison et al. (2024)
$a_{\rm eq}$ [m]	Gaussian	3110 ± 50	Levison et al. (2024)
k/Q	Log-Uniform	10^{-x} ; $x \in (3, 5)$	x is uniformly distributed
Coefficient for YORP	Gaussian	0 ± 0.0125 ; [-2, Eq. (14)]	Rossi et al. (2009)
Coefficient for BYORP	Derived	Eq. (11)	Contractive BYORP only
Density [kg m ⁻³]	Derived	$3\pi a_{\rm eq}^3 / (P^2 G(R_{\rm p}^3 + R_{\rm s}^3))$	_
Initial primary spin [rad s ⁻¹]	Derived	Eq. (15)	Angular momentum conservation
Initial semi-major axis [m]	Uniform	$(1.5R_{\rm p}, 2.5R_{\rm p})$	Roche limit

Some Extra Notes

- 88% of angular momentum content indicates that BYORP+YORP have decreased the net ang. mom.
 - Supports YORP spin-down
 - Supports contractive BYORP
- Model outputs:
 - $-\mu = 33.1 \pm 1.6 \text{ m}^3 \text{ s}^{-2}$
 - $-\rho = 2420 \pm 1.6 \text{ kg m}^{-3}$



$$\dot{\theta}^* = \sqrt{\frac{\mu}{r^3} \left(1 + \frac{3(\bar{I}_{A,z} - \bar{I}_{A,xy} - 2\bar{I}_{B,x} + \bar{I}_{B,y} + \bar{I}_{B,z})}{2r^2} \right)}$$

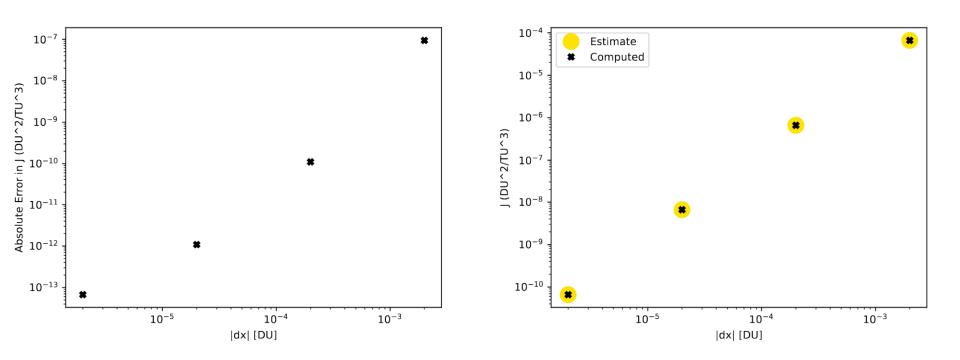
$$\omega_{\rm p} = \frac{\alpha (M_{\rm p} + M_{\rm s})(R_{\rm p}^3 + R_{\rm s}^3)^{2/3} \omega_{\rm d} - M^* \sqrt{\mu a_{\rm i}} - \alpha M_{\rm s} R_{\rm s}^2 n}{\alpha M_{\rm p} R_{\rm p}^2}$$

$$a_{\rm eq} = \left(\frac{k}{|B|Q} \frac{2\pi \rho_{\rm s}^2 \mu R_{\rm p}^2 R_{\rm s}^4}{\rho_{\rm p} H_{\odot}}\right)^{1/7} a_{\rm Y} = \left|\frac{k}{C_{\rm Y}Q} \frac{4\pi^2 G R_{\rm p}^2 R_{\rm s}^6 \rho_{\rm p}^2}{H_{\odot} \alpha}\right|^{1/6}$$

$$\frac{|B|Q}{k} = \frac{2\pi \rho_{\rm s}^2 \mu R_{\rm p}^2 R_{\rm s}^4}{\rho_{\rm p} H_{\odot} a_{\rm eq}^7} \qquad C_{\rm Y} = -B \frac{2\pi \rho_{\rm s}^3 a_{\rm eq} G R_{\rm s}^2}{\rho_{\rm s}^2 \mu \alpha}$$

$$R_2 = \sqrt{(x - 1 + \mu^*)^2 + y^2 + z^2}$$

$$R_1 = \sqrt{(x + \mu^*)^2 + y^2 + z^2}$$

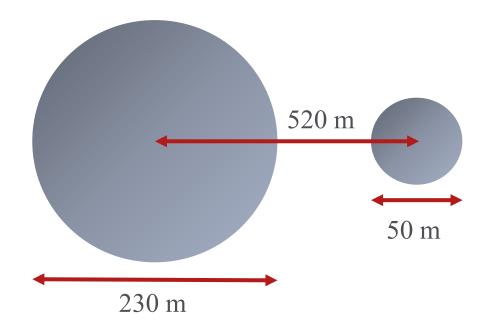

55

$$\mathbf{a}_{i} = \sqrt{\frac{J^{*}}{\gamma_{i}}} \mathbf{w}_{i}$$

$$J = \frac{1}{2} \int_{t_{0}}^{t_{f}} ||\mathbf{u}||^{2} dt$$

$$\delta \mathbf{y}(t_{f}) = \begin{bmatrix} \frac{\delta \mathbf{r}(t_{f})}{\delta \mathbf{v}(t_{f})} \\ \frac{\delta \lambda_{r}(t_{f})}{\delta \lambda_{v}(t_{f})} \end{bmatrix} = \mathbf{\Phi}(t_{f}, t_{0}) \delta \mathbf{y}_{0} = \begin{bmatrix} \mathbf{\Phi}_{\mathbf{x}}^{\mathbf{x}} & \mathbf{\Phi}_{\mathbf{\lambda}}^{\mathbf{x}} \\ \mathbf{\Phi}_{\mathbf{x}}^{\mathbf{\lambda}} & \mathbf{\Phi}_{\mathbf{\lambda}}^{\mathbf{\lambda}} \end{bmatrix} \delta \mathbf{y}_{0} = \begin{bmatrix} \mathbf{\Phi}_{\mathbf{r}}^{\mathbf{r}} & \mathbf{\Phi}_{\mathbf{v}}^{\mathbf{r}} & \mathbf{\Phi}_{\mathbf{\lambda}r}^{\mathbf{r}} & \mathbf{\Phi}_{\mathbf{\lambda}v}^{\mathbf{r}} \\ \mathbf{\Phi}_{\mathbf{r}}^{\lambda_{r}} & \mathbf{\Phi}_{\mathbf{v}}^{\lambda_{r}} & \mathbf{\Phi}_{\mathbf{\lambda}v}^{\lambda_{r}} & \mathbf{\Phi}_{\mathbf{\lambda}v}^{\lambda_{r}} \\ \mathbf{\Phi}_{\mathbf{r}}^{\lambda_{v}} & \mathbf{\Phi}_{\mathbf{v}v}^{\lambda_{v}} & \mathbf{\Phi}_{\mathbf{\lambda}r}^{\lambda_{v}} & \mathbf{\Phi}_{\mathbf{\lambda}v}^{\lambda_{v}} \\ \mathbf{\Phi}_{\mathbf{r}}^{\mathbf{\lambda}_{v}} & \mathbf{\Phi}_{\mathbf{v}v}^{\lambda_{v}} & \mathbf{\Phi}_{\mathbf{\lambda}v}^{\lambda_{v}} & \mathbf{\Phi}_{\mathbf{\lambda}v}^{\lambda_{v}} \\ \mathbf{\Phi}_{\mathbf{r}}^{\mathbf{b}} & \mathbf{\Phi}_{\mathbf{v}v}^{\lambda_{v}} & \mathbf{\Phi}_{\mathbf{\lambda}v}^{\lambda_{v}} & \mathbf{\Phi}_{\mathbf{\lambda}v}^{\lambda_{v}} \\ \mathbf{\Phi}_{\mathbf{a}}^{\mathbf{b}}(t, t_{0}) &= \frac{\partial \mathbf{b}(t)}{\partial \mathbf{a}(t_{0})} \end{bmatrix}$$

$$\mathbf{5}$$



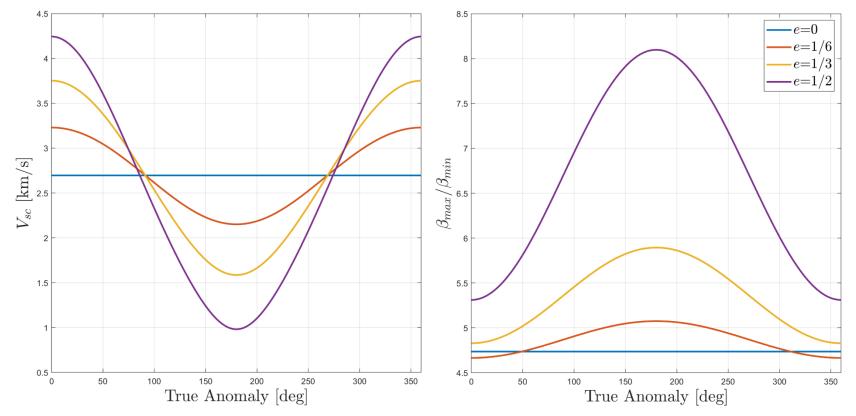
(350761) 2002 AW Characteristics

Period of Secondary = 1.05 days [5] Density = 1580 kg/m^3 (derived) Mass of Secondary = 10^8 kg (derived) Mass of Primary = 10^{10} kg (derived)

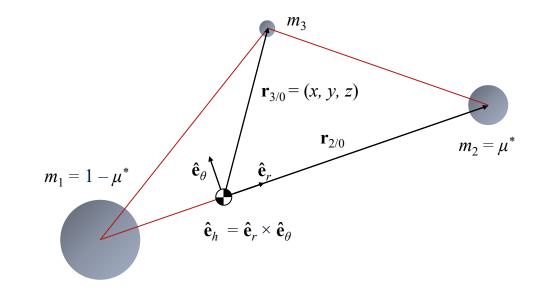
Heliocentric Data:

P = 405 days $i = 0.575^{\circ}$ e = 0.256 $\Omega = 162^{\circ}$ $\omega = 119^{\circ}$ a = 1.07 AU

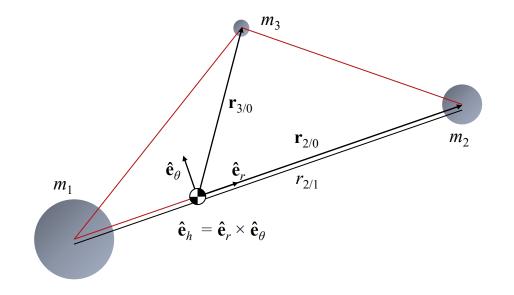
Table 4

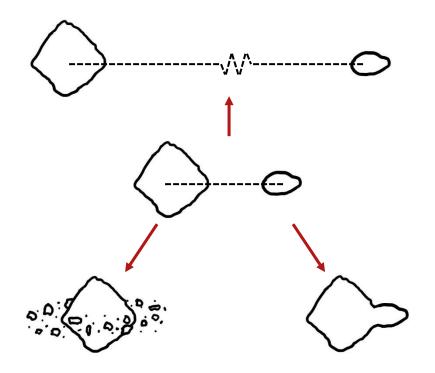

The mass breakdown for this mission design. CBE refers to the current best estimate of the dry mass. The contingency masses are derived from [31,32,40]. Propellant mass is calculated as the mass necessary to perform all maneuvers for the CBE + contingency mass of each component. All propellant calculations use an $I_{sp} = 235$ s.

Mass margin		200 kg
Falcon 9 launch		2655 kg
Total		2455 kg
	Total	995 kg
	Prop. Contingency	52 kg (10%)
Observer	Propellant	523 kg
	Contingency	104 kg (33%)
	CBE	316 kg
	Total	1460 kg
	Prop. Contingency	93 kg (10%)
Impactor	Propellant	925 kg
	Contingency	40 kg (10%)
	CBE	402 kg


Name	Min. V_{∞} Required (km/s)	Max. V_{∞} Allowed (km/s)	Min. Total ⊿V (km/s)	β_{max}/β_{min}
Didymos	488.2	3503	6.2	7.18
1990 OS	3.49	17.78	6.5	5.09
1999 RM45	5.12	38.28	13.5	7.48
2000 UG11	20.10	173.6	10.0	8.64
2002 AW	2.69	12.76	4.3	4.74
2002 TY57	5.01	44.16	10.3	8.81
2003 SS84	2.06	12.03	8.9	5.84
2003 UX34	22.44	168.2	11.5	7.50
2004 BL86	8.97	62.54	12.6	6.97
2006 GY2	9.97	92.50	11.1	9.28
2009 FD	7.46	69.19	8.6	9.27
2014 WZ120	35.21	253.3	14.5	7.19
2017 RV1	23.06	179.8	8.5	7.80
2018 TF3	4.61	41.64	11.9	9.03

Cornell University				
Name	Primary diameter (m)	Secondary diameter (m)	Semi-major axis (m)	Period (days)
Didymos	780	170	1190	0.4971
1990 OS	300	50	600	0.875
1999 RM45	165	74	290	0.6852
2000 UG11	260	130	426	0.7667
2002 AW	230	50	520	1.047
2002 TY57	330	60	420	0.4485
2003 SS84	120	60	270	1
2003 UX34	280	100	460	0.625
2004 BL86	320	70	500	0.6
2006 GY2	400	80	500	0.487
2009 FD	150	90	250	0.6
2014 WZ120	300	100	500	0.56938
2017 RV1	300	100	470	0.5896
2018 TF3	270	60	350	0.438


Effects of Eccentricity



CR3BP

Gauss

